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Abstract

An oxo-bridged dinuclear vanadium(V) complex, (µ-O)2[V(O)(L)]2, [where HL = 2-((2-

(methylamino)ethylimino)methyl)-4-bromo-6-methoxyphenol] has been synthesized and 

characterized by elemental and spectral analysis. Structure of the complex has been determined 

by single crystal X-ray diffraction study. The complex generates an infinite 1D chain governed 

by Br···O halogen bond involving the oxygen atoms of the VO2
+ unit as electron donor and the 

σ-hole at the halogen as electron acceptor. The molecular electrostatic potential (MEP) surface of 

the complex has been computed, which indicates that the most electron rich part corresponds to 

the oxygen atoms of the VO2
+ unit and the existence of a σ–hole (+9.4 kcal/mol) around Br atom,  

and therefore justifies the formation of a directional halogen bonding interaction. The interaction 

in the complex has also been characterized energetically by using the Bader’s quantum theory of 

“atoms in molecules” (QTAIM). The contribution of the halogen bond is found to be ~ –6.3 
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kcal/mol, which is in the range of typical halogen bonds. The results have been compared with 

the energies of Br···O halogen bond interactions in a structurally similar oxo-bridged dinuclear 

vanadium(V) complex.
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1. Introduction

Halogen bonding interaction has emerged as an important tool in the supramolecular 

aggregation of coordination entities and also has been prominent in the field of crystal 

engineering for quite long [1-7]. These interactions are usually widely different as far as their 

energetic and geometric features are concerned. Halogen molecules like bromine [8] and iodine 

[9], in some cases chlorine [10] and even fluorine [11], alkyl and aryl halides form complexes 

with atoms containing lone pairs [12-14]. The ability of halogen atoms to effectively interact 

with electron donors was recognized in dihalogens and halocarbons in the early 19th century 

[15,16]. After more than 50 years, Benesi and Hildebrand reported the first cases of 

intermolecular donor–acceptor complexes formed from iodine and aromatic hydrocarbons [17]. 

It is experimentally proved that the electron density is anisotropically distributed around halogen 

atoms in organic halides [18,19]. The effective atomic radius along the extended C-X bond axis 

in covalently bonded halogen atoms is smaller than in the direction perpendicular to this axis, 

hence generating a region of positive electrostatic potential along the covalent bond, which is 

referred to as the 'σ-hole' [20-22]. This σ-hole arranges the lone pair nearer the halogen atom and 

orients the halogen bonds. Halogen bonding is a highly directional interaction, more directional 

than hydrogen bonding ones [23,24].



The self assembly process of coordination entities can be driven by either hydrogen or 

halogen bonding, though the latter can dominate over the former under certain circumstances 

[2,25-27]. The σ-hole concept is useful in understanding the nature of halogen bonding. The idea 

of a σ-hole where a halogen atom exhibits both electrophilicity along the R-X axis and 

nucleophilicity perpendicular to the same axis. In other words, the halogen atom can act both as 

an electron acceptor (Lewis acid) owing to the positively charged region and an electron donor 

(Lewis base) in the ring region encompassing the halogen atom [28,29]. 

Over the past few years, vanadium(V) complexes reported in the literature were focused 

on their role in biological, catalytic and medicinal aspects. In one instance, they have been 

utilized in the dehydroperoxidation of alkyl hydroperoxides [30]. A thiosemicarbazone complex 

of vanadium(V) was found to show in vitro insulin mimicking activity against insulin responsive 

L6 myoblast cells [31]. Vanadium(V) complexes of catechol were found to exhibit significant 

anticancer activities against bone cancer cells [32], while a dinuclear vanadium(V) complex of 

tridentate ONS donor Schiff base ligand emerges as a potential anticancer molecule due to its 

ability to inhibit proliferation of breast and lung cancer cells and also in its influencing property 

in apoptosis and reproductive cell death [33]. Besides these, other reports involved catalytic 

efficiencies, specifically in oxidation of sulfide to sulfoxides [34] and some antimicrobial 

properties as well [35-38].

We have previously reported halogen bonding interactions in some vanadium(V) Schiff 

base complexes with a detailed theoretical approach [39]. Herein, we report a dinuclear 

vanadium(V) Schiff base complex, (µ-O)2[V(O)(L)]2, synthesized from a N2O donor ligand, HL= 

2-((2-(methylamino)ethylimino)methyl)-4-bromo-6-methoxyphenol. DFT calculations, 

combined with QTAIM computational tool, have been used to investigate the halogen bonding 



interactions along with conventional hydrogen bonding interaction in this complex. The work 

will open up new research aspects concerning the halogen bonding interactions and its role in 

supramolecular assemblies in similar vanadium systems.

2. Experimental Section                                                                                                                                                                                                  

VOSO4·5H2O was bought from Loba Chemie Pvt. Ltd. and was of reagent grade. All 

other starting materials were commercially available, reagent grade, and used as bought from 

Sigma-Aldrich without further purification.

2.1 Preparation of (µ-O)2[V(O)(L)]2

The tridentate Schiff base ligand, HL, was synthesized by refluxing 5-bromo-2-hydroxy-

3-methoxybenzaldehyde (231 mg, 1 mmol) with N-methylethylenediamine (~0.09 mL, 1 mmol) 

in CH3CN (15 ml) for ca. 1 h 30 mins. The ligand was not isolated and was directly used for the 

preparation of the complex. Thereafter, a CH3CN (10 mL) solution of VOSO4·5H2O (253 mg, 1 

mmol) was added to the CH3CN solution (20 mL) of the ligand and the resulting solution was 

then kept under reflux. After 15 minutes of refluxing, few drops of DMSO were added to the 

reacting system and the refluxing was continued for another 3 h. Then it was cooled to room 

temperature, subsequently filtered and kept for crystallization. X-ray diffraction quality single 

crystals were collected after a week on slow evaporation of the filtrate in an open atmosphere.

Yield: 244 mg (66%), based on vanadium; Anal. Calc. for C22H28Br2N4O8V2 (F.W = 

738.16): C, 35.80; H, 3.82; N, 7.59%; Found: C, 35.7; H, 3.7; N, 7.6%; FT-IR (KBr, cm-1): 3222 

( N-H), 1636 ( C=N), 920, 843 ( V=O). 463 ( V-O), UV–Vis, λmax (nm), [εmax (L mol-1 cm-1)] ν ν ν ν

(CH3CN): 393 (4.7×103). Magnetic moment = diamagnetic.



Crystal Data: formula = C22H28Br2N4O8V2, formula weight = 738.16, temperature(K) = 

296, crystal system = orthorhombic, space group = Pbca, a(Å) = 9.971(3), b(Å) = 13.144(9), 

c(Å) = 20.842(10), Z = 4, dcalc(g cm-3) = 1.795, μ(mm-1) = 3.662, F(000) = 1472, total reflections 

= 37338, unique reflections = 2431, observed data [I > 2 σ (I)] = 2163, no. of parameters = 176, 

R(int) = 0.058, R1, wR2 (all data) = 0.0476, 0.1224, R1, wR2 [I > 2 σ (I)] = 0.0420, 0.1188.

2.2 Physical measurements 

Elemental analyses (carbon, hydrogen and nitrogen) were performed using a Perkin 

Elmer 240C elemental analyzer. IR spectrum in KBr (4500-500 cm-1) was recorded with a Perkin 

Elmer Spectrum Two spectrophotometer. Electronic spectrum of the complex in DMF was 

recorded on a Shimadzu UV-1700 UV-Vis spectrophotometer. The magnetic susceptibility 

measurement was performed with an EG and PAR vibrating sample magnetometer, model 155 at 

room temperature (300 K) in a 5000 G magnetic field, and diamagnetic corrections were 

performed using Pascal's constants.

2.3 X-ray crystallography

A suitable single crystal of the complex was used for data collection using a ‘Bruker 

SMART APEX II’ diffractometer equipped with graphite-monochromated Mo Kα radiation (= 

0.71073 Å) at 296 K. The molecular structure was solved by direct methods and refined by full-

matrix least squares on F2 using the SHELX-2018/1 package [40,41]. Non-hydrogen atoms were 

refined with anisotropic thermal parameters. Hydrogen atoms attached to nitrogen atoms were 

located by difference Fourier maps. All other hydrogen atoms were placed in their geometrically 

idealized positions and constrained to ride on their parent atoms. Multi-scan empirical absorption 

corrections were applied to the data using the program SADABS [42].



2.4 Theoretical methods

The energetic and geometric features of the complexes included in this study were 

calculated at the B3LYP-D3/def2-TZVP level of theory using the crystallographic coordinates. 

For the calculations, the GAUSSIAN-16 program has been used [43]. The basis set superposition 

error for the calculation of interaction energies has been corrected using the counterpoise method 

[44]. Molecular electrostatic potential (MEP) surfaces have been computed at the same level of 

theory and represented using the 0.001 a.u. isosurface. The QTAIM analysis [45] has been 

performed using the AIMAll program at the same level of theory [46].

2.5 Hirshfeld surface Analysis

Hirshfeld surfaces [47] provide a three-dimensional representation of close contacts in a 

crystal, and these contacts can also be illustrated in a fingerprint plot [48]. Both these were 

calculated using Crystal Explorer [49,50] which accepted a structure input file in CIF format. 

Bond lengths to hydrogen atoms were set to standard values. For each point on the Hirshfeld 

isosurfaces, two distances are important; de, the distance from the point to the nearest nucleus 

external to the surface and di, the distance to the nearest nucleus internal to the surface, are 

defined. The normalized contact distance (dnorm) based on de and di is given by

 =  + 𝑑𝑛𝑜𝑟𝑚 
( 𝑑𝑖 ―  𝑟𝑣𝑑𝑤

𝑖 )

𝑟𝑣𝑑𝑤
𝑖

( 𝑑𝑒 ―  𝑟𝑣𝑑𝑤
𝑒 )
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𝑒

Where ri
vdw and re

vdw are the van der Waals radii of the atoms. The value of dnorm was negative or 

positive depending on intermolecular contacts, being shorter or longer than the van der Waals 

separations. The parameter dnorm displayed a surface with a red-white-blue color scheme, where 

bright red spots highlighted shorter contacts, white areas represented contacts around the van der 



Waals separation, and blue regions were devoid of close contacts. For a given crystal structure 

and set of spherical atomic electron densities, the Hirshfeld surface is unique [51] and hence a 

significant means for analyzing intermolecular interactions, such as hydrogen bonds and the 

weaker C∙∙∙H contacts (C–H···π).

3. Results and discussions 

3.1 Synthesis

The Schiff base ligand, HL, has been synthesized by the condensation reaction of 5-

bromo-2-hydroxy-3-methoxybenzaldehyde with N-methylethylenediamine in CH3CN, in 

accordance with a relevant literature method [52]. The ligand was not separated and was treated 

with VOSO4·5H2O (dissolved in CH3CN) in open atmosphere to synthesize a dinuclear 

vanadium(V) complex, (µ-O)2[V(O)(L)]2. Preparation of this complex was attempted under N2 

environment, but that went unsuccessful. This is because the involvement of aerial oxygen, 

causing the oxidation of vanadium from +4 (in starting material) to +5 (in both complexes). 

Synthetic route to the complex is outlined in Scheme 1.

Scheme 1: Synthetic route to the ligand and the complex. 



3.2 Description of structure of (µ-O)2[V(O)(L)]2

X ray crystallography reveals the complex to be crystallized in the orthorhombic space 

group Pbca and it is a μ2-oxo-bridged centrosymmetric dimer which contains a V2O2 core in its 

crystal structure. A perspective view of the complex is illustrated in Fig. 1. Vanadium(V) centers 

in the complex are six coordinate and they reside in a distorted octahedral environment. The 

asymmetric unit in the complex consists of one vanadium atom, V(1), two oxo groups, O(2) and 

O(3), and one tridentate (deprotonated) Schiff base ligand binding to the vanadium(V) center via 

imine nitrogen atom N(2), amine nitrogen atom N(1), and the phenolate oxygen atom O(1). The 

equatorial plane is composed of phenolic oxygen atom O(1), imine nitrogen atom N(2), and an 

amine nitrogen atom N(1), of the Schiff base ligand and one oxo oxygen atom O(3). Remaining 

two axial positions are occupied by two oxo oxygen atoms; O(2) and O(3a) [a = 1-x, 1-y, 1-z]. 

The two oxo groups in each vanadium(V) centers are cis to each other. Out of these two, the first 

one i.e. V(1)-O(2) is typical V=O, having a distance of 1.621(3) Å. The second oxo group, O(3), 

is engaged in bridging V(1) and V(1a). It is strongly coordinated to V(1) [V(1)-O(3) = 1.668(3) 

Å] and is weakly associated with V(1a) [V(1a)-O(3) = 2.330(3) Å]. The V-O and V-N bond 

lengths in the complexes are comparable to the corresponding values observed in other similar 

oxovanadium(V) complexes with Schiff bases [53-56]. The intramolecular V∙∙∙V separation is 

3.092(1) Å, similar to the known V∙∙∙V distances in double-bridged vanadium polynuclear 

systems [57].

The chelating angles, N(1)-V(1)-N(2) and N(2)-V(1)-O(1) have the values of 77.3(1)º 

and 83.3(1)º {Table S1, Supplementary Information (SI†)}, indicating distortion of the 

octahedron around vanadium(V) centers. The {V2O4}2+ core in any double oxo-bridged dinuclear 

cis-VO2
+ complex is known to possess five different configurations (syn and anti-orthogonal, 



syn- and anti-coplanar, twist) on the basis of the orientation of V=O groups with respect to the 

central V2O2 core [58]. The complex may be termed as anti-coplanar, as the two terminal V=O 

bonds in both complexes are oriented in an anti arrangement with respect to the {V2O2} plane. 

The coordination environment may then be appropriately termed as significantly distorted two 

edge-shared vanadium octahedra. The +5 oxidation state for the vanadium center has been 

assigned by virtue of the bond valence sums calculations [59], which give 4.946 valence unit for 

vanadium atom in the complex.

A C–H···π interaction is observed involving a hydrogen atom, H(11C), attached with 

C(11), and a symmetry related (1/2+x, y, 3/2-z) phenyl ring [C(5)–C(6)–C(7)–C(8)–C(9)–C(10)] 

of another adjacent moiety in the complex. Association of the individual units via this C–H···π 

interaction produces an infinite two dimensional supramolecular ladder like array, as 

demonstrated in Fig. 2. The detail of the said interaction is enlisted in Table 1. Moreover, the 

hydrogen atom, H(1), attached to amine nitrogen atom, N(1), is intra-molecularly hydrogen 

bonded to the phenoxo oxygen atom, O(1a), predominantly holding the other half of the 

asymmetric part of the molecule. The said interaction is demonstrated in Fig. 1, having the 

details enlisted in Table 2.

3.3 Theoretical Studies on supramolecular interactions

The vanadium(V) complex, (µ-O)2[V(O)(L)]2, has been synthesized using a tridentate 

N2O donor Schiff base ligand. In the solid state, the complex forms an infinite 1D chain 

governed by Br···O halogen bond involving the oxygen atoms of the VO2
+ unit as electron donor 

and the σ-hole at the halogen as electron acceptor, as shown in Fig. 3. The DFT study is devoted 



to the analysis of the halogen bonding interaction in the complex and the interaction has been 

studied and characterized using the QTAIM computational tool.

At first, the molecular electrostatic potential (MEP) surface of the complex has been 

computed, which is shown in Fig. 4. The most electron rich part corresponds to the oxygen 

atoms of the VO2
+ unit, as expected. In fact, one of these atoms participates in the formation of 

the halogen bonds highlighted in Fig. 3. The most positive MEP value is located at the hydrogen 

atom of the coordinated imidic group. The MEP surface around the bromine atom has also been 

represented, using a reduced energetic scale (± 10 kcal/mol). As a result, the anisotropy around 

the bromine atom can be clearly appreciated and it reveals the existence of the σ–hole (+9.4 

kcal/mol) that is responsible of the formation of the directional halogen bonding interaction. 

The interaction in the complex has been characterized energetically by using the Bader’s 

quantum theory of “atoms in molecules” (QTAIM). The existence of a bond path connecting two 

atoms provides a universal indicator of bonding between them [60]. The distribution of critical 

points (CP) and bond paths is shown in Fig. 5 for the halogen bonded dimer of the complex. It 

shows the presence of a bond CP and bond path connecting the oxygen atom of the VO2
+ unit to 

the bromine atom, thus confirming the halogen bonding interaction. Moreover, the dimer is also 

characterized by a bond CP and bond path connecting one hydrogen atom of the aromatic ring to 

the oxygen atom of the methoxy substituent. The total dimerization energy is moderately strong,  

ΔE1 = –7.4 kcal/mol. In order to estimate the contribution of the hydrogen bond, the QTAIM 

analysis has been used; in particular, the value of the kinetic G(rCP) contribution to the local 

energy density of electrons at the critical point (CP). This method is adequate to compute the 

stabilization energy that accounts for each individual hydrogen bonding contact since it was 

specifically developed for HBs [61] [Energy = 0.429 * G(r) at the bond CP]. This methodology 



has recently been used [62] in hydrogen bonded assemblies of hybrid adenine-β-alanine and 

adenine-GABA molecules. In Fig. 5 the value of G(r) has been shown at the bond CP that 

characterizes the hydrogen bond and the concomitant interaction energy (in red), that is quite 

small (–1.1 kcal/mol). Therefore, the contribution of the halogen bond is approximately –6.3 

kcal/mol, in the range of typical halogen bonds [63]. 

In order to assess whether the said halogen bonding interaction is a special feature in 

these type of vanadium(V) systems, another structurally similar vanadium(V) complex [57], (µ-

O)2[V(O)(L1)]2, has been taken for study alongside the previous analysis. This complex is also an 

oxo-bridged dinuclear vanadium(V) complex containing a bromine atom in its structural unit. 

The complex also forms a 1D supramolecular chain via the halogen bonding (Fig. 6b). The main 

difference between the complexes is the hydroxyl group of the pendant arm of the ligand in this 

complex that significantly affects the crystal packing. This hydroxyl group also facilitates the 

generation of a 1D supramolecular chain that propagates in the a direction due to the formation 

of symmetrically equivalent O–H···O hydrogen bonds (Fig. 6c).

Again the DFT calculations have been employed to determine the energetics of the 

halogen bonds and the hydrogen bonds in this complex using complex (µ-O)2[V(O)(L)]2 as a 

representative model of both. Moreover, the interactions have been studied and characterized 

using the QTAIM computational tools. As usual, the MEP surface of this complex (Fig. 7) 

illustrates the most electron rich part belonging to the oxygen atoms of the VO2
+ unit, which 

accounts for their participation in both halogen and hydrogen bonding. Unlike in the complex (µ-

O)2[V(O)(L)]2, this complex has the highest MEP value located at the hydrogen atom of the 

hydroxyl group. Therefore, in this system, the most favorable interaction from an electrostatic 



point of view should be a hydrogen bond between the OH and VO2 groups, which is in good 

agreement with the experimental observation.

The Bader’s quantum theory of “atoms in molecules” (QTAIM), gives the distribution of 

critical points (CP) and bond paths (Fig. 8), which further shows that each hydrogen bond is 

characterized by a bond CP and bond path interconnecting the hydrogen and oxygen atoms. 

Moreover, it also shows a bond CP and bond path connecting the close hydrogen atoms of the 

aliphatic chain. The dimerization energy is very large, ΔE2 = –22.9 kcal/mol, due to the 

formation of two strong hydrogen bonds, which is in agreement with the MEP surface analysis 

commented above. 

From this entire study, it is observed that due to the presence of uncoordinated hydroxyl 

group in the complex (µ-O)2[V(O)(L1)]2, it has a prevalence of the intermolecular hydrogen 

bonding interaction over the halogen bonding one as a driving force for its supramolecular 

assembly in the solid state. Despite having the bromine atom, the halogen bonding interaction 

cannot become the major stabilizing factor in its supramolecular aggregation, making the point 

clear that both hydrogen and halogen bonding interactions are substrate specific, and if both 

interactions are possible in a system, one can largely prevail over the other. Theoretical studies 

on the supramolecular interactions in both these complexes have turned out to be a good 

comparative study which tells whether a subtle change in the ligand moiety affects the nature of 

the supramolecular interaction in what way.



3.4 IR, electronic spectra and magnetic moments 

The presence of azomethine (C=N) group in the complex has been assured by the 

appearance of sharp band at 1636 cm-1 in infra-red spectrum of the complex (Fig. S1, 

Supplementary Information) [64]. Moderately strong bands at 920 cm-1 and 843 cm-1 in the 

complex may be assigned to asymmetric and symmetric (O=V=O) vibrations of cis-VO2 groups ν

present [65]. Sharp band at 463 cm−1 is indicative of (V-O) stretch [66]. The complex also has a ν

sharp band at 3222 cm−1, which may be assigned to (N-H) stretching vibration. ν

Electronic spectrum of the complex (Fig. S2, Supplementary Information) shows 

absorption band at 393 nm, which may be assigned to a ligand-to-metal charge transfer (LMCT) 

transition originating from the pπ orbital on the phenolate oxygen to the empty d orbitals of the 

vanadium(V) [67].

The complex is diamagnetic, with d0 electronic configuration, as also observed for other 

similar oxo-bridged dinuclear vanadium(V) complexes [68].

3.5 Hirshfeld Surface analysis 

Hirshfeld surfaces of the complex are illustrated in Fig. 9, while the 2D fingerprint plots 

are also shown in Fig. 10, where intermolecular interactions appear as distinct spikes. The 

fingerprint plots are also analyzed to emphasize particular atoms pair close contacts. The 

proportion of O···H and H···O interactions comprise 18.2% of the Hirshfeld surfaces for the 

complex. C···H and H···C interactions comprise of 20.3% of the Hirshfeld surfaces, while that 

of N···H and H···N interactions in the complex are very low, i.e. 0.7%. Br···O and O···Br have 

4.4% interactions to that of the total surface. 



4. Conclusions 

A dinuclear vanadium(V) Schiff base complex has been synthesized and structurally 

characterized. Theoretical studies have been conducted on the supramolecular interactions in this 

complex. In the solid state, the complex exhibits Br···O halogen bonding interactions along with 

conventional hydrogen bonding interaction. Analysis of energies associated with these 

interactions have been conducted using DFT calculations and further corroborated with the 

QTAIM computational tool. Halogen bonding interaction is found to dominant in the 

investigated complex. Comparison of its supramolecular interaction with that of a structurally 

similar system determines that the said halogen bonding interaction may not be a special 

structural feature system, which further suggests that mere the possibility of halogen bonding in 

a complex does not make it a dominating factor in the supramolecular assembly of its molecules 

in the solid state.
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Appendix A. Supplementary data

CCDC 1967803 contains the supplementary crystallographic data for the complex. These 

data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from 

the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 

(+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. 
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Table 1: Geometric features (distances in Å and angles in ) of the C–H···π interactions obtained 

in the complex.

C–H···Cg(Ring) H···Cg (Å) 

(Å) (Å)

C–H···Cg (°) C···Cg (Å)

C(11)–H(11C)···Cg(4)b 2.69 158 3.598(6)

Symmetry transformation: b = 1/2+x, y, 3/2-z, Cg(4) = Center of gravity of the ring [C(5)–C(6)–

C(7)–C(8)–C(9)–C(10)].

Table 2: Hydrogen bond distances (Å) and angles (º) of the complex.

Symmetry transformations; a = 1-x, 1-y, 1-z.

Fig. 1: Perspective view of the complex with selective atom numbering scheme. Intra-molecular 

hydrogen bonding interaction is also shown. Only the relevant atoms are labeled for clarity. 

Symmetry transformation; a = 1-x, 1-y, 1-z. Selected bond lengths (Å): V(1)-O(1) = 1.913(3), 

D-H∙∙∙A D-H H∙∙∙A D∙∙∙A D-H∙∙∙A

N(1)-H(1)-O(1)a 0.72(5) 2.38(5) 2.944(5) 137(5)



V(1)-O(2) = 1.621(3), V(1)-O(3) = 1.668(3), V(1)-N(1) = 2.160(4), V(1)-N(2) = 2.161(3), V(1)-

O(3a) = 2.330(3)

Fig. 2: Two dimensional supramolecular network of the complex, generated through C–H···π 

interactions. Only the relevant atoms and rings are labelled for clarity.

Fig. 3: Partial view of the X-ray structure of the complex. Distances in Å. Hydrogen atoms are 

omitted for clarity.



Fig. 4: MEP surface plotted onto the 0.001 a.u. isosurface of the complex. The values at selected 

points of the surface are given in kcal/mol. Bottom: MEP surface around the bromine atom using 

a ± 10 kcal/mol scale.

Fig. 5: AIM distribution of bond and ring critical points (green and yellow spheres, respectively) 

and bond paths for units the complex.



Fig. 6. Partial view of the X-ray structure of the complex (µ-O)2[V(O)(L1)]2 (a,b). Distances in 

Å. Hydrogen atoms are omitted apart from those involved in the hydrogen bonds in (b).

Fig. 7. MEP surfaces plotted onto the 0.001 a.u. isosurface of complex (µ-O)2[V(O)(L1)]2. The 

values at selected points of the surface are given in kcal/mol.



Fig. 8. AIM distribution of bond and ring critical points (green and yellow spheres, respectively) 

and bond paths for the complex (µ-O)2[V(O)(L1)]2.

Fig. 9: Hirshfeld surfaces mapped with dnorm (extreme left), shape index (middle) and curvedness 

(extreme right) of the complex.



Fig. 10: 2D fingerprint plot of the complex showing (a) total surface area; proportions of (b) 

C···H/H···C, (c) O···H/H···O and (d) Br···O/O···Br interactions.
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A novel μ2-oxo bridged dinuclear vanadium(V) complex, (µ-O)2[V(O)(L)]2, has been 

synthesized and characterized. Its structure has been confirmed by single crystal X-ray 



diffraction study. An infinite 1D chain has been generated which is actually governed by the 

Br···O halogen bond involving the oxygen atoms of the VO2
+ unit as electron donor and the σ-

hole at the bromine atom as electron acceptor. The interaction energies have been characterized 

energetically by using the Bader’s quantum theory of “atoms in molecules” (QTAIM). The 

results have been compared with the energies of identical halogen bonding interactions in a 

structurally similar oxo-bridged dinuclear vanadium(V) complex.
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