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Localized magnons states, due to flat bands in the spectrum, is an intensely studied phenomenon
and can be found in many frustrated magnets of different spatial dimensionality. The presence of
Dzyaloshinskii-Moriya (DM) interactions may change radically the behavior in such systems. In
this context, we study a paradigmatic example of a one-dimensional frustrated antiferromagnet,
the sawtooth chain in the presence of DM interactions. Using both path integrals methods and
numerical Density Matrix Renormalization Group, we revisit the physics of localized magnons and
determine the consequences of the DM interaction on the ground state. We have studied the spin
current behavior, finding three different regimes. First, a Luttinger-liquid regime where the spin
current shows a step behavior as a function of parameter D, at a low magnetic field. Increasing the
magnetic field, the system is in the Meissner phase at the m = 1/2 plateau, where the spin current
is proportional to the DM parameter. Finally, further increasing the magnetic field and for finite
D there is a small stiffness regime where the spin current shows, at fixed magnetization, a jump to
large values at D = 0, a phenomenon also due to the flat band.

PACS numbers: 05.30.Rt,03.65.Aa,03.67.Ac

I. INTRODUCTION

In low dimensional systems, geometrical frustration
and quantum fluctuations may lead to unusual mag-
netic states. In two dimensions, Magnetic materials
with Kagomé lattice structure have attracted much at-
tention in the field of condensed matter physics due to
their exotic magnetic phenomena. Some realizations of
the S = 1/2 Kagomé lattice are the Herbertsmithite
ZnCu3(OH)6Cl2 , α-vesignieite BaCu3V2O8(OH)2, and
[NH4]2 [C7H14N][V7O6F18]5. An interesting phe-
nomenon that is known for quite a few years, and among
which the Kagome lattice provides an example, corre-
sponds to frustrated systems with a flat band in the en-
ergy spectrum.1,2. However, the presence of flat bands
is not exclusive for two-dimensional systems. It is pos-
sible to find one-dimensional systems, where localized
magnons excitations emerge due to frustration2. Here we
consider the presence of the Dzyaloshinskii-Moriya (DM)
interaction, representing the antisymmetric version of the
Heisenberg exchange induced by the spin-orbit coupling,
in frustrated one-dimensional systems. More precisely,
we focus on the paradigmatic antiferromagnet in one di-
mension known as the sawtooth chain, but we also ex-
plore the consequences of frustration in other similar sys-
tems.

In the absence of the Dzyaloshinskii-Moriya inter-
actions, the Heisenberg model on the sawtooth chain
presents two degenerate ground states at M = 0 and the
elementary excitations were found to be kink-antikink-
type excitations.3,4. Hao et. al. show that a weak DM
interaction is sufficient to break the valence-bond order
(VBO) and lead the system into a Luttinger liquid with
algebraic spin correlations5. In the same chain, the Bose
Hubbard model presents a solid phase which is unstable
against doping6. The same model on different ladders

FIG. 1. Sketch of the Sawtooth chain. a) A four sites unit
cell is used along the paper. b) Representation of the Magnon
crystal ground state at the critical coupling αc.

geometries may present many states, including Meissner
phases, vortex fluids, vortex lattices and charge density
waves.7–11.

For the Heisenberg model, it is possible to construct
exact eigenstates of independent localized one-magnon
states that become the ground state previous to satura-
tion in a family of one dimensional spin systems for which
the sawtooth chain is the simplest member1,12.

The sawtooth geometry is shown in Fig. 1. This lat-
tice presents a strong geometrical frustration modulated
by the parameter α (see Fig. 1-a). We will show that
DM interactions produce a nontrivial behavior in the spin
current in the high magnetic field regime.

The paper is organized as follows: In section II we
present the Hamiltonian for the sawtooth chain and
a summary of the exact results for the magnetization
jump above the plateau in the presence of the localized
magnons. In Section III we presents a coherent-state
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path integral description on the sawtooth chain and we
determine a condition to obtain a non-trivial delocalized
mode trigering short range entanglement and an emer-
gent spin imbalance, a phenomenon among which lo-
calized magnons is a particular case. In section IV we
present Density Matrix Renormalization Group calcula-
tions of the magnetization process and the spin current
corresponding to different values of the DM coupling.
Three different behaviors are identified corresponding to
low, medium and high magnetic field. In section V we
apply the path integral results to other Kagomé-like spin
ladders and finally in section VI we present the conclu-
sions.

II. LOCALIZED MAGNONS AND
MAGNETIZATION JUMPS.

Let us consider the Heisenberg Hamiltonian on the
Sawtooth chain given by

H = J
∑
j

(
S∆
j,1S

∆
j,2 + S∆

j,2S
∆
j,3 + S∆

j,3S
∆
j,4

+ α
(
S∆
j,1S

∆
j,3 + S∆

j,3S
∆
j+1,1

)
+ S∆

j,4S
∆
j+1,1

)
(1)

− h
∑
j,k

Szj,k

with j = 1, ..., L denoting the cell index, α regulates the
frustration in the triangles and k = 1, ..., 4 is the inter-
nal index in each unit cell as shown in Fig. 1. Here
exchange terms S∆

i,lS
∆
j,m denotes the spin interaction in

the presence of anisotropy ∆

S∆
i,lS

∆
j,m =

1

2
(S+
il S
−
jm + S−il S

+
jm) + ∆SzilS

z
jm. (2)

In the absence of Dzyaloshinskii-Moriya interactions,
the lowest magnon branch for the sawtooth chain be-
comes flat by tuning the couplings at α = αc =
1/
√

2(1 + ∆). At this point, a magnon in a unit cell is
completely decoupled from the rest of the chain. The
ground state corresponds to a product state |g.s.〉 =
1
C
∏
j |ψj〉 with local one-magnon states given by

|ψj〉 =
∑

k∈cellj

λkŜ
−
k | ↑↑↑ · · · ↑↑↑〉

where coefficients λk are nonzero only for k = 2, 3, 4
within the unit cell, as highlighted with red thick lines in
Fig. 1-b.

As schematized in Fig. 1-b we can construct further
local excitations and there will be no interaction between
excitations as long as they are separated in space. In this
way we obtain n-magnon excitations whose energy is n
times the energy of one isolated magnon. This multiple
magnon state becomes the lowest magnon excitation13.

The analytical proof of this statement it is not easy, but
the numerical evidence is clear.

In Ref. 1 the magnetization process for the sawtooth
chain with a flat band, in the absence of DM interac-
tions, is described together with two other ladders with
Kagomé-like structure (that we will introduce in V and
can also have a flat band) and the 2D Kagomé lattice.
In section IV we show the normalized magnetization as a
function of the external magnetic field. In the absence of
Dzyaloshinskii-Moriya interactions a macroscopic jump
from m = 1/2 to m = 1 makes evident that the lowest
excitation to the fully polarized states contains several
magnons. This jump with δm = 1/2 corresponds to a
configurations of magnons with a four spins unit cell like
the one schematized in Fig. 1-b.

The XXZ anisotropy in the model does not affect prop-
erties of the one-magnon dispersion, and then the degen-
eracy and the associated magnetic jump is expected to
be independent of ∆. However, in order to construct a
low energy theory, it is convenient to study the system
for ∆ 6= 1 to avoid classical collinear configurations that
disfavor the path integral formulation in terms of spin
coherent states. For this reason, in the following we will
work with ∆ = 1/2 unless otherwise indicated.

III. LOW ENERGY EFFECTIVE MODEL

We study the system using the coherent-state path in-
tegral description due to Haldane14 and Tanaka et. all15.
For an introductory and detailed approach to this de-
scription see references15–17. In order to obtain an ef-
fective theory, first we identify the classical lowest en-
ergy configuration. To do this, we start from the isolated
triangle formed by the S1,S2,S3 spins in a given unit
cell (see Fig. 1). By symmetry, we take the S1 and
S3 polar angles to be equal, i.e. θ1 = θ3 ≡ θB , and
φ2 − φ1 = φ2 − φ3 ≡ φ for the azimuthal angles. For the
complete chain we take θ2 = θ4 ≡ θA in each cell, and a
unique azimuthal angle as well.

Choosing the anisotropy paremater for example to
∆ = 1/2, the classical ground state for a given applied
magnetic field consists in a canted configuration, with
φ = π, and h-dependent θA,B(h) as usual15,17,18. We
write the spin operators in terms of the polar and az-
imuthal angles as O(3) vectors with length S (being S
the spin quantum number), by

Sjl = S(sin θjl cosφjl, sin θjl sinφjl, cos θjl)

and we parametrize the fluctuations around the classical
configuration as

φjl → φ0l + φl(xj) θjl → θ0l + δθl(xj). (3)

The conjugate variables used to construct the effective
field theory are φl(xj) and

aΠl(xj) = −S
(
δθl(xj) sin θ0l +

1

2
(δθl(xj))

2 cos θ0l

)
(4)
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where a is the lattice spacing. The spin operators are
then written as

Szjl = S cos θ0l + aΠl(xj) (5)

S±jl = S(−1)le±iφl(xj)

(
sin θ0l −

aΠl(xj)

S tan θ0l

− 1

2

1

1− cos2 θ0l

a2Π2
l (xj)

S2 sin θ0l

) (6)

The theory is written up to quadratic terms in fluctu-
ations. First order terms vanish because fluctuations
are added upon the classical ground state, and constant
terms are drop.

The total action of the system S = Scl + SBP is
conected to the partition function of the system via a
path integral over all possible spin trayectories in imagi-
nary time τ . Scl =

∫
dτH(τ) is the classical action and

SBP is the Berry Phase term, a geometrical term that
emerges due to the overcomplete nature of the coherent
state basis, and depends on the spins trayectories, and
not on their explicit time dependence16. In the contin-
uum description, the later is simply

SBP = i

∫
dxdτ

4∑
l=1

{
(∂τφl)

S −ml

a
− (∂τφl)Πl

}
(7)

while the former is itself divided in kinetic and mass
terms, i.e. Scl = SK + SM , where

SM = J

∫∫
dx

a
dτ

{
S2

2
~φtMφ

~φ+
a2

2
~ΠtMΠ

~Π +

}
(8)

and ml = S cos(θ0l), (~φ)i = φi, (~Π)i = Πi, and Mφ and
MΠ are symmetric matrices depending on h, θA, θB and
α. SK will be presented below for clarity. We perform
a diagonalization of the symmetric matrix Mφ using a

unitary transformation P , such that ~ϕ = P ~φ, where

P =


1
2

1
2

1
2

1
2

0 − 1√
2

0 1√
2

− 1
2

1
2 − 1

2
1
2

− 1√
2

0 1√
2

0

 , (9)

obtaining M ′φ = PMφP
t = Diag (0,m2,m3,m4) where

m2 = 2γ

m3 = 4γ

m4 = 2(γ − 2αβ)

(10)

with β = sin2 θB and γ = sin θA sin θB .
Eqs. (9) and (10) mean that the field ϕ1 =

(
φ1 +

φ2 + φ3 + φ4

)
/2 is gapless, as a consequence of the U(1)

symmetry of the system. The fields ϕ2 =
(
φ4 − φ2

)
/
√

2

and ϕ3 =
(
−φ1 +φ2−φ3 +φ4

)
/2 are both gapfull and at

the low energy limit frozen to a vanishing value. Finally,
the combination φ3 − φ1 can be gapples if

α =
γ

2β
(11)

If m4 vanish, the field ϕ4 =
(
φ3 − φ1

)
/
√

2 it’s free
to fluctuate, i.e. it gets delocalized, and it’s conjugate
field Ω4 =

(
Π3 − Π1

)
/
√

2 is then localized. If the Ω4

mass term also vanish, it can be energetically favorable
for it to get locked into a non-zero value. This is the
mechanism that was proposed in 19 for a phenomenon of
a spontaneous spin imbalance and a factorization of the
wave functions when a magnetization plateau is present.
Indeed, Ω4 6= 0 means that there is a difference in the
local magnetization between spins 1 and 3, breaking the
lattice symmetry. This scenario is indeed corroborated
by the DMRG analysis as we show in section IV.

It is interesting to look also at the kinetic part or the
action, containing the spatial derivatives of φ, we have

SK =
JS2

2

∫∫
dx

a
dτ

{
(γ − αβ)

(
a∂xφ1(x)

)2
+

2
(
a∂xφ1(x)

)
[γ(φ1 − φ4)− αβ(φ1 − φ3)]

}
(12)

The action exhibits first derivative terms which are not
conventional kinetics terms. In general, because of the
vanishing of the ϕ2, ϕ3 and ϕ4 fields discussed above,
these terms vanish in the low energy limit of the effective
action. In the interesting case giving rise to the delocal-
ization of the ϕ4 field, then the coefficient in front of the
first derivative terms vanish. Then, at low energy, SK is
simply.

SK =
JS2

2

∫∫
dx

a
dτ

{
(γ − αβ)

(
a∂xφ1(x)

)2}
(13)

The only stiffness coefficient, γ − αβ = 1
2m4 + αβ its

minimum when m4 vanish. The phenomenon of a flat
band can be interpreted here as a (renormalized) stiff-
ness vanishing simultaneously to the ϕ4 and Π4 mass
terms discussed above. As we see below, this produce a
dramatic effect in the presence of DM interactions.

As it is known a DM interaction produces spin currents
in the system. But one question that naturally arises is
what will be the effect of the flat band on the currents?
To answer this question we determine numerically the
spin currents by DMRG.

IV. DMRG RESULTS

We start by showing the numerical study of the spin
imbalance mechanism explained in Section III. All nu-
merical calculations using DMRG where made using pe-
riodic boundary conditions, unless otherwise stated. In



4

FIG. 2. Local normalized magnetizations in the unit cell as
functions of total magnetization for D = 0, α = αc and N =
60 sites. The spin imbalance between the spins S1 and S3

occurs at the magnetization plateau, where m = 1/2. There,
the spin S1 is completly polarized, i.e, 〈Sz1 〉 = 1 (see Fig.
1). Lower magnetization sectors are not shown for clarity.
Inset: We change the frustration coupling, setting α = α̃ =
αc + αc

10
and the spin imbalance is still present. In both main

figure and inset 〈Sz2 〉 = 〈Sz4 〉 and the respective curves are
overlapped.

Fig. 2 we show the local magnetization 〈Szj 〉 for each
spin in the unit cell as a function of the total normal-
ized magnetization of the system, obtained by DMRG at
α = αc for a 60−sites system in the absence of DM inter-
actions. The largest m value showed is m = 1/2, where
the system is gapped, previous to the jump to satura-
tion. The breaking of the lattice translation symmetry
is clearly seen only on the plateau. Although the phe-
nomenon of exact factorization and a jump in the mag-
netization curve is exclusive to the critical value αc, it
is important to stress that, as the path integral analy-
sis shows, the phenomenon of the magnetization plateau
and a spin imbalance and short range entanglement en-
tropy on top of it is not exclusive to this critical value
and happen for a finite region of the parameters. Indeed,
in the inset of Fig. 2 we show again the local magneti-
zation 〈Szj 〉 for each spin in the unit cell as a function
of the total normalized magnetization of the system, but
we set α = αc + αc

10 ≡ α̃ so the system does not have a
magnetization jump to saturation and the ground state
magnetization is a continuous function of h, but we can
see that the spin imbalance is still present. This is to be
expected due to the presence of a magnon-crystal phase
(not only a fine tuned point), as the one present in the
Kagomé-stripe ladder2, which also exhibits a flat band
and an exact solution of localized magnons1.

In the following, we present a numerical study for the
spin current in the presence of DM interactions. To define
it, we start from the Hamiltonian on the Sawtooth lattice
written as

H =
∑
〈l,l′〉

Jl,l′(e
iθl,l′S+

l S
−
l′ + e−iθl,l′S−l S

+
l′ + ∆l,l′S

z
l S

z
l′),

(14)

FIG. 3. Magnetization as a function of the applied magnetic
field for different values of the Dzyaloshinskii-Moriya interac-
tion D, at the critical coupling αc, for a N = 60-site system.
At D = 0 a macroscopic jump in the magnetization profile
is observed as a manifestation of the magnon condensation.
Lower magnetization sectors are not shown for clarity.

where the angle θl,l′ is defined by the relation Dl,l′ =
žJl,l′ sin θl,l′ , being D the DM vector. All throughout
the work we set θ positive and equal for all the bonds,
i.e., θl,l′ ≡ θ > 0. The ordering in (14) for spin operators,
which is relevant in the presence of DM interactions, is
taken as in (1).

We calculate numerically the ground state energy cor-
responding to each magnetization sector for different val-
ues of D and from these values we have built the nor-
malized magnetization, m = M/Msat, as a function of
the magnetic field for several values of D. The results
are shown in Fig. 3, where a macroscopic magnetiza-
tion jump from m = 1/2 to saturation can be clearly
observed for D = 0. A magnetization plateau is present
at m = 1/2. This plateau is consistent with the OYA
theorem20 provided that the ground state unit cell con-
tains 4 spins, as in Fig. 1. Although the plateau is
present for all the D values studied, the width of the
plateau depends on this value. As can be seen, the de-
pendence of the plateau edge with D is greater on the
right side of the plateau. We will see in what follows
that the behavior with D on both sides of the plateau
is also different for spin currents. Notably at m = 0.7
there is virtually no dependence on the values of D. In
the following we will see that a similar behavior occurs
for the spin current, which can be obtained as

jl,l′ = ieiθl,l′ 〈S+
l S
−
l′ 〉+ h.c. ∝ 〈∂H/∂θl,l′〉 (15)

by determining 〈S+
l S
−
l′ 〉 by DMRG calculations. The

spin current is a conserved current in the sense that it
satisfies a conservation law. Taking the commutator be-
tween Szj (z-magnetization density) and H, the corre-
sponding result can be written as a discrete divergence
of (15) with an extra minus sign. In Figs. 4, 6, 7 and
5 we plot the ‘Bottom spin current’ which corresponds
to j1,3 in the unit cell, which is slightly larger in mod-
ulus and opposite in sign to the ‘Top spin current’, i.e.,
j1,2 = j2,3 = j3,4.
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FIG. 4. Spin current as a function of the Dzyaloshinskii-
Moriya interaction D, corresponding to the critical coupling
αc, and N = 60 sites. The sawtooth profile for the current is a
consequence of the Luttinger liquid behavior at low magnetic
field. Black symbols correspond to m = 1/2 plateau where
a Meissner phase is clearly observed. Inset: Spin current as
a function of D corresponding to m = 1/2. Notice that at
high values of D the system departs from the linear behavior
associated to the Meissner phase.

In figure 4 we show the spin current obtained numer-
ically by DMRG as a function of the DM interaction at
the critical value αc for m = 0.3, m = 0.4 and m = 0.5.
As we are fixing the magnetization of the system in Figs.
4 and 6, it is natural to make use of a mapping to the
bosonic system (fixing m in the spin language corre-
sponds to fixing the particle number of the bosons).

The mapping between spin and bosonic systems is a
well known subject16,21. Three common maps are the
Holstein-Primakoff bosons, usually used to describe spin
waves in the semiclassical limit, the Schwinger bosons,
used in mean field calculations, SU(N) representations
and path integral descriptions, and the hard-core bosons,
which corresponds to the infinite on-site repulsion in the
Bose-Hubbard Hamiltonian. The later is mainly summa-
rized as follows: the ladder spin operators are mapped

to creation and annihilator bosonic operators, S−j = b†j ,
the z-magnetization is mapped to the particle density via

1/2− Szj = nj = b†jbj , the magnetic field h is mapped to
the chemical potential µ, the gauge field θ is mapped
to the vector potential A, the spin current is mapped
to a particle current, the magnetization plateau corre-
sponds to a Mott insulator phase, and the gapless phase
corresponds to a bosonic superfluid phase. We use the
hard-core boson exact mapping to write (15) as

jll′ = ieiθll′ 〈blb†l′〉+ h.c. (16)

where now, the spin current is mapped to a bosonic cur-
rent. At the plateau (m = 1/2), and for small enough
values of D, the system remains gapped and the current
becomes linear with the flux. This is the Meissner phase
corresponding to black symbols in Fig. 4. In the in-
set, we show how for larger D values the system departs
from the Meissner phase because of the appearance of
vortices11. Bellow the magnetic plateau (m = 0.3 and

FIG. 5. Spin current as a function of DM interactions, at
fixed magnetization, for a 20-spin system. In dashed lines
(solid lines), the results using open (periodic) boundary con-
ditions. The discontinuities in the spin current for D in range
(0, 1/10), described by the Luttinger-liquid theory, are a con-
sequence of the periodic boundary conditions taken in the
numerical calculations.

m = 0.4 in Fig. 4), the system remains in a Luttinger
liquid phase6 where, under periodic boundary conditions,
the Luttinger liquid theory can be used22 to obtain the
particle current induced by a magnetic flux Φ threading
the ring, giving

j =
uK

L
(ν − 2

Φ

Φ0
) (17)

where u is the spin-wave velocity, K is the Luttinger
parameter, L is the perimeter of the ring, ν = N+ −N−
is the difference between right moving and left moving
particles, and Φ0 = hc/e is the quantum of flux.

At equilibrium, ν is chosen by the system as to mini-
mize the energy and it can change only by integer values.
It can be seen that the current has a periodicity Φ0, giv-
ing rise to a sawtooth (discontinuous) profile as a function
of Φ which appears in the spin current discontinuities in
Fig. 4. We now discuss that numerically, this disconti-
nuities are a direct consequence of the periodic boundary
conditions taken in the DMRG calculations. In particle
language, to get effects from the gauge field, the equiva-
lent bosonic system must have a finite A circulation over
a close path in the system. For the sawtooth chain we
have: (i) Each triangle around which we have a finite
A circulation and (ii) the whole system with periodic
boundary conditions, thought as a ring, around which
we also have a finite A circulation. The first path makes
the current in Fig. 4 not periodic in D. Nonetheless, the
second path is much longer than the first one, so in Fig.
4 for small D we do not reach the first jump due to the
cell structure. In Fig. 5 we plotted the spin current as
a function of D for m = 0.3 and m = 0.4 for both open
and periodic boundary conditions showing that for this
range of D values the discontinuities in the spin current
disappear with open boundary conditions.

Let us now discuss the situation above the m = 1/2
plateau. In figure 6 we show the spin current obtained
numerically by DMRG as a function of the DM interac-
tion at the critical value αc for m ≥ 0.5. For m = 1/2
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FIG. 6. Spin current as a function of the Dzyaloshinskii-
Moriya interaction corresponding to the critical coupling α =
αc, N = 60 sites, for different fixed magnetization sectors. At
D = 0 the current is discontinuous for 1/2 < m < 1, due to
the flat band. Inset: Spin current as a function of D, setting
α = α̃ = αc + αc

10
. The system no longer has a flat band and

the spin current converges continuously to cero as D tends to
cero.

the system is in the Meissner phase, shown as reference.
For 1/2 < m < 1 at D = 0 there is no spin current,
but for finite D we observe a jump, which is produced
by the annulation of the spin stiffness23 due to the flat
band. The jump is then followed by an approximately
linear behavior, corresponding again to the diamagnetic
contribution as can be observed by the fact that the
slope in the linear regime is simply proportional to the
density of bosons.
At α = αc and D = 0, the bosonic system has a flat band
and the spin system does not accessess any of the states
with 1/2 < m < 1, because its energetically favorable for
it to be either gapped (m = 1/2) or saturated (m = 1),
depending on the applied magnetic field h. Nontheless,
in Fig. 6 we show that, if in the bosonic system we fix
the particle number to 0 < n < 1/4, then the current is
a discontinuous function of the gauge field θ at θ = 0.

If we now consider the system as a spin system, and
allow the magnetization to vary, the behavior can be un-
derstood from what is discussed above. The ground state
spin currents, computed by DMRG for α = αc, are pre-
sented in Fig. 7, where three regimes are clearly seen.
For h < hc1 the system is in the Luttinger liquid phase
(Fig. 4), where m < 1/2 (Fig. 3). The spin current is
a discontinuous function of h because as the magnetic
field is changed, the system accesses differents ground
states, with different magnetizations and possibly a dif-
ferent value of ν (see Eq. (17)), which is chosen by the
system on each ground state as to minimize its energy.
For hc1 < h < hc2 the system is gapped, in the Meissner
phase, with m = 1/2. Finally, for hc2 < h < hsat the
system is in a low-stiffness phase, with 1/2 < m < 1. In
the low energy effective model from section III, the spin
current (15) is j(x) ∝ ∂xφ. For finite D, at α = αc the
renormalized spin stiffness is finite but small, and it is
energetically more favorable for the system to have spin
currents (see Eq. 13). The peak arround h = 1.36 corre-

FIG. 7. Ground state spin current as a function of the applied
magnetic field for diferent D values, for the critical coupling
α = αc and N = 60. As h varies, the system accesses dif-
ferent magnetization sectors as we show in Fig. 3. Here, for
the ground state spin current there are three regimes. First,
the low-field regime (m < 1/2), where the system is in the
Luttinger-liquid phase and the ground state spin current is a
discontinuous function of D. Increasing the applied magnetic
field, the system enters in the Meissner phase, it is gapped,
and has m = 1/2. Finally, at high field the system is in the
low-stiffness phase, with higher continuous spin currents and
1/2 < m < 1.

sponds to the maximum for the spin current at m = 0.7
in Fig. 6. At the same magnetization value all magneti-
zation curves cross each other in Fig. 3.

V. FLAT BANDS IN KAGOME STRIP
LADDERS

In Ref. 1 there are several quantum antiferromagnets
where geometrical frustration can induce a flat band that
gives place to a plateau of localized magnons and a mag-
netization jump to saturation. These systems are de-
scribed by a spin 1/2 anisotropic Heisenberg Hamiltonian
with first-neighbor interactions

H =
∑
〈ij〉

Jij

(
∆Szi S

z
j +

1

2
(S+
i S
−
j + S−i S

+
j )

)
− hSz (18)

The work focuses in the 2D Kagomé lattice, but also
shows that in spite of the dimensionality difference, in
1D there are three frustrated ladders that exhibit a flat
band, here sketched in Fig. 8, where the Sawtooth is
the simplest one. It is known that for specific values
of couplings shown in Fig.8 and chosen in this section,
the magnetization jumps to saturation are of magnitude
δm = 1/3 and 1/5 for ladders b) and c) in Fig. 8, respec-
tively.

Following the steps presented in section III we study
the presence of possible delocalized modes by study-
ing the mass matrix for the two ladders that present a
Kagomé-like structure in Fig 8-b) and 8-c).

Let us consider first the Kagomé-like ladder repre-
sented in Fig. 8-b). By symmetry, we can take the fol-

lowing anzats for the classical polar angles: θ
(b)
1 = θ

(b)
3 =
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θ
(b)
4 = θ

(b)
6 ≡ θ

(b)
A , θ

(b)
2 = θ

(b)
5 ≡ θ

(b)
B . For the classical az-

imuthal angles we take φ
(b)
2 = φ

(b)
5 and φ

(b)
l − φ

(b)
2 ≡ φ(b)

for l = 1, 3, 4, 6. The Kagomé-like ladder in Fig 8-b)
presents a magnetization plateau and localized magnons
at m = 2/3. The classical ground state corresponding
to this magnetization sector has again φ(b) = π. Adding
quantum fluctuations as in (3), and taking the contin-

uum limit, we construct the mass matrix, M
(b)
φ , for the

φ
(b)
l (x) fields. As before, this symmetric mass matrix can

be diagonalized by a unitary transformation,

P (b) =



1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

0 0 − 1√
2

0 0 1√
2

− 1√
2

0 0 1√
2

0 0

− 1
2 0 1

2 − 1
2 0 1

2
0 − 1√

2
0 0 1√

2
0

1
2
√

3
− 1√

3
1

2
√

3
1

2
√

3
− 1√

3
1

2
√

3


, (19)

giving

M
(b)′

φ = PM
(b)
φ P t = Diag(0,m

(b)
2 ,m

(b)
3 ,m

(b)
4 ,m

(b)
5 ,m

(b)
6 ),

where


m

(b)
2 = m

(b)
3 = 2(γ(b) − 2β(b))

m
(b)
4 = 2γ(b)

m
(b)
5 = 4γ(b)

m
(b)
6 = 6γ(b)

(20)

with β(b) = sin2 θ
(b)
B and γ(b) = sin θ

(b)
A sin θ

(b)
B . The

transformed fields are ϕ
(b)
l =

∑
l′ P

(b)
l,l′ φ

(b)
l′ . Equations

(19) and (20) mean that the combinations ϕ
(b)
j are

gapped, for j = 4, 5, 6, and in the low energy limit they

vanish. The gapless fields ϕ
(b)
1 represents, as before, the

Goldstone mode associated to the U(1) rotation symme-

try of the system. The mass m
(b)
2 can vanish for classical

angles θ
(b)
A and θ

(b)
B such that γ(b) = 2β(b). Then, the

fields ϕ
(b)
2 = (φ

(b)
6 −φ

(b)
3 )/
√

2 and ϕ
(b)
3 = (φ

(b)
4 −φ

(b)
1 )/
√

2
get delocalized simultaneously. This leads again to a spin
imbalance mechanism that describes the localized exci-
tations as in the sawtooth chain.

For the Kagomé-like structure represented in Fig 8-c)
we take a classical ground state with a 10-site unit cell.
The polar angles corresponding to the classical ground

state are θ
(c)
l ≡ θ

(c)
A for l ε {1, 2, 4, 5, 6, 7, 9, 10}, and θ

(c)
3 =

θ
(c)
8 ≡ θ

(c)
B . The azimuthal angles are φ

(c)
l ≡ φ(c) for

l ε {1, 2, 4, 5, 8} and φ
(c)
l′ − φ(c) = π for l′ ε {3, 6, 7, 9, 10}.

Following the same steps as in the previous cases, we

construct the mass matrix for the φ
(c)
l (x) fields. It can

be seen that the combinations φ
(c)
1 − φ

(c)
2 , φ

(c)
4 − φ

(c)
5 ,

φ
(c)
7 −φ

(c)
6 , φ

(c)
10 −φ

(c)
9 can simultaneously become massless

for a particular value of θ
(c)
A and θ

(c)
B , in the low energy

1 4

2

3

5

6

a)

b)

c)
1 2

3

4 5

6 7

8

9 10 '

FIG. 8. Spin ladders that for α = αc and J ′ = J(2∆ +
1)/(∆ + 1) exhibit a flat band, leading to a magnetization
plateau of localized magnons and a magnetization jump to
saturation. Sawtooth chain is shown here for comparison with
the Kagomé-like ladders (b) and (c). With dotted gray line
we denote the unit cell that breaks the lattice translation
symmetry. In red thick line we denote the sites in which there
is a finite probability to find a magnon when each ladder has
a flat band.

limit. The delocalization of this modes typically lead to a
region in parameter space with spin imbalance and short
range entanglement, and more precisely a magnon crystal
phase, among which the exact localized magnons state is
a particular point.

The delocalized modes in both Kagomé-like ladders are
described as in the sawtooth ladder, due to the shared
flat band presence. Furthermore, the flat band means
a vanishing stiffness. Then, the spin currents in these
Kagomé-like ladders must also be discontinous at D = 0
for fixed magnetization sectors previous to saturation,
and a low-stiffness phase (as in Fig. 7) is to be expected
in both these ladders. Finally we must remark that the
path integral formalism based on coherent states it is not
restricted to one dimensional systems, as shown in 15
and 18, and neither is the case for delocalized modes due
to vanishing masses in the theory. Then, we expect that
the flat band in the Kagomé lattice also gives place to
discontinuous spin currents at D = 0 and a low-stiffness
phase, but such study exceeds the scope of this work.

VI. CONCLUTIONS

We have studied the sawtooth chain in the case where
frustration induces a flat band, and how DM interactions
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affect this particular system. Using a semiclassical field
theory approach we have described the localized excita-
tions through a spin imbalance mechanism. A central
aspect of this mechanism is the presence of delocalized
angular modes whose presence can be detected by di-
agonalizing the mass matrix. This matrix can also be
evaluated for different spin systems (even in higher di-
mensions) where one also expect flat magnon dispersion.
In particular we have done it for two Kagomé-like ladders
that present flat bands, showing the relationship between
the delocalized modes there, and the corresponding local-
ized magnons excitations. We have studied numerically
the spin current on the sawtooth chain introducing an-
tisymmetric interactions, finding three different regimes.
At small values of the applied magnetic field, the sys-
tem is in a Luttinger liquid phase. In this phase, the
spin current shows a step behavior as a function of pa-
rameter D. This behavior can be clearly understood
through Luttinger-liquid theory. At intermediate values
of the magnetic field, the magnetization curve presents a
plateau at m = 1/2, being m the total normalized mag-
netization. In this plateau, the ground state is a gapped
magnon crystal in the absence of DM interactions. For
finite D the spin current is constant on the plateau and
proportional to the DM parameter as a consequence of
the diamagnetic term of the spin current. This phase is
labeled as the Meissner phase. Finally, at the high mag-
netic field, the dependence with D is notorious. At D = 0
there is a jump in the magnetization curve. The magnetic
sectors between m = 1/2 and m = 1 are skipped. Then
for D = 0 there is no high magnetic field phase. How-
ever, for a finite value of D, the magnetization curve is

smooth as the field h varies. The ground state spin cur-
rent is in this case also smooth, and has a peak at roughly
h/J = 1.36. In terms of the effective field theory, the sys-
tem has no delocalized modes and has a finite but small
spin stiffness. If instead, the magnetization is kept fixed
at 1/2 < m < 1, then the spin current presents a jump
at D = 0, as a consequence of the flat band.

From a more general stand point, we have used as a
laboratory the Sawtoooth ladder to develop general ar-
guments that allow to study two interesting properties
of systems with a flat band. The first is the fact that,
in the parameter space, a whole magnon crystal phase
is present around the critical point corresponding to the
flat band. In this magnon crystal phase the system shows
a spontaneous translation symmetry breaking and short
range entanglement, an issue that can reveal very inter-
esting in the very active subject of scar states24. The
second property concerns the singular behaviour of the
currents with respect the presence of a small DM inter-
action for spin systems or flux for hard core bosons. Our
arguments are general enough to confidently predict the
very same properties for the other systems that house a
flat band, like the kagome strip ladders or even the 2-D
kagome lattice.
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