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ABSTRACT
We discuss the time evolution of physical finite dimensional systems which are modelled by non-hermitian Hamiltonians. We
address both general non-hermitian Hamiltonians and pseudo-hermitian ones. We apply the theory of Krein Spaces to construct
metric operators and well-defined inner products. As an application, we study the stationary behavior of dissipative one axis
twisting Hamiltonians. We discuss the effect of decoherence under different coupling schemes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5075628

I. INTRODUCTION
Recent years have seen a growing interest in the study of non-hermitian Hamiltonians, particularly in relation to open quan-

tum systems.1–12 Among these types of Hamiltonians, pseudo-hermitian operators play a central role. The formal beginning
of this subject was due to Bender and Boettcher13 in 1998. The authors of Ref. 13 have proposed the study of the celebrated
Hamiltonian H1 = p2 + x2(ix), which has a real spectrum and is not self-adjoint. The more relevant characteristic of this Hamilto-
nian, which belongs to the parametric family Hε >0 = p2 + x2(ix)ε , and of others Hamiltonians that were studied later7,14 is that
they are invariant with respect to Parity-Time Reversal (PT) symmetry. These types of Hamiltonians are a particular case of
pseudo-hermitian operators.15 They have proven to be very useful in the understanding of physical problems with manifiest PT
symmetry, i.e., microwave cavities,16 atomic diffusion,17 electronic circuits,18 optical waveguide arrays,19 and quantum critical
phenomena.7,8,20

In the study of a parametric family of non-hermitian Hamiltonians, it is usual to observe regions with different symmetry.
These zones are determined by the properties of the spectrum. In the search of eigenvalues, an exceptional point occurs when
the coalescence of two or more eigenvalues is accompanied by the coalescence of the corresponding eigenvectors. In a finite
dimension, exceptional points take place when the diagonalization of a Hamiltonian H breaks down so that it can only be reduced
to Jordan block form.8,21–26 The existence of exceptional points has been visualized in various laboratory experiments.27–32

In most studies, the focus is on the region of unbroken symmetry.3,7,33–35 Recently, the authors of Ref. 36 have studied the
region with broken symmetry for the family of Hamiltonians Hε . Their findings have clarified the existence of divergences in
different perturbative developments.33,37,38

The formalization of the time evolution of the observables of physical systems, which are described by non-hermitian Hamil-
tonians, is related to the introduction of well-defined inner products.33,40–42 The literature devoted to time evolution of physical
systems, which are modelled by non-hermitian Hamiltonians, is predominately focussed in the determination of the survival
probability of a particular component of the initial state as it evolves in time. The time evolution of physical observables have
been mostly addressed by means of perturbative expansions43,44 or by phenomenological approaches, i.e., the master equation
for the density matrix.45

J. Math. Phys. 60, 012106 (2019); doi: 10.1063/1.5075628 60, 012106-1

Published under license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1063/1.5075628
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5075628
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5075628&domain=aip.scitation.org&date_stamp=2019-January-25
https://doi.org/10.1063/1.5075628
https://orcid.org/0000-0002-9598-7770
mailto:romina@mate.unlp.edu.ar
mailto:reboiro@fisica.unlp.edu.ar
https://doi.org/10.1063/1.5075628


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

In this work, we propose a formalism to study the time evolution1,6,46–48 of a given initial state, in the presence of an inter-
action modelled by a finite dimensional non-hermitian Hamiltonian. In the broadest sense, the Hamiltonian of an open quantum
system1 consists of a first order interaction term describing a localized system with discrete states and a second-order term
caused by the interaction of the discrete states with an external environment. It can be distinguished by two very different cases
of coupling with the environment. In the first case, the environment consists of a continuum of scattering wave functions which
can mediate the escape of particles from the localized system, i.e., unstable states in a nuclei.1,47 In the other case, the environ-
ment is provided by the states of a macroscopic reservoir, and the strength of coupling depends on the overlap between states of
the localized system and states of the reservoir, i.e., the transport of electrons through mesoscopic quantum dots,39 or the engi-
neering of tight-binding quantum networks.12 A widely used approach to study open quantum systems is the Feshbach projection
operator formalism.1,46,47 In this approach, the system under study is divided in two subspaces, the subspace corresponding to
the localized system and the subspace related to the environment. The solution of the problem in the whole function space (the
localized system embedded in a well-defined environment), which it is described by an hermitian Hamiltonian operator, can be
represented in the interior of the localized part of the system, after applying Feshbach’s formalism, by a set of eigenfunctions of
an effective non-hermitian Hamiltonian. The corresponding matrix elements describing the coupling that develops between the
different states of the localized system are typically complex, consisting of real and imaginary parts, to account for the interaction
with the external environment. The reader is referred to Refs. 1, 46, and 47 for further details.

A non-hermitian model of physical interest is the Hamiltonian that describes the interaction of a system of N collective spins
interacting through a dissipative non-hermitian One Axes Twisting (OAT) interaction. It takes the form

H = −
ω

2
+ HOAT + Hd, (1)

HOAT = −
1
2
λ S2

z ,

Hd = +i 2κ Sx.

The components of the collective pseudo-spin operator of the system, S =
(

Sx, Sy, Sz
)
, obey the cyclic commutation relations[

Si, Sj
]
= i εijk Sk, where the suffixes i, j, k stand for the components of the spin in three orthogonal directions and ε ijk is the

Levi-Civita symbol. The corresponding Hilbert space HS has the dimension 2S + 1.
In writing the collective Hamiltonian of Eq. (1), we assume that we have a system of N collective spins interacting among

themselves and with an external system. Instead of working with the Hamiltonian of the whole system, we model the effects of the
interaction with the external system through the non-hermitian term Hd. Physically, it can be said that Hd accounts for the effects
of decoherence of the system due to the interactions with its environment.50,51 The term HOAT is the OAT interaction introduced
by Kitagawa and Ueda in Ref. 49 to model the effect of spin squeezing. Different systems can be modeled by Hamiltonians closely
related to one proposed in Eq. (1), i.e., a system of two-component atomic condensates52 or dissipative systems of solid-state
spins in diamond.53,54

From a mathematical point of view, the Hamiltonian of Eq. (1) can be taken as a parametric family of pseudo-hermitian
Hamiltonians, which are invariant under PT symmetry.34 The linear parity operator P performs spatial reflection so that the
position, the momentum, and the spin transform as r → −r, p → −p, and S → S, respectively. Whereas, time-reversal operation
can be represented by an anti-unitary operator T = U K, U being an unitary operator and K the complex conjugation operator.55,56

Under time reversal, we have r→ r, p→ p, S→−S, and i→−i. For the su(2) spin algebra, the time-reversal operator can be realized
by T = eiπSy K.56

The behavior of the spectrum of H is a consequence of the invariance of H under PT symmetry, H = TPHP−1T−1. Depending
on the values of the family parameters, (ω, κ/λ, N), the spectrum of Hamiltonian of Eq. (1) is real, which means that PT is not
spontaneously broken; i.e., the eigenfunctions of H are simultaneously eigenfunctions of PT. For other values of (ω, κ/λ, N), PT
symmetry is spontaneously broken, the eigenfunctions of H are no longer eigenstates of PT, and the spectrum of H contains
complex-conjugate pairs. At a fixed number of spins and for some particular values of the ratio κ/λ, the so called exceptional
points, the coalescence of some eigenvalues are present.

The work is organized as follows: The details of the general formalism are presented in Sec. II. We construct metric oper-
ators and its corresponding inner products, in order to evaluate the mean value of the observables as a function of time. We
discuss each of the possible scenarios, i.e., Hamiltonians with real eigenvalues, with complex-conjugate pair eigenvalues, the
existence of exceptional points, and Hamiltonians with general complex eigenvalues. The results of the calculations, applied to
the Hamiltonian of Eq. (1), are presented and discussed in Sec. III. Our conclusions are drawn in Sec. IV.

II. FORMALISM
In what follows, we shall present the formalism to describe the dynamics of a general non-hermitian Hamiltonian H acting

in a finite dimensional H Hilbert space. Our aim is to compute the mean value of a physical observable, when a given initial
state evolves in time, under the action of a non-hermitian Hamiltonian. We shall represent the physical observable by the linear
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hermitian operator ô. To calculate the expectation value of ô, we work with the basis,AH, formed by the eigenstates or generalized
eigenstates of H, and we look for a metric operator S, i.e., an operator which is self-adjoint and positive definite, in order to
construct an inner product 〈. |.〉S. The Hilbert space H equipped with the inner product 〈. |.〉S is the new physical linear space
HS = (H, 〈. |.〉S). Over this Hilbert space, we calculate well-defined expectation values.

A particular case of non-hermitian operators are the so-called pseudo-hermitian Hamiltonians. We say that an operator H
in a Hilbert space H is pseudo-hermitian (with respect to S) if H is densely defined in H and there exists a bounded self-adjoint
operator S with bounded inverse S−1 such that H† = SHS−1. Any pseudo-hermitian operator is closed, and its spectrum consists
of real or complex-conjugate pair eigenvalues; that is, H and H† are isospectral operators. In the finite dimensional Hilbert space,
operator S is always bounded; furthermore it fulfills the relation SH = H†S.

In dealing with a pseudo-hermitian Hamiltonian H, we shall assume that it is a particular element of a parametric family of
Hamiltonians Hδ . This parameter or set of parameters, δ, is in direct relation with the coupling constants of the physical problem
under consideration. In general, the properties of the spectrum of H varies throughout the parameter space, i.e., a real spectrum
or a spectrum which includes complex-conjugate pair eigenvalues. We shall call exceptional points to those values of δ for which
the Hamiltonian Hδ , in the finite dimension, is not diagonalizable.

Let us briefly review the main properties associated with the spectrum of non-hermitian Hamiltonians.46 We can write the
action of H on an orthonormal basis Ak of H. From the representation of H in the basis Ak, we obtain eigenfunctions of H,
AH = { |ϕ̃j〉}j=1. . .Nmax , i.e.,

H |ϕ̃j〉 = Ẽj |ϕ̃j〉. (2)

In the same way, the set of eigenfunctions of H†, AH† = { |ψi〉}i=1. . .Nmax , satisfies

H† |ψ̄j〉 = Ēj |ψ̄j〉. (3)

When working with systems of infinite dimensions, the sets AH and AH† not always form a basis.13,14 Nevertheless, in the finite
dimension, it is straightforward to show that if H is diagonalizable, the sets AH† and AH form a bi-orthonormal set of H,58 i.e.,

〈ψ̄i |ϕ̃j〉 = δij, (4)

with

Ēj = Ẽ∗j . (5)

In Secs. II A–II D, we shall construct the metric operator S for the different classes of non-hermitian Hamiltonians. Par-
ticularly, in the case of pseudo-hermitian Hamiltonians with broken symmetry, we shall make use the formalism of Krein
spaces.57

A. Case I. Pseudo-hermitian diagonalizable Hamiltonian: Real spectrum
Let H be a pseudo-hermitian diagonalizable Hamiltonian with a real spectrum. In this case, we can define a symmetry

operator Sψ so that Sψ |φ̃j〉 = |ψ̄j〉. In terms of the eigenvectors of H†, it is given by

Sψ =
Nmax∑
j=1

|ψ̄j〉〈ψ̄j|, (6)

and it obeys SψH = H†Sψ . The symmetry operator Sψ is self-adjoint and positive so that we can define an inner product on H by

〈f|g〉Sψ = 〈f|Sψg〉. (7)

The Hilbert space H equipped with the inner product 〈. |.〉Sψ is the new physical Hilbert space HSψ B (H, 〈. |.〉Sψ ) where the
expectations values for the time evolution can be formally calculated.

B. Case II. Pseudo-hermitian diagonalizable Hamiltonian: Non-degenerate complex-conjugate pair spectrum
If the spectrum of H includes non-degenerate complex-conjugate pair eigenvalues, the operator Sψ of Eq. (6) is no longer a

metric operator and SψH , H†Sψ .
The self-adjoint symmetry operator, which enables us to recovery the property SH = H†S, can be written as

S =
Nmax∑
j≤i

δ(Ēj − Ē∗i )
(
αj |ψ̄j

〉
〈ψ̄i | + α∗j |ψ̄i〉

〈
ψ̄j |

)
, (8)
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with α ∈ C and Im(α) , 0. However, S is not positive definite. Thus, the inner product [x, y] = (x,Sy) is indefinite. This problem
can be avoided by considering the decomposition of S in the positive and negative parts. This decomposition is framed within
the theory of Krein spaces.57

As S is a self-adjoint and diagonalizable operator, its eigenvalues can be classified according to their sign, semipositive λ+i or
negative λ−j. We can decompose H as a direct sum H+

⊕H−, where H+ is spanned by eigenfunctions corresponding to {λ+i} and
H− is spanned by eigenfunctions corresponding to {λ−j}, respectively. Then S = PDP−1, where D is the diagonal matrix containing
the eigenvalues {λ+1, . . ., λ+M, λ−1, . . ., λ−N} with N + M = Nmax. Matrix P contains the respective eigenvectors.

With this, D = D+ + D−, being

D+ = *
,

d+ 0
0 0

+
-
, D− = *

,

0 0
0 d−

+
-
, (9)

and being d+ and d− the positive and negative parts of D, respectively.
We shall define, in H, the operators S+ = PD+P−1 and S− = PD−P−1. Operators S± are self-adjoint, S+ being positive definite

and S− negative definite.
Then, we can introduce the metric operator SK = S+ − S− in H. The inner product 〈. |.〉SK

in H is defined as

〈x |y〉SK
= 〈 x | SK y〉 = 〈 x+ | S+ y+〉 − 〈x− | S−y− 〉, (10)

for all x, y ∈ H, x± and y± being its components in the canonical decomposition.
As SK is a metric, it can be written as SK = Υ

†

KΥK, with ΥK = (S+
1/2 + S−1/2) being S±±1/2

= P−1D±±1/2P, with

D ±1/2
+ = *

,

d ±1/2
+ 0

0 0
+
-
, D ±1/2

− = *
,

0 0

0 d ±1/2
−

+
-
, (11)

where (d ±1/2
+ )ij = δij(λ+i)±1/2, while the entries of d− are (d ±1/2

− )ij = δij(λ−i)±1/2. We shall work in the basis of S, AS, which does not
coincide with AH.

To preserve the mean value of an observable ô, we take the new physical space (H, 〈. |.〉SK ), with

SK = PDP−1,

D = D+ −D−, (12)

and clearly, D is a real and positive definite diagonal matrix.
As it has been discussed in Ref. 59, to fix the metric uniquely, such that there are no ambiguities in the interpretation of

physical observables, we shall assume that the matrix representation of the hermitian ô on the basis AS transforms as

[̂o]AS
→ O = D−1/2 [̂o]AS

D1/2 (13)

and that the coordinates of the vectors transform as

[f ]AS
→ F = D−1/2[f ]AS

(14)

so that

〈f |̂o |g〉S = F† D O G,

=
∑
αβ

f̃∗α
(
[̂o]AH

)
αβ

g̃β ,

=
∑
kl

f∗k
(
[̂o]Ak

)
kl

gl, (15)

where G = D−1/2[g]AS
.

C. Case III. Pseudo-hermitian Hamiltonian: Exceptional points
In finite dimension, when H is no longer diagonalizable, we have to make use of the Jordan decomposition. In this case, H

can be written as H = P̃J P̃−1. Generalized eigenvectors constitute the columns of the matrix P̃ and form a basis of H. In the same
way, H† = P̄J †P̄−1, with P̄ = (P̃†)−1. Let |ψ̄k〉 be the kth column of P̄. Vectors { |ψ̄k〉}1≤k≤Nmax form a non-orthonormal basis of H†. As
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P̄−1P̄ = I, the set { |v̄k〉}1≤k≤Nmax , where |v̄k〉 is the kth column of (P̄−1)T, forms a basis of H†, which is bi-orthonormal to { |ψ̄k〉}1≤k≤Nmax ,
i.e., 〈v̄k |ψ̄j〉 = δk,j.

Let us construct a new self-adjoint symmetry operator as

SJ =

Nmax∑
j≤i

δ(Ēj − Ē∗i )
(
αj |ψ̄j

〉
〈v̄i | + α∗j |ψ̄i〉

〈
v̄j |

)
. (16)

It is straightforward to prove that SJH = H†SJ. As before, SJ is a non-positive definite operator, so [f, g]SJ
= 〈f |SJg〉 is an indefinite

inner product for H.
As SJ is a self-adjoint operator, we can follow the steps of Sec. II B. After diagonalization of SJ, it reads SJ = RDJR−1. As before,

DJ = DJ+ + DJ− with

DJ+ = *
,

dJ+ 0
0 0

+
-
, DJ− = *

,

0 0
0 dJ-

+
-
. (17)

Again, we shall define in H the operators S±J = RDJ±R−1 and decompose H =H+
⊕H−. Both operators are self-adjoint, S+J being

positive definite and S−J negative definite.
At this point, we are in condition to introduce the metric operator SKJ = S+J −S−J, which is self-adjoint and positive definite.

Also, SKJ = Υ
†

KJΥKJ. Consequently, we shall define the inner product 〈. |.〉SKJ
in H as

〈f |g〉SKJ
= 〈f |SKJ g〉. (18)

As before, we preserve the mean value of an observable ô, by following the steps that we have presented in Eqs. (13)–(15), with
[S]AS

= D = DJ+ −DJ−.

D. Case IV. Non-pseudo-hermitian Hamiltonian
If the spectrum of H contains complex eigenvalues, which are not complex-conjugate pairs, H and H† are not isospectral

Hamiltonians, the eigenvalues of H† (Ēj) are related to the eigenvalues of H (Ẽj) by [Eq. (5)]. In this context, we can define a new
inner product by introducing the operator

Sg =

Nmax∑
j=1

|ψ̄j
〉〈
ψ̄j|. (19)

As H is no longer a pseudo-hermitian operator, it results that SgH , H†Sg.
The operator Sg of Eq. (19) is self-adjoint and positive so that we can define an operator Υg such that Sg = Υ

†
gΥg. We are in

condition to introduce an inner product on H of the form

〈f |g〉Sg
= 〈f |Sgg〉. (20)

The Hilbert space H equipped with the inner product 〈. |.〉Sg
is the new physical Hilbert space HSg

= (H, 〈. |.〉Sg
).

As in Case I, Sec. II A, the basis AS coincides with AH, and D is the identity matrix.
We can summarize the previous results as follows: We have constructed, depending on the characteristics of the spectrum

of H, a self-adjoint positive definite operator, S, that allows to define an inner product. In this way, the mean values of physical
observables can be properly computed.

1. Time evolution
We shall construct the time evolution of a general initial state, |I〉. In the basis Ak, it reads

|I〉 =
∑

k

ck |k〉. (21)

In terms of the basis formed by the eigenvectors of H, the initial state can be written as

|I〉 =
∑
α

c̃α |φ̃α〉,

c̃α =
∑

k

(Υ−1)αk ck, (22)

with Υ being the transformation matrix from the basis Ak to the basis AH. We shall assume that the initial state is normalized,
that is, 〈I|I〉 = 1. The initial state of Eq. (22) evolves in time as
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|I(t)
〉
= e−iHt |I

〉
=

∑
α

c̃α(t) |φ̃α
〉
. (23)

If H can be diagonalized, c̃α(t) is given by c̃α (t) = e−iẼα t c̃α . In the case of exceptional points, the Hamiltonian H can be decomposed
in terms of the Jordan matrix J, as H = Υe−iJtΥ−1. Correspondingly, the form of the coordinates c̃α(t) will depend upon the particular
Hamiltonian under consideration.

In terms of the eigenvectors of the symmetry operator S, the initial state reads

|I(t)〉 =
∑
β

≈
cβ (t) |

≈

φβ〉,

≈
cβ (t) =

∑
α

(Υ′−1)βα c̃α(t), (24)

with Υ′ being the transformation matrix from the basis AH to the basis AS.
At this point, we are in condition of evaluating the mean value of an operator ô as a function of time as

〈̂o(t)〉 = 〈I(t) |̂o |I(t)〉S

=
∑
αβ

≈
cα(t)

≈
c
∗

β (t)
〈
≈

φβ | ô |
≈

φα

〉
S

. (25)

As it has been stated before, in order to evaluate
〈
≈

φβ |̂o |
≈

φα

〉
S

, we follow the prescription given in Eqs. (13)–(15).

III. PHYSICAL APPLICATIONS
Let us apply the previous results to the study of the time evolution of a given initial state, under the non-hermitian

Hamiltonian that we have introduced in Eq. (1).
We shall assume that the initial state is prepared as a coherent spin-state (CSS) given by

|I(θ0,φ0)〉 =N
2S∑

k=0

z(θ0,φ0)k
(

2S
k

) 1/2

|k〉, (26)

with z(θ0,φ0) = e−iφ0 tan(θ0/2). The angles (θ0, φ0) define the direction ~n0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0) such that
~S · ~n0 |I〉 = −S |I〉.61

An observable of interest related to the Hamiltonian of Eq. (1) is the spin squeezing parameter. Spin-squeezed-states are
quantum-correlated states with reduced fluctuations in one of the components of the total spin. Following the work of Kitagawa
and Ueda,49 we shall define a set of orthogonal axes {n′x, n′y, n′z} such that n′z is the unitary vector pointing along the direction of
the total spin 〈S〉. We shall fix the direction n′x looking for the minimum value of ∆2Sx′ so that the Heisenberg uncertainty relation
reads

∆
2Sy′ ∆

2Sx′ ≥
1
4
|〈Sz′〉 |

2, (27)

Consequently, the squeezing parameters49 are defined as

ζ2
x′ =

2∆2Sx′

|〈Sz′〉 |
, ζ2

y′ =
2∆2Sy′

|〈Sz′〉 |
. (28)

The state is squeezed in the x′-direction if ζ2
x′ < 1 and ζ2

y′ > 1. If the minimum value of the Heisenberg uncertainty relation, Eq. (27),
is achieved and ζ2

x′ < 1, the state is called the intelligent spin state.62–65

In Fig. 1, we show the results concerning the number of real eigenvalues of the Hamiltonian H of Eq. (1), as a function of the
ratio κ/λ, for systems with different number of particles, N = 2S. Systems with an even number of particles always have, at least,
one real eigenvalue, due to the fact that the space dimension is 2S + 1. On the other hand, when the ratio κ/λ is increased, systems
with the odd number of particles have no real eigenvalues. In what follows, we shall describe the time evolution of systems with
N = 4 and N = 10 particles; the corresponding points have been marked with crosses in the figure.

In Fig. 2, we display the results obtained for the squeezing parameters of Eq. (28) as a function of the time, in units of [dB]. We
have considered a system with N = 10 particles. Panels (a) and (c) show the results obtained for the coupling constants ratio κ/λ
= 0.01, while panels (b) and (d) correspond to κ/λ = 1.5. In panels (a) and (b), we show the results obtained for an initial CSS with
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FIG. 1. Number of real eigenvalues of the H of Eq. (1) as a function of the ratio κ/λ, for systems with different number of particles, N = 2S.

(θ0, φ0) = (π/4, 0). For panels (c) and (d), we have taken (θ0, φ0) = (π/8, 0). It is clear from the figure that the time evolution of the
initial state in the region of the real spectrum of H is quite different to that obtained in the region with the complex spectrum.
For small values of the ratio κ/λ, the model shows series of revivals, even when the term responsible for the decoherence of the

FIG. 2. Squeezing parameters of Eq. (28) as a function of the time, in units of [dB]. Panels (a) and (c) show the results obtained for the coupling constants ratio κ/λ = 0.01,
while panels (b) and (d) correspond to κ/λ = 1.5, for a system with N = 10. In panels (a) and (b), we show the results obtained for an initial CSS with (θ0, φ0) = (π/4, 0). For
panels (c) and (d), we have taken (θ0, φ0) = (π/8, 0).
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system is not switched off, i.e., κ , 0. If the ratio κ/λ is greater than 1 (See Fig. 1), the number of real eigenvalues is reduced to one,
and the initial state evolves into a steady state which behaves as an intelligent state. As complementary information, in Fig. 3, the
mean value of the collective spin components of the system are displayed. Figure 3 confirms the series of revivals of the physical
observables in the region of the real spectrum and the effect of decoherence, that is, the existence of a pointer state, in the region
with complex-conjugate pair eigenvalues.

The Hamiltonian of Eq. (1) has exceptional points.8,21–25 At these points, some eigenstates coalesce and the Hamiltonian is
not diagonalizable.

As an example, let us consider a system with N = 4 particles. In this case, there are two values of the coupling ratio |κ/λ| at
which the system has exceptional points. In Fig. 4, we plot the eigenvalues of the system, as a function of the coupling ratio κ/λ.
In panel (a), we show the behaviour of the real part of the eigenvalues, while in panel (b), we present the imaginary part of each
eigenvalues. Clearly, exceptional points take place whenever κ/λ = ±0.073 981 5 or κ/λ = ±0.375. For values of |κ/λ| < 0.073 981 5,
the Hamiltonian has real eigenvalues, while for |κ/λ| > 0.073 981 5 complex-conjugate pair eigenvalues are present. At exceptional
points, the Hamiltonian can be decomposed as H = PJP−1. Notice that, as H = HT, H† = P∗J∗

(
P−1

)∗
. In the present case, the matrix J

takes the form

J =

*...........
,

Ẽ1 1 0 0 0

0 Ẽ1 0 0 0

0 0 Ẽ3 0 0

0 0 0 Ẽ4 0

0 0 0 0 Ẽ5

+///////////
-

. (29)

Let us consider the exceptional point κ/λ = 0.073 981 5. At this point, the Hamiltonian has real eigenvalues, Ẽ1 = Ẽ2 = 2.24,
Ẽ3 = 0.514, Ẽ4 = 0.515, and Ẽ5 = 1.99. The symmetry operator, SJ of Eq. (16), takes the form

SJ =

5∑
k=1

���ψ̄k

〉〈
v̄k

���, (30)

where |ψ̄k〉 are the columns of P∗ and |v̄k〉 are the files of (P∗)−1. After diagonalization, SJ = R (DJ+ + DJ−) R−1 Thus, the matrix
representation of the metric operator SKJ, which we use to define the inner product of Eq. (18), in the basis AS, is [SKJ]AS

= DJ+ −DJ−.

FIG. 3. Mean values of the components of the spin, 〈Sk〉, as a function of the time. Panels (a) and (c) show the results obtained for the coupling constants ratio κ/λ = 0.01,
while panels (b) and (d) correspond to κ/λ = 1.5. In panels (a) and (b), we show the results obtained for an initial CSS with (θ0, φ0) = (π/4, 0). For panels (c) and (d), we
have taken (θ0, φ0) = (π/8, 0).
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FIG. 4. Eigenvalues of the Hamiltonian of Eq. (1), for N = 4 particles, as a function of the coupling ratio κ/λ. In panel (a) the behaviour of the real part of the eigenvalues is
shown, while in panels (b) the imaginary part of each eigenvalue is presented.

At the other exceptional point of the Hamiltonian of Eq. (1), κ/λ = 0.375, the Hamiltonian has three real eigenvalues, Ẽ1 = Ẽ2 =

1.25, Ẽ3 = 0.754, and two complex eigenvalues, Ẽ4 = 2.12 − 1.34i and Ẽ5 = 2.12 + 1.34i. The symmetry operator, SJ of Eq. (16), takes
the form

SJ =

3∑
k=1

���ψ̄k

〉〈
v̄k

��� + i ���ψ̄4
〉〈

v̄5
��� − i ���ψ̄5

〉〈
v̄4

���, (31)

where |ψ̄k〉 are the columns of P∗ and |v̄k〉 are the rows of (P∗)−1. After diagonalization, SJ = R DJ R−1, with DJ = DJ+ + DJ−, DJ+ and
DJ− being the matrices with positive and negative eigenvalues of SJ in the diagonal, respectively.

Then, the matrix representation of the metric operator SKJ, which is used in the definition the inner product of Eq. (18), in
the basis AS, is [SKJ]AS

= D = DJ+ −DJ−.
Concerning the time evolution of the initial state |I〉 of Eq. (21), it is well worth to remember that

[e−iHt]AH
= *

,

j 0
0 d

+
-

j = *.
,

e−Ẽ1it −ie−Ẽ1itt

0 e−Ẽ1it
+/
-

d =
*....
,

e−Ẽ3it 0 0

0 e−Ẽ4it 0

0 0 e−Ẽ5it

+////
-

(32)

so that when writing |I(t)〉 of Eq. (23), the coefficients c̃α (t) are given by

c̃1(t) = e−iẼ1tc̃1 − ie−iẼ1t t̃c2,

c̃k(t) = e−iẼktc̃k, k = 2, 3, 4, 5. (33)

The deviation from the exponential/periodic behavior of Eq. (33) will be reflected on the time evolution of different physical
observables. As an example, we can compute the survival probability, p(t), of a given initial state as a function of time
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p(t) = |〈I |I(t)〉 |2, (34)

where |I(t)〉 is defined in Eq. (23).
In Figs. 5 and 6, we present the results that we have obtained for the survival probability, p(t) of Eq. (34), as a function of time.

We have taken a system of N = 4 particles. As the initial state, we have adopted a CSS, Eq. (26), with (θ0, φ0) = (π/4, 0) for Fig. 5,
and with (θ0, φ0) = (π/8, 0) for Fig. 6. The time is scaled by κ/λ. In both figures, the curves presented in panels (a) have been
calculated for κ/λ = 0.05. For this value of the coupling ratio κ/λ, the spectrum of the Hamiltonian of Eq. (1) is real [see Fig. 4].
This fact is reflected on the periodic behavior of p(t). The curves displayed in panels (b) have been calculated for κ/λ = 0.073 981 5;
this is the value at which the lower exceptional point takes place. Though, for this value of the ratio κ/λ, the spectrum is real (see
Fig. 4), and the periodic pattern displayed by the curves of panels (a) disappears due to the behavior of the coefficients of Eq. (33).
In panels (c), we have plotted p(t) for κ/λ = 0.1. This value of κ/λ is intermediate between the values at which exceptional points
occur. The tendency to a stationary behavior is the consequence of the appearance of complex eigenvalues in the spectrum. The
curves of panels (d) have been computed for the values of κ/λ at which the second exceptional point takes place, κ/λ = 0.375.
We have taken κ/λ = 0.5 for the curves drawn in panels (e). At this value of κ/λ, the spectrum has one real eigenvalue, which
dominates the behaviour of p(t) for large values of t. Similar results, concerning the time evolution at exceptional points and not
near them, have been presented in Refs. 31 and 32.

In Figs. 7 and 8, we present the numerical results that we have obtained for the squeezing parameters and for the mean value
of the components of spin, as a function of the time, at the exceptional points and away from them. The squeezing parameters
of Eq. (28) in units of [dB] are presented in panels (a) and (b). The mean values of the components of the spin, 〈Sk〉, as a function
of the time, are displayed in panels (c) and (d). We have considered an initial CSS with (θ0, φ0) = (π/8, 0). In panels (a) and (c)
of Fig. 7, we show the results obtained κ/λ = 0.05, and in panels (b) and (d), we plot the results obtained for the exceptional
point κ/λ = 0.073 981 5. For both values of κ/λ, the Hamiltonian has real eigenvalues. This fact is reflected in the oscillatory
behaviour of the observables of the system. At the exceptional point κ/λ = 0.073 981 5, the periodic behaviour is lost because of the

FIG. 5. Survival probability, p(t) of Eq. (34), for a system of N = 4 particles, as a function of time. The initial state is a CSS, Eq. (26), (θ0, φ0) = (π/4, 0). In panels (a)–(e), we
show the results we have obtained for κ/λ = 0.05, 0.073 981 5, 0.1, 0.373, and 0.5, respectively.
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FIG. 6. Survival probability, p(t) of Eq. (34), for a system of N = 4 particles, as a function of time. The initial state is a CSS, Eq. (26), (θ0, φ0) = (π/8, 0). In panels (a)-(e), we
show the results we have obtained for κ/λ = 0.05, 0.073 981 5, 0.1, 0.373, and 0.5, respectively.

structure of the coordinate c̃1(t) of Eq. (33). In panels (a) and (c) of Fig. 8, we show the results obtained for the exceptional point
κ/λ = 0.375, and in panels (b) and (d), we plot the results obtained for κ/λ = 0.5. For both values of κ/λ, the Hamiltonian has
complex conjugate pair eigenvalues. Thus, the system evolves to a squeezed steady state, which minimizes the corresponding
uncertainty relations.

As an example of a general non-hermitian Hamiltonian, let us consider another generalization of the OAT Hamiltonian.3,4,54

That is,

HS = Hsp + HOAT + HL, (35)

Hsp = (ε − iγ) Sz,

HOAT =
1
2
χ S2

z ,

HL = + V (S2
x − S2

y).

The Hamiltonian of Eq. (35) consists of an OAT term, HOAT, plus a Lipkin-type, HL, term. In addition, we shall assume that the
particles of the system have a finite lifetime, which is given by the linewidth γ.3,4,54

From the physical point of view, the Hamiltonian HS of Eq. (35) can be used to model a system of Nitrogen-Vacancy (NV)
centers in diamond.54,72–76 An NV center has a ground state with spin 1 and a zero-field splitting D = 2.88 GHz between the
|1, 0

〉
and |1, ±1

〉
states. If an external magnetic field, along the crystalline axis of the NV center, is applied, an additional Zee-

man splitting between |1, ±1
〉

sub-levels occurs. Then, it is possible to isolate the subsystem form by |1, 0
〉

and |1, 1
〉

so that
the NV center can be modeled by a two-level system,72,73 through an effective spin-spin interaction74–76 of the form given in
(35).

From a mathematical perspective, if ε ∈ R and ε , 0, the Hamiltonian of Eq. (35) is not invariant under PT symmetry. Observe
that P T (ε Sz) P−1T −1

= −ε Sz. Consequently, it has no complex-conjugate pair eigenvalues.
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FIG. 7. Squeezing parameters of Eq. (28) as a function of the time, in units of [dB], are presented in panels (a) and (b). The mean values of the components of the spin, 〈Sk〉,
as a function of the time, are displayed in panels (c) and (d). We have considered a system with N = 4 particles and an initial CSS with (θ0, φ0) = (π/8, 0). In panels (a) and
(c), we show the results obtained for κ/λ = 0.05, while in panels (b) and (d), we show the results obtained for the exceptional point κ/λ = 0.073 981 5.

In Fig. 9, we plot both the squeezing parameters, in units of [dB], and the mean value of the components of spin, as a function
of the time. As an example, we have fixed the number of particles to N = 15, and the value of the constants to ε = 1.0, χ = 2.88,
V = 0.26 and γ = 0.02, in units of MHz. Squeezing parameters of Eq. (28) as a function of the time, in units of [dB], are presented
in panels (a) and (c). The mean values of the components of the spin, 〈Sk〉, as a function of the time, are displayed in panels (b) and
(d). In panels (a) and (b), we show the results obtained for an initial CSS with (θ0, φ0) = (π/4, 0). For panels (c) and (d), we have
taken (θ0, φ0) = (π/8, 0) Also, the initial coherent state evolves in time to a steady squeezed state.

FIG. 8. Squeezing parameters of Eq. (28) as a function of the time, in units of [dB], are presented in panels (a) and (b). The mean values of the components of the spin,
〈Sk〉, as a function of the time, are displayed in panels (c) and (d). The parameters adopted are those of Fig. 7. In panels (a) and (c), we show the results obtained for the
exceptional point κ/λ = 0.375, and in panels (b) and (d), we plot the results obtained for κ/λ = 0.5, away from the exceptional point.

J. Math. Phys. 60, 012106 (2019); doi: 10.1063/1.5075628 60, 012106-12

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

FIG. 9. Squeezing parameters of Eq. (28) as a function of the time, in units of [dB], are presented in panels (a) and (c). The mean values of the components of the spin, 〈Sk〉,
as a function of the time, are displayed in panels (b) and (d). We have fixed N = 15, ε = 1.0, χ = 2.88, V = 0.26, and γ = 0.02 in units of [Mhz]. In panels (a) and (b), we show
the results obtained for an initial CSS with (θ0, φ0) = (π/4, 0). For panels (c) and (d), we have taken (θ0, φ0) = (π/8, 0).

The numerical results that we have presented suggest that we can enhance the effect of coherence of the physical system by
adopting coupling constants in the regime of the real spectrum. On the other hand, if we want to achieve a steady squeezed state,
we have to fix the parameters of the model in the region of the complex spectrum. It should be noticed, as has been pointed in
Ref. 6, that at exceptional points, due to dependence in time of the evolution operator, Eq. (32), deviations from the exponential
decay are present.

The generalization of the previous formalism to study infinite dimensional systems is not straightforward.14,60 There are
families of non-hermitian Hamiltonians for which their eigenfunctions and spectrum cannot be used to complete the information
of H in the whole Hilbert space H. The treatment of these problems involves other tools as generalized Riesz systems,67–69

pseudospectrum,14 unbounded metric operators, and spectral functions for definitizable operators in Krein spaces.42,66,68,70

Also, the domain of the spectral functions is a nontrivial issue to address.71

IV. CONCLUSIONS
In this work, we have studied the time evolution of finite dimensional non-hermitian Hamiltonians. In doing so, we have

constructed metric operators and the corresponding inner products. In the case of pseudo-hermitian Hamiltonians, we have
analyzed the regime of real spectrum and of the complex-conjugate pair spectrum. Also, we have studied the time evolution
of pseudo-hermitian Hamiltonians at exceptional points. We have made use of the formalism of Krein spaces to define inner
products when dealing with pseudo-hermitian Hamiltonians with the complex spectrum. As an example, we have studied the
stationary behavior of non-hermitian one axis twisting Hamiltonians. We have discussed the effect of decoherence in the different
coupling schemes. As it is expected, we observe that the results depend drastically on the characteristic of the spectrum of the
Hamiltonian. If the spectrum of the Hamiltonian is real, the observables of the system show a series of revivals as functions of
time. On the other hand, if the spectrum of the Hamiltonian includes complex eigenvalues, due to the effect of decoherence,
the system evolves into a pointer state. We observe that at exceptional points, deviations from the exponential decay form are
present due to dependance in time of the evolution operator. Work is in progress concerning the extension of the formalism to
physical systems described by definitizable Hamiltonian operators in Krein spaces.
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