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Abstract: This manuscript reports the synthesis, spectroscopic and X-ray 

characterization of four triazole derivatives that include an α-ketoester functionality and 

two phenyl substituents. In particular ethyl 2-(4-(4-chlorophenyl)-1-(4-methylbenzyl)-

1H-1,2,3-triazol-5-yl)-2-oxoacetate (1), ethyl 2-(1-(4-methylbenzyl)-4-phenyl-1H-1,2,3-

triazol-5-yl)-2-oxoacetate (2), ethyl 2-(1-benzyl-4-(3-fluorophenyl)-1H-1,2,3-triazol-5-

yl)-2-oxoacetate (3) and ethyl 2-(1-benzyl-4-(4-methoxyphenyl-1H-1,2,3-triazol-5-yl)-2-

oxoacetate (4) were synthesized in good yields. All compounds form self-assembled 

dimers in the solid state establishing two symmetrically equivalent O···π-hole tetrel 

bonding interactions. These interactions have been analyzed using Hirshfeld surface 

analysis, DFT calculations and the Bader’s theory of atoms-in-molecules and further 

rationalized using the molecular electrostatic potential (MEP) surface calculations. We 

have studied how the nucleophilic/electrophilic nature of the –COOEt and –CO– groups 

is affected by the substituents of the rings and, consequently, influences the interaction 

energy of the C···O tetrel bond.
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1. Introduction

In the short period click chemistry has had a dramatic and diverse impact in many areas 

of modern chemistry. The versatility of click chemistry and particularly Cu(I) catalyzed 

Huisgen cycloaddition seem endless, yet we are still in the early developmental stages of 

this concept driven research. With the discovery and invention of new chemical 

transformations which meet click status, the future looks bright for click chemistry1.

1,4,5-Trisubstituted 1,2,3-triazoles have been regarded as highly significant nitrogen-

containing heterocycles due to their broad spectrum of biological activities and other 

prominent properties2. 1,2,3-Triazole scaffolds are ubiquitous structural motifs in various 

bioactive molecules, pharmaceutical agents and functional materials. Therefore, they 

have been used in several fields ranging from medicinal chemistry to materials science3. 

Furthermore, 1,2,3-triazoles have also been investigated as powerful and versatile ligands 

for metal coordination, exhibiting tremendous application prospects4. 

In addition to the ubiquitous H-bond, 5-8 σ-hole-based9, 10 noncovalent interactions are 

also relevant in many areas of chemistry, like crystal engineering11-13 and catalysis. The 

σ-hole can be defined as a region of positive potential in a main group element located 

opposite to a covalent bond14, 15. Similarly, some molecules also exhibit π-holes which lie 

usually above and below the plane of the system16-20, leading to π-hole interactions with 

Lewis bases10. In X-ray structures, π‐hole interactions were identified by Bürgi and 

Dunitz in 197519, thus revealing the trajectory along which a nucleophile attacks the 

π‐hole of carbonyl group. Moreover, the relevance of n → π* interactions in proteins from 

a lone pair of electrons (n) to the antibonding orbital (pi*) of carbonyl group has been 

demonstrated21. In addition, significant π-hole interaction have been described an studied 

in benzoic acid dimers22, nitro derivatives23-27, and acyl carbon containing molecules28-30. 

The physical nature and factors affecting the strength of π-hole interactions are similar to 

those of σ-hole interactions30.

In continuation of our previous work highlighting the importance of antiparallel π–π 

interactions31 here in this manuscript we report the synthesis and X-ray characterization 

of four 1,4,5-trisubstituted 1,2,3-triazoles (Scheme 1) that include an α-ketoester 

functionality32. Interestingly, these compounds form self-assembled dimers in the solid 

state where two symmetrically equivalent O··· π-hole interactions are established. These 

interactions have been analyzed using Hirshfeld surface analysis, DFT calculations and 
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the Bader’s theory of atoms-in-molecules and rationalized using the molecular 

electrostatic potential (MEP) surface calculations.
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        Scheme 1 1,4,5-Trisubstituted 1,2,3-triazoles (1-4)

2. Experimental and theoretical methods

2.1. Synthesis

Compounds 1-4 were synthesized by following a procedure already published by us32, 33 

and were mainly characterized by UV, IR (Fig. 1), HRMS and single crystal X-ray 

crystallography. Melting points were determined on a Yanaco melting point apparatus 

and are reported as uncorrected. FT-IR spectra were recorded on SHIMADZU FTIR-

8400S spectrophotometer using KBr disc method. Similarly, double beam SHIMADZU 

UV-1601 UV-visible spectrophotometer was used to scan UV.1H-NMR (300 MHz) and 
13C-NMR (100 MHz) spectra were measured on a JEOL-ECA instrument in DMSO and 

TMS as internal standard. 

2.1.1. Ethyl 2-(4-(4-chlorophenyl)-1-(4-methylbenzyl)-1H-1,2,3-triazol-5-yl)-2-

oxoacetate (1)

White crystalline solid, m. p. 100-102°C , Yield = 83%, Rf  = 0.5( n-hexane:EtOAc),  λmax 

= 311.74 nm in EtOH(0.01g/L);  IR (KBr, cm−1): νmax 3084(CHarom.), 1743 (CO), 1678 

(C=C), 1480 (CH2 rocking); 1H-NMR δ ppm 7.50-7.14 (m, 8H), 5.83 (s, 2H), 3.84 (q, 2H, 

J = 7.2 Hz), 2.32 (s, 3H), 1.01 (t, 3H, J = 7.2 Hz); 13C-NMR δ ppm 177.1, 

160.8,151.6,138.6, 136.0,131.1, 130.3, 129.5, 128.9, 128.2, 127.1, 63.0, 54.1, 21.1, 13.4. 

HRMS (ESI-TOF) (m/z): calculated for C20H18ClN3O3, [M+H]+ 384.1109; observed 

384.1103.
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2.1.2.Ethyl 2-(1-(4-methylbenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)-2-oxoacetate (2)

White crystalline solid, m. p. 83-85°C, Yield = 92%, Rf  = 0.6( n-hexane:EtOAc),  λmax = 

303.37 nm in EtOH (0.01g/L);  IR (KBr, cm−1): νmax 3057(CHarom.), 1739 (CO), 1682 

(C=C), 1449 (CH2 rocking); 1H-NMR δ ppm 7.51-7.14 (m, 9H), 5.85 (s, 2H), 3.74 (q, 2H, 

J = 7.2 Hz), 2.32 (s, 3H), 0.93 (t, 3H, J =  7.2 Hz); 13C-NMR δ ppm 177.4, 

160.9,152.9,138.5, 134.9,131.3, 129.7, 129.4, 129.0, 128.6, 128.2, 127.1,62.8, 54.0, 21.1, 

13.2.HRMS (ESI-TOF) (m/z): calculated for C20H19N3O3, [M+H]+ 350.1499; observed 

350.1502.

2.1.3. Ethyl 2-(1-benzyl-4-(3-fluorophenyl)-1H-1,2,3-triazol-5-yl)-2-oxoacetate (3)

White crystalline solid, m. p. 66-68°C, Yield = 22%, Rf  = 0.5( n-hexane:EtOAc), λmax = 

256.52, 313.80 nm in EtOH(0.01g/L);  IR (KBr, cm−1): νmax 3063 (CHarom.), 1739 (CO), 

1689 (C=C), 1483 (CH2 rocking); 1H-NMR δ ppm 7.46-7.13 (m, 9H), 5.88 (s, 2H), 3.85 

(q, 2H, J =  7.2 Hz), 1.03 (t, 3H, J = 7.2 Hz); 13C-NMR δ ppm 177.1, 162.6 (d, JCF = 245.9 

Hz), 160.7, 151.4, 134.1,131.7(d, JCF = 7.89 Hz) 130.4(d, JCF = 8.60 Hz),  128.8, 128.7, 

128.2, 127.5, 124.9, 116.8 (d, JCF = 20.8 Hz), 115.9 (d, JCF = 22.9 Hz), 63.0, 54.3, 13.3. 

HRMS (ESI-TOF) (m/z): calculated for C19H16FN3O3, [M+H]+ 354.1248; observed 

354.1244.

2.1.3. Ethyl 2-(1-benzyl-4-(4-methoxyphenyl-1H-1,2,3-triazol-5-yl)-2-oxoacetate (4)

White crystalline solid, m. p. 128-130°C, Yield = 78%, Rf  = 0.5( n-hexane:EtOAc),    λmax 

= 332.58 nm in EtOH(0.01g/L);  IR (KBr, cm−1): νmax 3066 (CHarom.), 1744 (CO), 1672 

(C=C), 1450 (CH2 rocking); 1H-NMR δ ppm 7.46-6.97 (m, 9H), 5.88 (s, 2H), 3.79 (q, 2H, 

J = 7.2 Hz), 2.82 (s, 3H), 0.99 (t, 3H, J = 7.2 Hz); 13C-NMR δ ppm 177.4, 161.1, 160.8, 

152.8, 134.3, 130.4, 128.8, 128.5, 128.1, 126.9, 122.0, 114.1, 62.8, 55.3, 54.2,13.3. 

HRMS (ESI-TOF) (m/z): calculated for C20H19N3O4, [M+H]+ 366.1448; observed 

366.1445.
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Fig. 1 UV(left) in EtOH and IR (right) spectra of compounds (1-4)

2.2 Crystallization conditions

Some good-quality single crystals of compounds (1-4) suitable for X-ray diffraction 

analysis were grown from a mixture of EtOH and EtOAc (dissolving 150 mg of each 

compound in 5 ml of solvent) by slow evaporation over a period of 48h at room 

temperature. 

2.3 X-ray data collection and structure refinement 

Suitable single crystals of compounds 1-4 were selected for X-ray analyses and 

diffraction data were collected on a Bruker Kappa APEX-II CCD detector with MoKα 

radiations at 100 K. Using the SADABS program semi emperical correction was 

applied34. SHELX program was also used to solve all structures by direct 

method35.Positions and anisotropic parameters of all non-H atoms were refined on F2 

using the full matrix least-squares technique. The H atoms were added at geometrically 

calculated positions and refined using the riding model36.The details of crystallographic 

data  and crystal refinement parameters for the compounds 1-4 are given in Table 1.

Table: 1 Crystallographic data and details of refinements for compounds 1-4

1 2 3 4

CCDC 988864 988860 988859 988858
Chemical formula C20H18ClN3O3 C20H19N3O3 C19H16FN3O3 C20H19N3O4

Mr 383.82 349.38 353.35 365.38
Crystal system, space 
group

Triclinic, P¯1 Monoclinic, P21/c Monoclinic, C2/c Triclinic, P¯1
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Temperature (K) 296 296 296 296
a, b, c (Å) 8.3157 (6), 9.5082 (8), 

13.1245 (10)
8.2517 (3), 17.9945 (9), 
12.2748 (6)

28.5939 (14), 7.5267 (4), 
19.3890 (8)

8.2922 (6), 9.4246 (7), 
12.9343 (10)

, ,  (°) 68.898 (4), 86.538 (4), 
85.332 (4)

99.877 (2) 121.964 (1) 111.004 (2), 99.018 (3), 
97.623 (2)

V (Å3) 964.38 (13) 1795.61 (14) 3540.2 (3) 912.24 (12)
Z 2 4 8 2
Radiation type Mo K Mo K Mo K Mo K

 (mm-1) 0.22 0.09 0.10 0.09
Crystal size (mm) 0.38 × 0.32 × 0.30 0.40 × 0.30 × 0.28 0.38 × 0.28 × 0.25 0.36 × 0.30 × 0.25
Diffractometer Bruker Kappa APEXII 

CCD
Bruker Kappa APEXII 
CCD

Bruker Kappa APEXII 
CCD

Bruker Kappa APEXII 
CCD

Absorption 
correction

Multi-scan 
(SADABS; Bruker, 
2005)

Multi-scan 
(SADABS; Bruker, 2005)

Multi-scan 
(SADABS; Bruker, 2005)

Multi-scan 
(SADABS; Bruker, 2005)

 Tmin, Tmax 0.670, 0.746 0.670, 0.746 0.670, 0.746 0.670, 0.746
No. of measured, 
independent and
 observed [I > 2(I)] 
reflections

13504, 3701, 2645  16244, 4114, 2801  14823, 3806, 2426  14140, 4016, 3299  

Rint 0.021 0.025 0.034 0.027
(sin /)max (Å-1) 0.617 0.649 0.638 0.644

R[F2 > 2(F2)], 
wR(F2), S

0.057,  0.168,  1.06 0.053,  0.167,  1.04 0.062,  0.217,  1.02 0.046,  0.126,  1.05

No. of reflections 3701 4114 3806 4016
No. of parameters 246 237 267 249
H-atom treatment H-atom parameters 

constrained
H-atom parameters 
constrained

72 4

max, min (e Å-3) 0.44, -0.50 0.26, -0.23 0.95, -0.33 0.26, -0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), 

SHELXL2018/3  (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), 

WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

2.4. Computational methods

The calculations of the noncovalent interactions and molecular electrostatic potential 

(MEP) surfaces were carried out using the Gaussian-1637 and the PBE1PBE-D3/def2-

TZVP level of theory. The ultrafine grid has been used in the calculations to ensure the 

accuracy of the results. The Grimme’s D3 dispersion correction has been used in the 

calculations38. The interaction energies are not BSSE corrected because we have 

evaluated it in the reduced models of compounds 1-4 and the error is < 4%. To evaluate 

the interactions in the solid state, the crystallographic coordinates were used and only the 

position of the H-bonds has been optimized. This procedure and level of theory has been 

successfully used to evaluate similar interactions39. The interaction energies were 

computed by calculating the difference between the energies of the isolated monomers 
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and their assembly. The QTAIM calculations40 have been performed at the same level of 

theory by means of the AIMAll program.41

2.5. Hirshfeld surface calculations

The Hirshfeld surfaces (HS) analysis and their associated two-dimensional fingerprint 

(FP) plots42-44 were used to identify and quantify the contribution of different 

intermolecular interactions existing on the crystal structure and to understand the nature 

of these interactions. The HS and FP plots were generated using the CrystalExplorer 3.1.45 

The normalized contact distance (dnorm) enables the identification of the regions of 

particular importance to the intermolecular interactions. In this surface, any close 

intermolecular contact will be characterized by two identical red regions. The Hirshfeld 

surfaces for the studied structures were also mapped with the shape index and curvedness 

properties. The 3D dnorm surfaces were mapped over a fixed color scale of -0.075 a.u. 

(red) to 0.75 a.u. (blue) and shape index mapped in the color range of –1.0 a.u. (concave) 

to 1.0 a.u. (convex) and curvedness mapped in the range of –4.0 a.u. (flat) to 4.0 a.u. 

(singular). A final analysis of the intermolecular interactions and their contribution to the 

crystal packing was performed by using 2D FP plots. These plots were mapped using the 

translated 0.6-2.4 Å range including reciprocal contacts.

3. Results and Discussion

3.1 Structural description

 In ethyl 2-(4-(4-chlorophenyl)-1-(4-methylbenzyl)-1H-1,2,3-triazol-5-yl)-2-oxoacetate 

(1), the 4,5-dihydro-1H-1,2,3-triazole group A (C5/C6/N1-N3), the 4-chlorophenyl 

moiety B (C7-C12/Cl1), the 4-methylbenzyl group C (C13-C20) are planar with r. m. s 

deviation of 0.0039, 0.0123 and 0.0361 Å, respectively. The dihedral angles A/B, A/C 

and B/C are 42.09(11)°, 83.32 (8)°and 67.39(6)°, respectively. The molecules are 

connected with each other in the form of dimers through C-H···O hydrogen bonds (see 

Fig. 2). In addition, C20-H20B···N1 hydrogen bonds are observed. The crystal structure 

of 1 shows C-H···π interactions, with Cg1 distance of 2.797 Å (Cg1: C14-C19). The 

crystal packing appears to be controlled by weak π-stacking interactions [d(Cg1···Cg1) 

= 4.402 Å] involving both 4-methylphenyl rings.
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Fig. 2 The ORTEP plot of 1 (left) showing the atom numbering, with displacement 

ellipsoids at the 50% probability level while 1 (right) indicates that molecules are 

dimmerized. The H-atoms not involving in H-bonding are omitted for clarity.

In ethyl 2-(1-(4-methylbenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)-2-oxoacetate (2), the 4,5-

dihydro-1H-1,2,3-triazole group A (C5/C6/N1-N3), the phenyl ring B (C7-C12), the 4-

methylbenzyl group C (C13-C20) are planar with r. m. s deviation of 0.0048, 0.0023 and 

0.0423 Å, respectively. The dihedral angles A/B, A/C and B/C are 47.93(7)°, 

74.97(6)°and 27.50(9)°, respectively. The molecules are connected through C-H···O 

hydrogen bonds between the H atom from the 4-methylbenzyl group and the O-atoms 

from the keto group (Fig. 3). The supramolecular assembly of 2 also includes π···π 

stacking interactions between the phenyl (Cg1: C7-C12) and triazole (Cg2: 

C5/N3/N2/N1/C6) rings with an inter-centroid distance of 3.809 Å. 

Fig. 3 The ORTEP plot of 2 (left) showing the atom numbering, with displacement 

ellipsoids at the 50% probability level while 2 (right) indicates the H-bonding packing 

pattern showing that molecules are interconnected through C(11) chains.
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In the ethyl 2-(1-benzyl-4-(3-fluorophenyl)-1H-1,2,3-triazol-5-yl)-2-oxoacetate (3), the 

benzene ring of benzyl group is disordered over two set of sites with occupancy ratio of 

0.54(3): 0.46(3). The 4,5-dihydro-1H-1,2,3-triazole group A (C5/C6/N1-N3), the 3-

flourobenzene moiety B (C7-C12/F1), the benzyl group containing major part of 

disordered benzene ring C (C13/C14A-C19A) and the benzyl group containing minor 

part of disordered benzene ring D (C13/C14B-C19B) are planar with r. m. s deviation of 

0.0056, 0.0055, 0.0132 and 0.0170 Å, respectively. The dihedral angles A/B, A/C, A/D 

are 37.34(10)°, 55.19(4)° and 80.59(5)°, respectively. The major part of disordered 

benzene ring is twisted at an angle of 24.05(1) with respect to minor part of it. The ethyl 

2-oxoacetate group is not planar. In this group, the torsion angles O1-C3-C4-O3 and O2-

C3-C4-O3 are -142.0(2) and 35.7(4), respectively. The molecules are connected with 

each other through C-H···O bonding to form  loops, where the CH belongs to the 𝑅2
1(5)

fluorobenzene moiety and O-atoms are from the keto groups of the ethyl 2-(4,5-dihydro-

1H-1,2,3-triazol-5-yl)-2-oxoacetate part of the molecule. The non-carbonyl oxygen atom 

is linked to the CH attached to the disordered benzene ring through C-H···O hydrogen 

bonds. The CH of the disordered benzene ring is also linked with the carbonyl atom that 

is closer to 4,5-dihydro-1H-1,2,3-triazole group as compared to other carbonyl oxygen 

through C-H···O bonding as given in Table 2 and shown on right side of Fig. 4. In this 

way, each molecule is linked with three adjacent molecules (Fig. 4).

 

Fig. 4 The ORTEP plot of 3 (left) showing the atom numbering, with displacement 

ellipsoids at the 50% probability level while 3 (right) indicates the hydrogen bonding 

pattern. The H-atoms not involved in H-bonding are omitted for clarity. 

In the ethyl 2-(1-benzyl-4-(4-methoxyphenyl-1H-1,2,3-triazol-5-yl)-2-oxoacetate (4), the 

ethoxalyl group A (C1/C2) is disordered over two set of sites with occupancy ratio 

0.719(11): 0.281(11). The ethoxalyl group B (O1/C1A/C2A) containing major part of 
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disordered CH3CH2- moiety and another ethoxalyl group C (O1/C1B/C2B) containing 

minor part of disordered ethane moiety are planar with a dihedral angle B/C of 45.8 (2)°.  

The propan-2-ol group D (C3-C5/O3) is planar with r. m. s deviation of 0.0099 Å with 

dihedral angles B/D, C/D are 48.18 (75)° and 9.48 (2)°, respectively. The 4,5-dihydro-

1H-1,2,3-triazole group E (C5/C6/N1-N3), the anisole group F (C7-C13/O4) and toluene 

group G (C14-C20) are planar with r. m. s deviation of 0.0036, 0.0674 and 0.0217 Å, 

respectively. The dihedral angles D/E, E/F, F/G are 14.1 (1)°, 44.7(6)° and 66.8 (4)°, 

respectively. The molecules are connected with each other in the form of dimer through 

C-H···O bonding to form  loop, where CH is from methyl group of toluene and 𝑅2
2(12)

O-atom is from the 4,5-dihydro-1H-1,2,3-triazole-5-ketoester part of the molecule (Fig. 

5). The dimers are interlinked through C-H···O hydrogen bonds, their geometric features 

are given in Table 2. 

Fig. 5: The ORTEP plot of 4 (left) showing the atom numbering, with displacement 

ellipsoids at the 50% probability level without the minor part of disordered group while 

4 (right) indicates the hydrogen bonding pattern. The H-atoms not involved in H-bonding 

are omitted for clarity.

Table 2: Hydrogen-bond geometric features with symmetry codes for compounds 1-4.

Compound D—H···A D—H H···A D···A D—H···A
1 C8—H8···O2i(i) −x, −y+1, −z+1. 0.93 2.55 3.448 (3) 163
2 C20—H20C···O3i(i) x-1, y, z. 0.96 2.48 3.374 (4) 155
3 C13—H13A···O1i(i) −x+1/2, y−1/2, −z+1/2 0.97 2.52 3.468 (3) 164

C18B—H18B···O3ii(ii) x, y−1, z 0.93 2.39 3.284 (10) 161
C12—H12···O2iii(iii) −x+1/2, −y+1/2, −z+1 0.93 2.54 3.414 (3) 158
C12—H12···O3iii(iii) −x+1/2, −y+1/2, −z+1 0.93 2.60 3.307 (3) 133

4 C14—H14B···O3i(i) −x+1, −y, −z 0.97 2.58 3.542 (2) 173
C8—H8···O2ii(ii) −x+2, −y, −z 0.93 2.55 3.459 (2) 164
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Hirshfeld surface analysis

HS analysis is a useful visualization tool for the analysis of intermolecular interactions in 

the crystal packing and FP plots are used herein to quantify the contribution of various 

intermolecular contacts present in the crystal structures of 1-4. Fig. 6 shows Hirshfeld 

surfaces mapped over the dnorm function in two orientations (columns 1 and 2). Contacts 

with distances equal to the sum of the vdW radii are represented as white regions and 

contacts with distances shorter than and longer than vdW radii are represented as red and 

blue colors, respectively. The full FP plots for compounds 1-4 are displayed in Fig. 7.
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Fig. 6. Views of the Hirshfeld surfaces of compounds 1-4 (columns 1-2) mapped with 

dnorm in two orientations: front view and back view (180° rotated around the vertical axes 

of the plot). The labels are discussed in the text.

Fig. 7. Full 2D fingerprint plot for compounds 1-4.

The large regions labelled 1 in Fig. 6, represent H···O/O···H contacts, which are relevant 

in the dnorm maps for all the compounds. These contacts are attributed to C8-H8···O3 and 
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C8-H8···O2 hydrogen bonds for compound 1 and to C12-H12···O3 and C12-H12···O2 

for compound 3, which can also be seen in the FP plots as a pair of symmetrical spikes at 

(de+di) sum of 2.45 Å for the former and at (de+di) ~ 2.40 Å for the later interaction. The 

H···O/O···H contacts are dominant in compounds 1 and 2 with 12.8 and 16.8 %, 

respectively, of the total HS area. 

The red spot labelled 5 in the dnorm map for compound 1 (Fig. 6, column 2) represents 

H···C/C···H contacts with 17.5% of contribution. In the crystal packing of compound 1, 

C-H···π interactions are observed, where the H···C/C···H contacts appear in the form of 

pronounced “wings” on the sides of the FP plot, a characteristic way for C-H···π 

interactions. In addition, the supramolecular assemblies of compounds 1 and 2 also 

include π···π stacking interactions, that are visible in the dnorm surface as a red spot 

labelled 6 in compound 1. The shape index and curvedness maps (Figure S1 and S2 for 

compounds 1 and 2, respectively) are significant indicators for π-stacking interactions. 

The pairs of complementary red and blue triangles in the shape index and large and flat 

green regions at the side of the molecule in curvedness are an indicative of π-stacking 

interactions.

The red spot labelled 4 in the dnorm surface of compound 1 is attributed to C-H···N 

hydrogen bonds involving the acceptor N1 and one hydrogen atom H20B of the methyl 

group. The pair of sharp spikes labelled as 3 in the FP plots of compound 1, are associated 

to N···H contacts with 11.1% of contribution to the total HS area.

The larger deep-red spots labelled 3 in the dnorm surfaces of compounds 1-4 are attributed 

to stronger O2···C4 interactions with a contribution of 2.0% to the total Hirshfeld surface.

The dnorm surface of compound 2 shows deep red regions labelled 1 and 2, attributed to 

C20-H20C···O3 and C12-H12···O2 hydrogen bonds. Like in the structure of compound 

1, the broad spikes at (de+di) ~ 3.3 Å in the FP with 15.1% of contribution to the Hirshfeld 

surface area, are associated to C-H···π interactions.

In compound 3, the red regions labelled 4 in the dnorm surfaces (Fig. 6) are attributed to 

C13-H13A···O1 involving the O1 of the carboxylic group as acceptor and the H13A atom 

of the methylene group linked to the triazole ring. Note that the H13B of the methylene 

group bounded to the triazole ring is involved in a bifurcated hydrogen bonds C13-
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H13B···N1 and C13-H13B···N2 with both N1 and N2 atoms as acceptors. These 

interactions are observed as spikes labelled 3 in the FP plot (Fig. 7 with a contribution of 

9.5% to the total Hirshfeld surface. In addition, the characteristic “wings” at (de+di) ~ 3.7 

Å indicate weak C-H···π interactions involving the H2B atom of the ethyl group and the 

C18 atom of the phenyl ring. The red spot labelled 6 in the dnorm map shows weak 

H···F/F···H contacts attributed to C15-H15A···F1 hydrogen bonds, which are viewed as 

a pair of broad spikes labelled 5 in the FP plot with a notable contribution of 10.4% to the 

Hirshfeld surface area.

In compound 4, the H···O/O···H contacts labelled 1 in Fig. 6 are again dominant, 

appearing as two larger deep red spots around the H14B and around the O3 atom 

attributed to the strongest C14-H14B···O3 hydrogen bonds. These interactions form 𝑅2
2

 ring motifs. The deep red spot labelled 2 in the dnorm surface is associated to C8-(12)

H8···O2 hydrogen bonds involving the H8 atom of the aromatic ring and the O2 atom of 

the carboxylic group. These interactions are observed in the FP plots as symmetric spikes 

at (de+di) ~ 2.5 Å and a contribution of 18.0% to the total Hirshfeld surface area. The tiny 

red regions labelled 4 in the dnorm map are attributed to weak C12-H12···N1 hydrogen 

bonds forming centre-symmetric dimers, giving  graph-set motifs. The proportion 𝑅2
2(10)

of H···N/N···H interactions comprise 12.2% of the total HS and are characterized by 

spikes at (de+di) ~ 2.8 Å in the FP plots. The supramolecular assembly of compound 4 

also suggests the existence of C-H···π interactions involving the H19 of the phenyl ring 

and the C6 atom of the triazole ring. These interactions are visible in the dnorm surface as 

red spots labelled 5, with a contribution of 19.2% to the total HS area.

Theoretical DFT analysis

Experimentally four new triazole derivatives have been synthesized and X-ray 

characterized (see Figs 2-5). These compounds present different substitution in the 

aromatic rings. Moreover, the triazole is substituted by an α-ketoester (ethyl-2-

oxoacetate) group that is very relevant determining their solid state architecture as it is 

further commented below.

We have first computed the molecular electrostatic potential (MEP) surfaces of 

compounds 1–4 in order to know the most electrophilic and nucleophilic parts of the 

molecules and to rationalize the interactions observed in their crystal packing. As a model 
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compound we show the MEP surface of compound 1 in Fig. 8 and the energetic values 

for the rest of the complexes in Table 3. It can be observed that the presence of a π-hole 

(region of positive potential) over the C-atom of the keto group with an associated MEP 

value of +16.9 kcal/mol. The most negative values are located at the carbonyl O-atom of 

the ester group and at the O-atom of the keto group. The MEP values are also positive at 

the aromatic H-atoms, ranging from +14 to +18 kcal/mol. This analysis evidences that 

the interaction of the electron rich O-atoms with either the C-atom of the keto group or 

the aromatic H-atoms is equally favored, from an electrostatic point of view.

Fig. 8 MEP surface (0.001 a.u. isosurface) at the PBE1PBE-D3/def2-TZVP level of 

theory of compound 1. The MEP values at selected points of the surface are indicated in 

kcal/mol.

Table 3 shows that the MEP values at the O-atoms of the ethyl-2-oxoacetate group are 

similar in compounds 1–3 and more negative in compound 4 likely due to the electron 

donating methoxy group. In contrast, compound 4 presents the smallest π-hole value and 

compound 3 (with the electron withdrawing F-atom) presents the most intense π-hole.

Table 3. MEP values in kcal/mol at the C’s π–hole and at the O-atoms from keto and 

carbonyl ester for compounds 1–4 at the PBE1PBE/def2-TZVP.

Compound Vs,π-hole Vs,O(-CO-) Vs,O(COOR)

1 +16.9 –32.3 –33.8

2 +12.9 –33.2 –34.5

3 +17.0 –32.6 –33.8

4 +12.5 –35.7 –37.0
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In the solid state, compounds 1–4 form infinite 1D supramolecular chains (see Fig. 9a for 

the representative compound 1) that propagates by means of π–π interactions that 

interconnect the self-assembled dimers. A detail of the self-assembled dimer is shown in 

Fig. 9b, where the formation of a hydrogen bonding network is highlighted using green 

dashed lines. The H-bonds are established between the aromatic H-atoms and the O-atoms 

of the ethyl-2-oxoacetate group. Moreover, the formation of two symmetrically 

equivalent O···C interactions is also highlighted using blue dashed lines. The most 

nucleophilic O-atom belonging to the ester group is located exactly above the 

electrophilic C-atom of the keto group. The O···C distance is significantly shorter than 

the sum of van der Waals radii (3.22 Å), thus evidencing the importance of this non-

covalent contact.

Fig. 9 (a) 1D infinite chain observed in the solid state of compound 1. (b) Detail of the 

self-assembled dimer. Distances in Å.

We have analyzed the O···C(π-hole) tetrel bonding interactions using DFT calculations. 

We have first computed the dimerization energies of the dimers of compounds 1–4 (see 

Fig. 10a) and also the dimerization energies of reduced theoretical models (see Fig. 10b) 

where both phenyl rings have been substituted by H-atoms (see small arrows in Fig. 10b). 

In these reduced models the H-bonds and other van der Waals interactions due to the 
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proximity of the bulk of both molecules are not established, and consequently only the 

contribution of the π–hole tetrel bonding interaction is evaluated. The energetic results 

along with some geometric features of the complexes are given in Fig. 10 (bottom). The 

energetic results show that the dimerization energies are very large ranging from –16.0 to 

–23.2 kcal/mol due to the contribution of both the H-bonds and π–hole interactions. It is 

interesting to highlight that the O···C π–hole distance is shorter in compound 4 that, 

conversely, presents the smallest MEP at the π–hole (see Table 3). This fact is 

compensated by the large and negative value at the O-atom. In fact, this compound 

presents the largest interaction energy for the reduced model [ΔE(B)] thus confirming 

that it exhibits the strongest π–hole tetrel bonding interaction. The weakest interaction is 

observed in compound 2, that presents the longest O···C distance and also a small MEP 

value at the π-hole (see Table 3)

Fig. 10 Energetic and geometric features of the self-assembled dimers of compounds 1–

4 (a) and the reduced model (b). Energies in kcal/mol and distances in Å. The H-bonds 

are represented using green dashed lines and the O···π–hole interaction using blue dashed 

lines.

Finally, we have characterized the interactions by using the Bader’s quantum theory of 

“atoms-in-molecules” QTAIM in order to further evidence the existence of the O···π–

hole and C–H···O interactions. The presence of a bond path (lines of maximum density 

linking neighboring nuclei in a system) and bond critical point connecting two atoms is a 
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universal evidence of interaction46. The distribution of bond CPs and bond paths in the 

dimer of compound 1 as a representative complex is given in Fig. 11. The O···π-hole 

interaction is characterized by a bond CP (blue sphere) and bond path interconnecting the 

O and C atoms and confirming the interaction. Each C–H···O interaction (green spheres) 

is also characterized by a bond CP and bond path that connect the H atom to the O atom 

of the keto/ester group. The QTAIM analysis also reveals the existence of C–H···π 

interactions that are formed between the aliphatic H-atom and the electron rich aromatic 

ring that further contribute to the stabilization of the self-assembled dimers. It is worth 

emphasizing that the value of charge density ρ(r) at the bond CP is a good indicator of the 

strength of the interaction, as demonstrated in a great deal of interactions.47-50 The values 

of ρ(r) at the bond CPs that characterize the π-hole interactions in complexes 1–4 are also 

included in Fig. 6 along with the dimerization energies of the reduced model complexes. 

They confirm that the π-hole interaction in 4 is stronger than that in compounds 1–3, also 

in agreement with the O···C distances (d4 values in Fig. 11). In fact, we have represented 

the value of ρ(r) at the bond CP that characterizes the π–hole interaction versus the 

interaction energies of the model compounds and we have found a very strong linear 

relationship (R2 = 0.9818), thus confirming that the ρ(r) at the bond CP is a good indicator 

of the strength of the interaction and also that the reduced model complexes are adequate 

to analyze the contribution of the π-hole interactions (Fig. 12). Taking into consideration 

that the ΔE(B) values gathered in Fig. 11 range from –5.8 to –8.6 kcal/mol, each π-hole 

interaction is energetically significant and comparable to a H-bond interaction.
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Fig. 11 Distribution of bond critical points and bond paths in complex 1. ring and cage 

CPs have been omitted for clarity. Moreover, the bond CPs and bond paths 

corresponding to intramolecular interactions have been also omitted.

Fig. 12 Regression plot of electron density values [ρ(r)] at the bond CP that characterizes 

the π–hole interaction versus the interaction energies.

Conclusion

In this work we have synthesized and X-ray characterized four new triazole derivatives 

those exhibit a strong tendency, via the α-ketoester group, to establish two simultaneous 

π–hole donor-acceptor interactions. The interaction is moderately strong as evidenced by 

DFT calculations. The O··· π–hole interactions have been characterized by means of 

Hirshfeld surface analysis, QTAIM and MEP computational tools. The ρ(r) density values 

at the bond CPs can be used as a measure of the strength of the interaction. The results 

reported herein are useful empirical principles of π-hole interactions in crystal 

engineering and supramolecular chemistry, where these interactions are progressively 

accepted as functionally relevant. 
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In this manuscript we report the synthesis and X-Ray characterization of four triazole derivatives that 
include an α-ketoester functionality and two phenyl substituents. These compounds form self-
assembled dimers in the solid state establishing two symmetrically equivalent O··· π-hole interactions.
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