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VAISMAN SOLVMANIFOLDS AND RELATIONS WITH OTHER
GEOMETRIC STRUCTURES∗

A. ANDRADA† AND M. ORIGLIA‡

Abstract. We characterize unimodular solvable Lie algebras with Vaisman structures in terms
of Kähler flat Lie algebras equipped with a suitable derivation. Using this characterization we obtain
algebraic restrictions for the existence of Vaisman structures and we establish some relations with
other geometric notions, such as Sasakian, coKähler and left-symmetric algebra structures. Applying
these results we construct families of Lie algebras and Lie groups admitting a Vaisman structure and
we show the existence of lattices in some of these families, obtaining in this way many examples of
new solvmanifolds equipped with invariant Vaisman structures.
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1. Introduction. Let (M,J, g) be a 2n-dimensional Hermitian manifold, where
J is a complex structure and g is a Hermitian metric, and let ω denote its fundamental
2-form, that is, ω(X,Y ) = g(JX, Y ) for any X,Y vector fields on M . The manifold
(M,J, g) is called locally conformally Kähler (LCK) if g can be rescaled locally, in a
neighborhood of any point in M , so as to be Kähler, i.e., there exists an open covering
{Ui}i∈I of M and a family {fi}i∈I of C∞ functions, fi : Ui → R, such that each local
metric

gi = exp(−fi) g|Ui
(1)

is Kähler. These manifolds are a natural generalization of the class of Kähler mani-
folds, and they have been much studied by many authors since the work of I. Vaisman
in the ’70s (see for instance [19, 23, 41, 52]).

An equivalent characterization of an LCK manifold can be given in terms of the
fundamental form ω. Indeed, a Hermitian manifold (M,J, g) is LCK if and only if
there exists a closed 1-form θ globally defined on M such that

dω = θ ∧ ω. (2)

This closed 1-form θ is called the Lee form (see [31]). Furthermore, the Lee form θ is
uniquely determined by the following formula:

θ = − 1

n− 1
(δω) ◦ J, (3)

where ω is the fundamental 2-form, δ is the codifferential operator and 2n is the
dimension of M . A Hermitian manifold (M,J, g) is called globally conformally Kähler
(GCK) if there exists a C∞ function, f : M → R, such that the metric exp(−f)g is
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Kähler, or equivalently, the Lee form is exact, θ = df . Therefore a simply connected
LCK manifold is GCK.

It is well known that LCK manifolds belong to the class W4 of the Gray-Hervella
classification of almost Hermitian manifolds [24]. Also, an LCK manifold (M,J, g)
with dimM ≥ 4 is Kähler if and only if θ = 0. Indeed, θ∧ω = 0 and ω non degenerate
imply θ = 0. It is known that if (M,J, g) is a Hermitian manifold with dimM ≥ 6
such that (2) holds for some 1-form θ, then θ is automatically closed, and therefore
M is LCK.

The Hopf manifolds are examples of LCK manifolds, and they are obtained as
a quotient of Cn − {0} with the Boothby metric by a discrete subgroup of automor-
phisms. These manifolds are diffeomorphic to S1×S2n−1 and have first Betti number
b1 equal to 1, so that they do not admit any Kähler metric. The LCK structures on
these Hopf manifolds have a special property, as shown by Vaisman in [50]. Indeed,
the Lee form is parallel with respect to the Levi-Civita connection of the Hermitian
metric. The LCK manifolds sharing this property form a distinguished class, which
has been much studied since Vaisman’s seminal work [23, 29, 42, 43, 50, 51].

Definition 1.1. (M,J, g) is a Vaisman manifold if it is LCK and the Lee form
θ is parallel with respect to the Levi-Civita connection.

A Vaisman manifold satisfies stronger topological properties than general LCK
manifolds. For instance, a compact Vaisman non-Kähler manifold (M,J, g) has b1(M)
odd ([29, 51]), whereas in [39] an example is given of a compact LCK manifold with
even b1(M). This also implies that a compact Vaisman manifold cannot admit Kähler
metrics, since the odd Betti numbers of a compact Kähler manifold are even. More-
over, it was proved in [42, Structure Theorem] and [43, Corollary 3.5] that any compact
Vaisman manifold admits a Riemannian submersion to a circle such that all fibers are
isometric and admit a natural Sasakian structure. It was shown in [53] that any
compact complex submanifold of a Vaisman manifold is Vaisman, as well. In [10] the
classification of compact complex surfaces admitting a Vaisman structure is given. It
is known that a homogeneous LCK manifold is Vaisman when the manifold is com-
pact ([23, 28]) and, more generally, when the manifold is a quotient of a reductive Lie
group such that the normalizer of the isotropy group is compact ([2]).

In this article we are interested in invariant Vaisman structures on solvmanifolds,
that is, compact quotients Γ\G where G is a simply connected solvable Lie group and
Γ is a lattice in G. We begin by studying left invariant Vaisman structures on Lie
groups, or equivalently, Vaisman structures on a Lie algebra.

Let G be a Lie group with a left invariant complex structure J and a left invari-
ant metric g. If (G, J, g) satisfies the LCK condition (2), then (J, g) is called a left
invariant LCK structure on the Lie group G. In this case, it follows from (3) that the
corresponding Lee form θ on G is also left invariant.

This fact allows us to define LCK structures on Lie algebras. Recall that a complex
structure J on a Lie algebra g is an endomorphism J : g→ g satisfying J2 = − Id and

NJ = 0, where NJ(x, y) = [Jx, Jy]− [x, y]− J([Jx, y] + [x, Jy]),

for any x, y ∈ g.
Let g be a Lie algebra, J a complex structure and 〈· , · 〉 a Hermitian inner product

on g, with ω ∈ ∧2
g∗ the fundamental 2-form. We say that (g, J, 〈· , · 〉) is locally

conformally Kähler (LCK) if there exists θ ∈ g∗, with dθ = 0, such that

dω = θ ∧ ω. (4)
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Here d denotes the coboundary operator of the Chevalley-Eilenberg complex of g
corresponding to the trivial representation.

If the Lie group G is simply connected then any left invariant Vaisman structure
on G turns out to be globally conformal to a Kähler structure. Therefore we will
study compact quotients of such a Lie group by discrete subgroups (if they exist);
these quotients will be non simply connected and will inherit a Vaisman structure.
Recall that a discrete subgroup Γ of a simply connected Lie group G is called a lattice
if the quotient Γ\G is compact. According to [37], if such a lattice exists then the
Lie group must be unimodular. The quotient Γ\G is known as a solvmanifold if G
is solvable and as a nilmanifold if G is nilpotent, and in these cases we have that
π1(Γ\G) ∼= Γ. Moreover, the diffeomorphism class of solvmanifolds is determined by
the isomorphism class of the corresponding lattices, as the following results show:

Theorem 1.2 ([44, Theorem 3.6]). Let G1 and G2 be simply connected solvable
Lie groups and Γi, i = 1, 2, a lattice in Gi. If f : Γ1 → Γ2 is an isomorphism, then
there exists a diffeomorphism F : G1 → G2 such that
(i) F |Γ1

= f ,
(ii) F (γg) = f(γ)F (g), for any γ ∈ Γ1 and g ∈ G1.

Corollary 1.3 ([38]). Two solvmanifolds with isomorphic fundamental groups
are diffeomorphic.

LCK and Vaisman structures on Lie groups and Lie algebras and also on their
compact quotients by discrete subgroups have been studied by several authors lately
(see [2, 7, 8, 18, 27, 28, 30, 45, 46, 47, 48] among others). For instance, it was shown in
[45] that if an LCK Lie algebra is nilpotent then it is isomorphic to h2n+1×R (where
h2n+1 is the Heisenberg Lie algebra of dimension 2n + 1) and the LCK structure is
Vaisman (see Example 3.3, cf. [27]). In [2] the authors prove that if a reductive Lie
algebra admits an LCK structure then it is isomorphic to either u(2) or gl(2,R). In
[30] it is proved the non-existence of Vaisman metrics on some solvmanifolds with left
invariant complex structures. In [8] it is proved that if a nilmanifold Γ\G admits a
Vaisman structure (not necessarily invariant), then G is isomorphic to the cartesian
product of a Heisenberg group H2n+1 with R. In [48] it is shown that if a completely
solvable solvmanifold equipped with an invariant complex structure admits a Vaisman
metric, then the solvmanifold is again a quotient of H2n+1 × R. In [34] the authors
obtain a Vaisman structure on the total space of certain S1-bundles over compact
coKähler manifolds, and all the examples they exhibit are diffeomorphic to compact
solvmanifolds. Recently, in [3], it was shown that any unimodular Vaisman Lie algebra
is isomorphic, up to modifications, to one of the following Lie algebras: h2n+1 × R,
su(2)× R or sl(2,R)× R (see [3] for the relevant definitions).

In this article we obtain a characterization of the unimodular solvable Lie algebras
admitting Vaisman structures in terms of Kähler flat Lie algebras equipped with
suitable derivations (see Theorems 3.9 and 3.10). More explicitly, we show that any
unimodular solvable Vaisman Lie algebra is a double extension of a Kähler flat Lie
algebra. In order to do this, we use the fact that Vaisman structures are closely
related to Sasakian structures.

This characterization allows us to build new examples of unimodular solvable non-
nilpotent Lie algebras equipped with Vaisman structures. When these Lie algebras
have integer structural constants we exhibit families of lattices in the associated simply
connected solvable Lie groups, and we show that the solvmanifolds obtained in this
way are not diffeomorphic to the product of S1 with a Heisenberg nilmanifold.
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Moreover, we establish a relation with other geometric structures, namely, with
coKähler Lie algebras and left-symmetric algebras. More precisely, we show that any
unimodular solvable Vaisman Lie algebra is a central extension of a coKähler flat Lie
algebra, and using this we prove the existence of a complete left-symmetric algebra
structure on the Vaisman Lie algebra. This gives rise to a complete flat torsion-free
connection on any associated solvmanifold.

The article is organized as follows. In §2 we prove a general result about unimod-
ular LCK Lie algebras and we recall some basic definitions. In §3 we review some
properties about Vaisman Lie algebras and we give the proof of the main theorems
(Theorems 3.9 and 3.10). As a consequence of these theorems, we need to study
derivations of a Kähler Lie algebra, and we do this in §4. In §5, we obtain a strong
restriction for the existence of Vaisman structures, namely, if a unimodular solvable
Lie algebra admits such a structure then the spectrum of adX is contained in iR for
any X in the Lie algebra (see Theorem 5.3). In §6, using the characterization obtained
previously we provide families of new examples of unimodular solvable Vaisman Lie
algebras in any even dimension and determine the existence of lattices in many of
the corresponding solvable Lie groups. Finally, in §7 we prove the relation mentioned
above with coKähler Lie algebras (Theorem 7.1) and left-symmetric algebras (Corol-
lary 7.4).

Acknowledgments. The authors are grateful to I. Dotti and K. Hasegawa for
their useful comments and to the referees for their careful reading of the manuscript
and their suggestions.

2. Preliminaries. Let (g, J, 〈· , · 〉) be a Lie algebra with an LCK structure. We
have the following orthogonal decomposition for g,

g = RA⊕ ker θ

where θ is the Lee form and θ(A) = 1. Since dθ = 0, we have that g′ = [g, g] ⊂ ker θ.
It is clear that JA ∈ ker θ, but when g is unimodular we may state a stronger result.
Recall that a Lie algebra is unimodular if tr(adx) = 0 for all x in the Lie algebra.

Proposition 2.1. If g is unimodular and (J, 〈· , · 〉) is an LCK structure on g,
then JA ∈ g′.

Proof. Let {e1, . . . , e2n} be an orthonormal basis of g. Recall from [12] the
following formula

δη = −
2n∑
i=1

ιei(∇eiη),

where η is a p-form and δ is the codifferential operator. Note that the Koszul formula
for the Levi-Civita connection in this setting is given simply by

〈∇xy, z〉 = 1

2
(〈[x, y], z〉 − 〈[y, z], x〉+ 〈[z, x], y〉) , x, y, z ∈ g.
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Using this formula we compute δω, where ω is the fundamental 2-form. For x ∈ g,

δω(x) =−
∑
i

(∇eiω)(ei, x)

=
∑
i

ω(∇eiei, x) + ω(ei,∇eix)

=
∑
i

−〈∇eiei, Jx〉+ 〈Jei,∇eix〉

=
1

2

{∑
i

〈[ei, Jx], ei〉 − 〈[Jx, ei], ei〉+ 〈[ei, x], Jei〉 − 〈[x, Jei], ei〉+ 〈[Jei, ei], x〉
}

=
1

2

{
−2 tr(adJx) + tr(J ◦ adx)− tr(adx ◦J) +

∑
i

〈[Jei, ei], x〉
}

=
1

2

∑
i

〈[Jei, ei], x〉.

It follows from (3) that θ(x) = 1
2(n−1)

∑〈J [Jei, ei], x〉. On the other hand, the Lee

form can be written in terms of the inner product as θ(x) = 〈A,x〉
|A|2 . If we compare

both expressions we obtain that

A =
|A|2

2(n− 1)

∑
i

J [Jei, ei].

Therefore JA ∈ g′.

We will see in forthcoming sections that Vaisman structures on Lie algebras are
closely related to certain almost contact metric structures on lower-dimensional Lie
algebras. Moreover, when the Vaisman Lie algebra is unimodular and solvable we
will show that it is a double extension of a Kähler flat Lie algebra. Let us recall the
relevant definitions.

2.1. Almost contact metric Lie algebras. An almost contact metric struc-
ture on a Lie algebra h is a quadruple (〈· , · 〉, φ, ξ, η), where 〈· , · 〉 is an inner product
on h, φ is an endomorphism φ : h → h, and ξ ∈ h, η ∈ h∗ satisfy the following
conditions:

• η(ξ) = 1,
• φ2 = − Id+η ⊗ ξ,
• 〈φx, φy〉 = 〈x, y〉 − η(x)η(y), for all x, y ∈ h.

It follows that |ξ| = 1, φ(ξ) = 0, η◦φ = 0, and φ is skew-symmetric. The fundamental
2-form Φ associated to (〈· , · 〉, φ, ξ, η) is defined by Φ(x, y) = 〈φx, y〉, for x, y ∈ h. The
almost contact metric structure is called:

• normal if Nφ = −dη ⊗ ξ;
• Sasakian if it is normal and dη = 2Φ;
• almost coKähler if dη = dΦ = 0;
• coKähler if it is almost coKähler and normal (hence Nφ = 0). Equivalently,

φ is parallel (see [14]).
Here Nφ denotes the Nijenhuis tensor associated to φ, which is defined, for x, y ∈ h,
by

Nφ(x, y) = [φx, φy] + φ2[x, y]− φ([φx, y] + [x, φy]). (5)
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CoKähler structures are also known as “cosymplectic”, following the terminology
introduced by Blair in [13] and used in many articles since then, but their striking
analogies with Kähler manifolds have led Li (see [32]) and other authors to use the
term “coKähler” for these structures, and this is becoming common practice. In the
present article we follow this terminology.

Remark 2.2. Let h be a Lie algebra equipped with a Sasakian structure
(〈· , · 〉, φ, η, ξ). It follows from dη = 2Φ that η is a contact form on h, and con-
sequently ξ is called the Reeb vector. It is easy to verify that the center of h has
dimension at most 1. Moreover, if dim z(h) = 1 then the center is generated by the
Reeb vector (see [6]).

We recall next a result about Sasakian Lie algebras, which will be necessary to
prove our main results.

Proposition 2.3 ([6]). Let (φ, η, ξ, 〈· , · 〉) be a Sasakian structure on a Lie al-
gebra h with non trivial center z(h) generated by ξ. If k := ker η, then the quadruple
(k, [·, ·]k, φ|k, 〈· , · 〉|k×k) is a Kähler Lie algebra, where [·, ·]k is the component of the Lie
bracket of h on k.

2.2. Double extension of Lie algebras. Let h be a real Lie algebra and β ∈∧2
h∗ a closed 2-form. If we consider R as the 1-dimensional abelian Lie algebra,

generated by an element ξ ∈ R, we may define on the vector space Rξ⊕h the following
bracket:

[x, y]β = β(x, y)ξ + [x, y]h, [ξ, x]β = 0, x, y ∈ h.

It is readily verified that this bracket satisfies the Jacobi identity, and Rξ ⊕ h will be
called the central extension of h by the closed 2-form β. It will be denoted hβ(ξ).

Given a derivation D of hβ(ξ), the double extension of h by the pair (D,β) is
defined as the semidirect product h(D,β) := R�D hβ(ξ) (see [4] for more details).

Lemma 2.4. Let h(D,β) be the double extension of h by the pair (D,β). Then
h(D,β) is unimodular if and only if h is unimodular and trD = 0.

Proof. Let us denote g = h(D,β). Let A be a generator of R, so that [A, x] = Dx
for all x ∈ hβ(ξ).

Fix any inner product 〈· , · 〉 on g such that span{A, ξ} is orthogonal to h, 〈A, ξ〉 = 0
and |A| = |ξ| = 1. Given an orthonormal basis {e1, . . . , en} of h, we have that
{A, ξ} ∪ {e1, . . . , en} is an orthonormal basis of g. For any x ∈ hβ(ξ), we compute

tr(adgx) =〈[x,A]g, A〉+ 〈[x, ξ]β , ξ〉+
n∑

i=1

〈[x, ei]β , ei〉

=

n∑
i=1

(〈[x, ei]h, ei〉+ 〈β(x, ei)ξ, ei〉)

= tr(adhx).

From this and the fact that tr(adgA) = trD, the result follows.
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3. Vaisman structures on Lie algebras. In this section we show the main
results of this article, namely, a characterization of unimodular solvable Lie algebras
admitting a Vaisman structure (Theorems 3.9 and 3.10). In order to prove them, we
establish first basic properties of Vaisman Lie algebras and later we exploit the close
relation between Vaisman and Sasakian structures.

A Vaisman structure on a Lie algebra g is an LCK structure (J, 〈· , · 〉) such that
the associated Lee form θ satisfies ∇θ = 0. The Lie algebra g together with the
Vaisman structure (J, 〈· , · 〉) will be called a Vaisman Lie algebra.

If g = RA ⊕ ker θ with A ∈ (ker θ)⊥ such that θ(A) = 1, then the Vaisman
condition is equivalent to ∇A = 0, and since dθ = 0, this is in turn equivalent
to A being a Killing vector field (considered as a left invariant vector field on the
associated Lie group with left invariant metric). Recalling that a left invariant vector
field is Killing if and only if the corresponding adjoint operator on the Lie algebra is
skew-symmetric, we have:

Proposition 3.1 ([5]). If (J, 〈· , · 〉) is an LCK structure on g, then it is Vaisman
if and only if the endomorphism adA is skew-symmetric.

Remark 3.2. In [47] it was proved that an LCK structure on a unimodular
solvable Lie algebra is Vaisman if and only if 〈[A, JA], JA〉 = 0, where A is the metric
dual of θ. However, the characterization given in Proposition 3.1 will be more useful
for our purposes.

Example 3.3. Let g = R × h2n+1, where h2n+1 is the (2n + 1)-dimensional
Heisenberg Lie algebra. There is a basis {x1, . . . , xn, y1, . . . , yn, z, w} of g with Lie
brackets given by [xi, yi] = z for i = 1, . . . , n and w in the center. We define an inner
product 〈· , · 〉 on g such that the basis above is orthonormal. Let J be the almost
complex structure on g given by:

Jxi = yi, Jz = −w for i = 1, . . . , n.

It is easily seen that J is a complex structure on g compatible with 〈· , · 〉. If
{xi, yi, z∗, w∗} denote the 1-forms dual to {xi, yi, z, w} respectively, then the fun-
damental 2-form is:

ω =

n∑
i=1

(xi ∧ yi)− z∗ ∧ w∗.

Thus,

dω = w∗ ∧ ω,

and therefore (g, J, 〈· , · 〉) is LCK. It follows from Proposition 3.1 with A = w that
this structure is Vaisman. This example appeared in [18] (see also [45, 5]).

It is known that g is the Lie algebra of the Lie group R×H2n+1, where H2n+1 is
the (2n+ 1)-dimensional Heisenberg group. The Lie group H2n+1 admits a lattice Γ
and therefore the nilmanifold N = S1 × Γ\H2n+1 admits an LCK structure which is
Vaisman. It cannot admit any Kähler metric (see [11]), and for n = 1 the nilmanifold
N is a primary Kodaira surface.

The following important properties of Vaisman Lie algebras follow from Proposi-
tion 3.1 and the integrability of the complex structure (see also [50]):

Proposition 3.4. Let (g, J, 〈· , · 〉) be a Vaisman Lie algebra, then
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(1) [A, JA] = 0,
(2) J ◦ adA = adA ◦J ,
(3) J ◦ adJA = adJA ◦J ,
(4) adJA is skew-symmetric.

Without loss of generality, we will assume from now on that |A| = 1 (rescaling
the metric if necessary), hence θ(x) = 〈A, x〉 for all x ∈ g. Let us denote W =
(span{A, JA})⊥, so that ker θ = RJA⊕⊥ W .

The following proposition, which shows the close relation between Vaisman and
Sasakian structures, follows from general results proved by I. Vaisman, but we include
a proof at the Lie algebra level for the sake of completeness. We will use the following
convention for the action of a complex structure on a 1-form: if α is a 1-form, then
Jα := −α ◦ J .

Proposition 3.5. Set ξ := JA, η := Jθ|ker θ, and define an endomorphism
φ ∈ End(ker θ) by φ(aξ+x) = Jx for a ∈ R and x ∈W . Then the following relations
hold:

(1) φ2 = − Id+η ⊗ ξ,
(2) 〈φx, φy〉 = 〈x, y〉 − η(x)η(y), for all x, y ∈ ker θ,
(3) Nφ = −dη ⊗ ξ,
(4) dη(x, y) = −〈φx, y〉, for all x, y ∈ ker θ,

where Nφ is defined as in (5).

Proof. Note that W = ker η and η(ξ) = 1.
(1) and (2) follow from the fact that (J, 〈· , · 〉) is a Hermitian structure on g and

|A| = 1. Since g is Vaisman, using Proposition 3.1 and Proposition 3.4, it can be seen
that

Nφ(x, y) = NJ(x, y)− dη(x, y)ξ,

for all x, y ∈ ker θ. Since J is integrable, we have that NJ = 0 and then we obtain
(3).

In order to prove (4) we compute, for all x, y ∈ ker θ,

dη(x, y) = θ(J [x, y]) = 〈A, J [x, y]〉 = ω([x, y], A).

On the other hand,

〈Jx, y〉 = ω(x, y)

= θ ∧ ω(x, y,A)

= dω(x, y,A)

= −ω([x, y], A)− ω([y,A], x)− ω([A, x], y)

= −ω([x, y], A),
where we have used Proposition 3.4 in the last step. It is easy to verify that 〈Jx, y〉 =
〈φx, y〉 for any x, y ∈ ker θ, thus the proof is complete.

The quadruple (〈· , · 〉|ker θ, φ, η, ξ) on ker θ from Proposition 3.5 does not satisfy
exactly the equations of a Sasakian structure given in §2, but it is easy to show that
if we modify it as follows:

〈· , · 〉′ = 1

4
〈· , · 〉, φ′ = φ, η′ = −1

2
η, ξ′ = −2ξ,
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then (〈· , · 〉′, φ′, η′, ξ′) is a Sasakian structure on ker θ. However, in this article, for
simplicity, we shall call (〈· , · 〉|ker θ, φ, η, ξ) a Sasakian structure on ker θ. More gener-
ally, when we refer to a Sasakian structure on a Lie algebra we will be assuming that
it satisfies the equations on Proposition 3.5. Therefore, we may rewrite Proposition
3.5 as

Corollary 3.6. If (g, J, 〈· , · 〉) is a Vaisman Lie algebra with Lee form θ, then
ker θ has a Sasakian structure.

Conversely, let h be a Lie algebra equipped with a Sasakian structure
(〈· , · 〉, φ, η, ξ). Taking into account Propositions 3.1 and 3.4 we define the Lie al-
gebra g = RA�D h where D is a skew-symmetric derivation of h such that D(ξ) = 0
and Dφ = φD on ker η. We consider on g the almost complex structure J given by
J |ker η := φ|ker η, JA = ξ, and we extend 〈· , · 〉 to an inner product on g such that A
is orthogonal to h and |A| = 1. Note that (J, 〈· , · 〉) is an almost hermitian structure
on g. It is easy to prove that (J, 〈· , · 〉) is in fact a Vaisman structure on g.

From now on, we assume that g is solvable and unimodular (this is a necessary
condition for the associated simply connected Lie group to admit lattices, according
to [37]). The next step in order to characterize the Lie algebras admitting Vaisman
structures is to prove that JA is a central element of g. Moreover, the dimension of
z(g), the center of g, is at most 2.

Theorem 3.7. Let g be a unimodular solvable Lie algebra equipped with a Vais-
man structure (J, 〈· , · 〉). Then JA ∈ z(g). Moreover, z(g) ⊂ span{A, JA}.

Proof. It follows from Proposition 2.1 that JA ∈ g′. As g is solvable, it follows
that g′ is nilpotent and hence adJA : g → g is a nilpotent endomorphism. On the
other hand, we know that adJA is skew-symmetric, according to Proposition 3.4, and
therefore adJA = 0, that is, JA ∈ z(g).

Now we will see that z(g) ⊂ {A, JA}. For z ∈ z(g), we may assume that z =
aA+z′ with a ∈ R and z′ ∈W , since JA ∈ z(g). We have that 0 = adz = a adA +adz′ ,
and it follows from Proposition 3.1 that adz′ is a skew-symmetric endomorphism
of g. If [z′, Jz′] = cJA + u for some c ∈ R, u ∈ W , then c = 〈[z′, Jz′], JA〉 =
−〈Jz′, [z′, JA]〉 = 0. On the other hand, taking into account Proposition 3.5, we have
that

c = 〈[z′, Jz′], JA〉 = η([z′, Jz′])
= −dη(z′, Jz′) = 〈Jz′, Jz′〉
= |z′|2,

Therefore z′ = 0, and then z = aA.

Corollary 3.8. Any unimodular solvable Lie algebra admitting a Sasakian
structure has non trivial center.

Proof. Let h be a unimodular solvable Lie algebra equipped with a Sasakian
structure. Therefore, the semidirect product g = RA �D h, where D is a suitable
skew-symmetric derivation of h, admits a Vaisman structure. It is clear that g is
unimodular and solvable. It follows from Theorem 3.7 that h = ker θ has non trivial
center.

According to Corollary 3.8 the Sasakian Lie algebra ker θ has non trivial center,
which is therefore generated by the Reeb vector JA, and ker θ can be decomposed
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orthogonally as

ker θ = RJA⊕W.

For x, y ∈W , it is easy to show that

[x, y] = ω(x, y)JA+ [x, y]W , (6)

where [x, y]W ∈W denotes the component of [x, y] in W . It follows from Proposition
2.3 that (W, [·, ·]W , J |W , 〈· , · 〉|W×W ) is a Kähler Lie algebra. We will denote by k
the Lie algebra (W, [·, ·]W ). We point out that k is not a Lie subalgebra from either
ker θ or g, however, it is clear from (6) that ker θ is the central extension ker θ =
kω′(JA), where ω′ = ω|k×k is the fundamental 2-form on k. Note that ω′ is closed
since (k, J |k×k, 〈· , · 〉|k×k) is Kähler. Moreover, if we denote D := adA |ker θ, then D is
a skew-symmetric derivation of ker θ, according to Proposition 3.1. Therefore, g can
be decomposed orthogonally as

g = RA�D (RJA⊕ω′ k), (7)

thus g can be regarded as a double extension g = k(D,ω′). Note that, according to
Proposition 3.4, D(JA) = 0.

According to Lemma 2.4, k is unimodular, therefore k is a unimodular Lie algebra
admitting a Kähler structure (J |k, 〈· , · 〉|k). Due to a classical result from Hano [25],
the metric 〈· , · 〉|k is flat.

This leads us to use the following terminology: A pair (k, 〈· , · 〉) of a Lie algebra k
equipped with a flat metric 〈· , · 〉 will be called a flat Lie algebra. By abuse of notation,
we will say simply sometimes that k is a flat Lie algebra. Furthermore, if (J, 〈· , · 〉)
is a Kähler structure on a Lie algebra k such that 〈· , · 〉 is flat, then (k, J, 〈· , · 〉) (or
simply k) will be called a Kähler flat Lie algebra.

Resuming our discussion on unimodular solvable Vaisman Lie algebras, we obtain
that g is a double extension of a Kähler flat Lie algebra.

Let us denote D′ := D|k. Then it follows from Proposition 3.4 that D′ commutes
with J |k and therefore D′ ∈ u(k, J |k, 〈· , · 〉|k). Furthermore, D′ is a derivation of k. In
fact, given x, y ∈ k we have that

D′[x, y]k = D([x, y]− ω(x, y)JA)

= D[x, y]

= [Dx, y] + [x,Dy]

= [D′x, y] + [x,D′y]
= ω(D′x, y)JA+ [D′x, y]k + ω(x,D′y)JA+ [x,D′y]k
= [D′x, y]k + [x,D′y]k,

since ω(D′x, y) = −ω(x,D′y).
Therefore we have associated to any unimodular solvable Vaisman Lie algebra a

Kähler flat Lie algebra equipped with a skew-symmetric derivation which commutes
with the complex structure. This is summarized in the following theorem.

Theorem 3.9. Let g be a unimodular solvable Lie algebra equipped with a Vais-
man structure (J, 〈· , · 〉), with fundamental 2-form ω and Lee form θ. Then there
exists a Kähler flat Lie algebra k such that ker θ = kω′(JA) and g = k(D,ω′), where
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D := adA |ker θ and ω′ := ω|k×k is the fundamental 2-form of k. Moreover, D′ := D|k
is a skew-symmetric derivation of k that commutes with its complex structure.

Next, we will prove the converse of Theorem 3.9, namely, we show that beginning
with a Kähler flat Lie algebra and a suitable derivation we are able to produce a
Vaisman structure on a double extension of this Lie algebra.

Theorem 3.10. Let (k, J ′, 〈· , · 〉′) be a Kähler flat Lie algebra with ω′ its funda-
mental 2-form and let D′ be a skew-symmetric derivation of k such that J ′D′ = D′J ′.
Let D be the skew-symmetric derivation of the central extension kω′(B) defined by:
D(B) = 0, D|k = D′. Then the double extension g := k(D,ω′) = RA �D kω′(B)
admits a Vaisman structure (J, 〈· , · 〉), where JA = B, J |k = J ′, and 〈· , · 〉 extends
〈· , · 〉′ in the following way: |A| = |B| = 1, 〈A,B〉 = 0, 〈A, k〉 = 〈B, k〉 = 0. The Lie
algebra g is unimodular and solvable, and the Lee form θ is the metric dual of A.

Proof. Recall that the Lie bracket of g is given by: adA |k = D′, B ∈ z(g) and for
any x, y ∈ k,

[x, y] = ω′(x, y)B + [x, y]k,

where ω′(x, y) = 〈J ′x, y〉′ and [·, ·]k denotes the Lie bracket on k. It is easy to see
that (J, 〈· , · 〉) in the statement is an almost Hermitian structure on g, and we will
call ω its Kähler 2-form. Since (k, 〈· , · 〉′) is flat then k is unimodular and solvable (see
Remark 4.2 below), and it follows from Lemma 2.4 that g is unimodular and solvable
as well.

Now we show that J is a complex structure on g. It is enough to show that
NJ(x, y) = 0 and NJ(A, y) = 0 for all x, y ∈ k. Firstly,

NJ(x, y) = [Jx, Jy]− [x, y]− J([Jx, y] + [x, Jy])

= N k
J ′(x, y) + ω′(Jx, Jy)B − ω′(x, y)B − J(ω′(x, Jy)B + ω′(Jx, y)B)

= N k
J ′(x, y) + (−〈x, J ′y〉′ − 〈J ′x, y〉′)B + (〈J ′x, J ′y〉′ − 〈x, y〉′)A

= 0,

for all x, y ∈ k since J ′ is a complex structure on k, i.e. N k
J ′ = 0. Secondly,

NJ(A, y) = [JA, Jy]− [A, y]− J([JA, y] + [A, Jy])

= −Dy − JDJy

= −D′y − J ′D′J ′y
= 0,

for any y ∈ k since JA = B is central and D′ commutes with J ′. Thus J is integrable
on g.

The next step is to show that (J, 〈· , · 〉) is LCK, to do this we have to verify that
dω = θ ∧ ω where ω is the fundamental form on g and θ is the dual 1-form of the
vector A.

If x, y, z ∈ k, then

dω(x, y, z) = −ω([x, y], z)− ω([y, z], x)− ω([z, x], y)

= 〈[x, y]k + ω′(x, y)B, Jz〉+ 〈[y, z]k + ω′(y, z)B, Jx〉+ 〈[z, x]k + ω′(z, x)B, Jy〉
= 〈[x, y]k, J ′z〉′ + 〈[y, z]k, J ′x〉′ + 〈[z, x]k+, J ′y〉′
= dkω′(x, y, z)
= 0,
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where dk denotes the differential on k and we have used that dkω′ = 0. On the other
hand, θ ∧ ω(x, y, z) = 0 since k ⊂ ker θ.

If y, z ∈ k, then

dω(B, y, z) = −ω([B, y], z)− ω([y, z], B)− ω([z,B], y)

= 〈[y, z]k + ω′(y, z)B, JB〉
= 0.

On the other hand, θ ∧ ω(B, y, z) = 0 since RB ⊕ k = ker θ.
If y, z ∈ k, then

dω(A, y, z) = −ω([A, y], z)− ω([y, z], A)− ω([z,A], y)

= 〈Dy, Jz〉+ 〈ω′(y, z)B + [y, z]k, JA〉+ 〈−Dz, Jy〉
= 〈D′y, J ′z〉′ + ω′(y, z)− 〈D′z, J ′y〉′
= ω′(y, z),

since D′ is skew-symmetric and commutes with J ′. On the other hand, θ∧ω(A, y, z) =
ω(y, z) = ω′(y, z).

If z ∈ k, then

dω(A,B, z) = −ω([A,B], z)− ω([B, z], A)− ω([z,A], B)

= 〈D′z,A〉′
= 0,

since B is central and D′z ∈ k. On the other hand, θ ∧ ω(A,B, z) = ω(B, z) = 0.
Thus we have that (J, 〈· , · 〉) is an LCK structure on g. Moreover, (J, 〈· , · 〉) is

Vaisman since adA = D is a skew-symmetric endomorphism of g (Proposition 3.1).

As a by-product of this analysis, we obtain the following stronger version of
Corollary 3.8:

Corollary 3.11. Any unimodular solvable Lie algebra admitting a Sasakian
structure is a central extension of a Kähler flat Lie algebra.

It follows from Theorems 3.9 and 3.10 that there is a one-to-one correspondence
between unimodular solvable Lie algebras equipped with a Vaisman structure and
pairs (k, D′) where k is a Kähler flat Lie algebra and D′ is a skew-symmetric derivation
of k which commutes with the complex structure. Moreover, Theorem 3.10 provides
a way to construct all unimodular solvable Lie algebras carrying Vaisman metrics. In
order to do this, we need a better understanding of the derivations of Kähler flat Lie
algebras, and we pursue this in the following section.

4. Derivations of Kähler flat Lie algebras. Let us recall the following result
which describes the structure of any Lie algebra equipped with a flat metric. The
original version was proved by Milnor in [37], and it was later refined in [9] (compare
with [1]).

Proposition 4.1 ([37], [9]). Let (k, 〈· , · 〉) be a flat Lie algebra. Then k decom-
poses orthogonally as k = z⊕ h⊕ k′ (direct sum of vector spaces) where z is the center
of k and the following properties are satisfied:
(a) k′ = [k, k] and h are abelian.
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(b) ad : h → so(k′) is injective and k′ is even dimensional. In particular, dim h ≤
dim k′

2 .
(c) adx = ∇x for any x ∈ z⊕ h.
(d) ∇x = 0 if and only if x ∈ z⊕ k′.

Remark 4.2. It follows easily from Proposition 4.1 that k is a unimodular solvable
Lie algebra, whose nilradical is given by z⊕ k′.

We will use this proposition in order to better describe Kähler flat Lie algebras.
First we give necessary and sufficient conditions for an almost complex structure on
a flat Lie algebra to be Kähler (cf. [33]).

Proposition 4.3. Let (k, 〈· , · 〉) be a flat Lie algebra and let J be an almost
complex structure on k, compatible with 〈· , · 〉. Then J is Kähler if and only if the
following two properties are satisfied:

(i) z⊕ h and k′ are J-invariant.
(ii) adH ◦J = J ◦ adH , for any H ∈ h.

Proof. Assume first that J is Kähler, that is, ∇J = 0, or equivalently ∇xJ = J∇x

for any x ∈ k.

For x ∈ k′, it follows from Proposition 4.1 that x =
∑
i

[Hi, yi] for some Hi ∈ h

and yi ∈ k′. Then

Jx =
∑
i

J [Hi, yi] =
∑
i

J∇Hiyi =
∑
i

∇HiJyi =
∑
i

[Hi, Jyi] ∈ k′,

where we have used Proposition 4.1(c). Therefore k′ is J-invariant. Thus J also
preserves the orthogonal complement of k′, that is, z ⊕ h is J-invariant, and this
proves (i). Finally (ii) follows from the fact that ∇HJ = J∇H and ∇H = adH for
any H ∈ h.

If we assume now that (i) and (ii) hold then it follows easily from Proposition 4.1
that ∇xJ = J∇x for any x ∈ k, i.e. J is Kähler.

Remark 4.4. Given any even-dimensional flat Lie algebra, it is easy to define
an almost complex structure which satisfies the conditions of Proposition 4.3, thus it
becomes a Kähler flat Lie algebra (see [33, 9]).

Our next aim is to study unitary derivations of a Kähler flat Lie algebra, i.e.
skew-symmetric derivations which commute with the complex structure. In order to
do so, we prove the following lemma.

Lemma 4.5. Let (k, 〈· , · 〉) be a flat Lie algebra with decomposition k = z⊕ h⊕ k′

as in Proposition 4.1. If D is a skew-symmetric derivation of k, then D(h) = 0.

Proof. Since D is a derivation of k, then D(k′) ⊂ k′ and D(z) ⊂ z. Moreover, since
D is skew-symmetric and the sum is orthogonal we have that D(h) ⊂ h.

It follows from Proposition 4.1(b) that adH ∈ so(k′) for any H ∈ h. Then, since
h is abelian, we get that F = {adH : k′ → k′ : H ∈ h} is a commutative family of
skew-symmetric endomorphisms of k′. Therefore, F is contained in a maximal abelian
subalgebra a of so(k′). The subalgebra a is conjugated by an element of SO(k′) to the
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following maximal abelian subalgebra of so(k′):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

0 −a1
a1 0

. . .

0 −an
an 0

⎞
⎟⎟⎟⎟⎟⎠ : ai ∈ R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

for some orthonormal basis {e1, f1, . . . , en, fn} of k′. In this basis the elements of the
family F can be represented by matrices

adH =

⎛
⎜⎜⎜⎜⎜⎝

0 −λ1(H)
λ1(H) 0

. . .

0 −λn(H)
λn(H) 0

⎞
⎟⎟⎟⎟⎟⎠ ,

for some λi ∈ h∗, i = 1, . . . , n. We compute

D[H, ei] = [DH, ei] + [H,Dei] = λi(DH)fi + [H,Dei],

while, on the other hand,

D[H, ei] = D(λi(H)fi) = λi(H)Dfi.

Comparing the components in the direction of fi in both expressions we obtain that

0 = 〈λi(H)Dfi, fi〉 = 〈λi(DH)fi + [H,Dei], fi〉 = λi(DH),

since D and adH are skew-symmetric. Therefore, λi(DH) = 0 for all i, that is,
adDH = 0. It follows from Proposition 4.1(b) that DH = 0.

As a consequence we have the following result, which will be an important tool
to produce examples of unimodular solvable Lie algebras with Vaisman structures in
§6.

Theorem 4.6. If (k, J, 〈· , · 〉) is a Kähler flat Lie algebra and D is a uni-
tary derivation of k, then D(h + Jh) = 0 and there exists an orthonormal basis
{e1, f1, . . . , en, fn} of k′ such that

J |k′ =

⎛
⎜⎜⎜⎜⎜⎝

0 −1
1 0

. . .

0 −1
1 0

⎞
⎟⎟⎟⎟⎟⎠ , D|k′ =

⎛
⎜⎜⎜⎜⎜⎝

0 −a1
a1 0

. . .

0 −an
an 0

⎞
⎟⎟⎟⎟⎟⎠ ,

adH |k′ =

⎛
⎜⎜⎜⎜⎜⎝

0 −λ1(H)
λ1(H) 0

. . .

0 −λn(H)
λn(H) 0

⎞
⎟⎟⎟⎟⎟⎠ ,
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for some ai ∈ R and λi ∈ h∗ for all i = 1, . . . , n. These linear functionals satisfy
λi �= 0 for all i = 1, . . . , n, and

⋂n
i=1 kerλi = {0}.

Proof. It follows immediately from Lemma 4.5 and DJ = JD that D(h+Jh) = 0.

From Lemma 4.5 and the fact that D is a derivation of k we obtain that D
commutes with adH for all H ∈ h. Also, Proposition 4.3 implies that J |k′ commutes
with adH |k′ for all H ∈ h. Therefore the family F′ = {adH : k′ → k′ : H ∈ h} ∪
{J |k′ , D|k′} is a commutative family of skew-symmetric endomorphisms of k′. The
existence of the basis in the statement follows as in the proof of Lemma 4.5.

We analyze next the linear functionals λi ∈ h∗, i = 1, . . . , n. If λi = 0 for some
i then [H, ei] = 0 = [H, fi] for all H ∈ h, and this implies that ei, fi ∈ z, which is a
contradiction since z ∩ k′ = {0}. Now, if H ∈ ⋂n

i=1 kerλi, we have that adH |k′ = 0
and therefore H = 0 according to Proposition 4.1(b).

5. Further properties of Vaisman Lie algebras. In this section we continue
our study of unimodular solvable Vaisman Lie algebras, applying the results obtained
in §4 to the Kähler flat Lie algebra given in Theorem 3.9. In this way we obtain
algebraic restrictions for the existence of Vaisman structures.

In Theorem 3.7 we determined the center of a unimodular solvable Lie algebra
g admitting a Vaisman structure. In what follows we will derive other algebraic
properties of these Lie algebras, in particular we will analyze its commutator g′ and
its nilradical n. Recall that, since g is solvable, its nilradical is given by n = {x ∈ g :
adx : g→ g is nilpotent} and g′ ⊆ n.

Let us set some notation. We denote by u the largest J-invariant subspace of the
center of k, that is, u = z∩Jz, and we define 2r = dim u+dim k′ and s = dim z−dim u.
Note that z⊕ h decomposes orthogonally as z⊕ h = u⊕ (h+ Jh).

Proposition 5.1. Let g be a unimodular solvable Lie algebra admitting a
Vaisman structure and consider the decomposition g = RA �D (RJA ⊕ω′ k) with
k = z ⊕ h ⊕ k′ as in Proposition 4.1. Then the commutator ideal g′ of g is given by
g′ = RJA⊕ Im(D|u)⊕ k′, while the nilradical n of g is given by:

• If D|u �= 0 or D|k′ /∈ ad(h) ⊂ so(k′), then n = RJA⊕ z⊕ k′ � Rs × h2r+1.
• If D|u = 0 and D|k′ = 0, i.e., A ∈ z(g), then n = RA ⊕ RJA ⊕ z ⊕ k′ �
Rs+1 × h2r+1.

• If D|u = 0 and 0 �= D|k′ ∈ ad(h), i.e., D|k′ = − adH |k′ for a unique 0 �=
H ∈ h, then n = R(A + H) ⊕ RJA ⊕ z ⊕ k′. Furthermore, if JH ∈ h, then
n � Rs+1 × h2r+1; and if JH /∈ h, then n � Rs−1 × h2(r+1)+1.

Proof. Since JA ∈ g′ (see Proposition 2.1), it follows from (6) that k′ = [k, k]k ⊂
g′. Clearly, D(h + Jh) = (D|k)(h + Jh) and, as D|k is a unitary derivation of k
(Theorem 3.9), we have D(h + Jh) = 0, due to Theorem 4.6. As a consequence,
g′ = RJA⊕ Im(D|u)⊕ k′.

In order to determine the nilradical note first that, for any z ∈ z, Im(adz) ⊂
RJA ⊕ z and Im(ad2z) ⊂ RJA. Since JA ∈ z(g), we obtain that adz is a nilpotent
operator on g, which implies that z ⊂ n. Therefore RJA ⊕ z ⊕ k′ ⊂ n. Moreover, it
follows from Proposition 4.1(b) that h ∩ n = {0}.

Suppose that RJA⊕ z⊕ k′ � n, then there exists 0 �= A+H ∈ n for some H ∈ h.
Therefore the operator adA+H is nilpotent. This operator can be written, for some
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orthonormal basis of RJA⊕ u⊕ (h+ Jh)⊕ k′, as

adA+H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vt

D|u

D|k′ + adH |k′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with both D|u and D|k′ +adH |k′ skew-symmetric. It follows that adA+H is nilpotent
if and only if

D|u = 0 and D|k′ = − adH |k′ . (8)

It follows that H ∈ h satisfying (8) is unique, since ad : h → so(k′) is injective
(Proposition 4.1(b)). We have two possibilities: if H = 0, then A ∈ z(g) and n =
RA⊕RJA⊕ z⊕ k′. On the other hand, if H �= 0, then n = R(A+H)⊕RJA⊕ z⊕ k′.

Assume now that n = RJA ⊕ z ⊕ k′; according to (8) this happens if and only if
D|u �= 0 or D|k′ /∈ ad(h).

The isomorphism classes of n in the different cases above follow easily from the
description of the Lie bracket of g.

Remark 5.2. Note that the nilradical n in Proposition 5.1 is isomorphic to
Rp−1 × h2q+1, for some p, q ∈ N and, as a consequence, it is never abelian. On the
other hand, it follows from Proposition 5.1 and Lemma 4.5 that n⊥ is an abelian
subalgebra of g if and only if h ∩ Jh = {0}.

We can give next a strong algebraic obstruction to the existence of Vaisman
structures on a unimodular solvable Lie algebra.

Theorem 5.3. If the unimodular solvable Lie algebra g admits a Vaisman struc-
ture, then the eigenvalues of the operators adx with x ∈ g are all imaginary (some of
them are 0).

Proof. Recall that g is a double extension g = RA �D (RJA ⊕ω′

k) with k = z ⊕ h ⊕ k′ and z ⊕ h = z ∩ Jz ⊕ (h + Jh). Let
{A, JA, u1, v1, . . . , up, vp, x1, y1, . . . , xq, yq, e1, f1, . . . , em, fm, } be an orthonormal ba-
sis of g adapted to this decomposition. Moreover, Jui = vi, Jxi = yi and Jei = fi.

Given x = aA+ bJA+ z + h+ y ∈ g with a, b ∈ R, z ∈ z∩ Jz, h ∈ h+ Jh, y ∈ k′,
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we compute the matrix of the operator adx in such basis:

adx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αt βt

γ aD|z∩Jz

δ C aD|k′ +B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for some α ∈ R2p, β, γ ∈ R2q, δ ∈ R2m, C ∈ Mat(m × q,R) and B ∈ u(m). Since
aD|z∩Jz and aD|k′ + B are skew-symmetric, it is easy to see that the eigenvalues of
adx for x ∈ g are all imaginary.

Remark 5.4. A Lie algebra g satisfying the condition that the eigenvalues of the
operators adx are all imaginary for all x ∈ g is called a Lie algebra of type I (see [40]).

A consequence of Theorem 5.3 is the following result, proved recently by H. Sawai
in [48]. We recall that a Lie group is called completely solvable if it is solvable and
all the eigenvalues of the adjoint operators adx are real, for all x in its Lie algebra.

Corollary 5.5. Let G be a simply connected completely solvable Lie group and
Γ ⊂ G a lattice. If the solvmanifold Γ\G admits a Vaisman structure (J, g) such that
the complex structure J is induced by a left invariant complex structure on G, then
G = H2n+1×R, where H2n+1 denotes the (2n+1)-dimensional Heisenberg Lie group.

Proof. Using the symmetrization process of Belgun ([10]) together with results
in [47], one can produce a left invariant Riemannian metric g̃ on G such that (J, g̃)
is again a Vaisman structure. This gives rise to a Vaisman structure on Lie(G) and,
taking into account Theorem 5.3 and the fact that G is completely solvable, we have
that G is a nilpotent Lie group. It follows from [45] that G = H2n+1 × R.

In the next section we will show the existence of Vaisman structures on solvman-
ifolds Γ\G where G is not completely solvable, in any even dimension.

6. Examples. Using the results in the previous sections we will construct many
examples of unimodular solvable non-nilpotent Lie algebras equipped with Vaisman
structures. In particular, we will provide two infinite families of such examples, and
also the classification of such Lie algebras in dimensions 4 and 6. We will also show
the existence of families of lattices in these examples, obtaining in this way compact
Vaisman solvmanifolds which are not diffeomorphic to the well known nilmanifolds
arising from the Heisenberg groups (Example 3.3).

Firstly, we would like to prove a general result concerning lattices in semidirect
products, which will be frequently used later in this section.

Lemma 6.1. Let H be a simply connected Lie group equipped with a Lie group
homomorphism φ : R→ Aut(H), and let G = R�φH be the corresponding semidirect
product. Let Γ be a lattice in H. If there exists a ∈ R, a �= 0, such that φ(a)(Γ) ⊂ Γ,
then aZ �φ Γ is a lattice in G.
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Proof. If a ∈ R, a �= 0, satisfies φ(a)(Γ) ⊂ Γ, then φ(ak)(Γ) ⊂ Γ for all k ∈ Z and
therefore the semidirect product Γ̃ := aZ�φ Γ is well defined. Clearly, Γ̃ is a discrete
subgroup of G. We only have to show that it is co-compact.

Let us recall that two elements (t1, g1) and (t2, g2) in G belong to the same right-
coset with respect to Γ̃ if and only if there exist k ∈ Z and γ ∈ Γ such that

(t2, g2) =(ak, γ)(t1, g1) (9)

=(ak + t1, γφ(a)
kg1).

We may assume a > 0. Let {an} be a sequence in Γ̃\G, with an = [(tn, gn)]. It
follows easily from (9) that we can choose tn ∈ [0, a] for all n ∈ N; moreover, as Γ\H
is compact, we may assume that [gn] converges to [g] in Γ\H, for some g ∈ H.

The canonical projection π : H → Γ\H is a local diffeomorphism, therefore we
can choose a representative g′n of [gn] such that g′n converges to g in H. Taking into
account that also [0, a] is compact, we may assume that an = [(tn, g

′
n)] satisfies tn → t

in [0, a] and g′n → g in H. It is easy to see that [(tn, g
′
n)] converges to [(t, g)] in Γ̃\G.

Since {an} is arbitrary, we thus obtain that Γ̃\G is compact.

6.1. Example 1. We start with the abelian Lie algebra k = R2n with its canon-
ical Kähler flat structure (J, 〈· , · 〉). Let {e1, f1, . . . , en, fn} be an orthonormal basis
of k where Jei = fi and let ω =

∑n
i=1 e

i ∧ f i be the fundamental form. Then we
consider the central extension

kω(B) = RB ⊕ω k,

which is easily seen to be isomorphic to h2n+1, the (2n + 1)-dimensional Heisenberg
Lie algebra.

Next, we consider the double extension

g = k(D,ω) = RA�D h2n+1,

where the action is given by

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0 −a1
a1 0

. . .

0 −an
an 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

in the basis {B, e1, f1, . . . , en, fn} where [ei, fi] = B, for some ai ∈ R. Since D|k
satisfies the conditions of Theorem 3.10, g admits a Vaisman structure.

Notice that there is no loss of generality when we assume that D is given as in
(10). Indeed, it can be seen that given any unitary derivation D′ of (R2n, J, 〈· , · 〉)
there exists an orthonormal basis {e1, f1, . . . , en, fn} of R2n such that Jei = fi and
D′ = D|k with D is as in (10).

If ai = 0 for all i = 1, . . . , n, then we recover the well known Vaisman structure
on R× h2n+1 (see Example 3.3).

Let us consider from now on the case when not all the ai’s vanish. We may reorder
the elements of the basis of g, if necessary, and we may assume that the constants
ai satisfy a1 ≤ a2 ≤ · · · ≤ an. We will denote this Lie algebra by g(a1,...,an). Note
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that g(a1,...,an) is an almost nilpotent Lie algebra, i.e, it contains a codimension one
nilpotent ideal. In particular, the nilradical of g(a1,...,an) is the nilpotent ideal h2n+1.
The associated simply connected Lie group will be denoted G(a1,...,an) and, when
0 < a1 ≤ a2 ≤ · · · ≤ an, it is known as an oscillator group. Oscillator groups have
many geometric properties, for instance, it was proved in [36] that they are the only
simply connected, non simple Lie groups which admit an indecomposable bi-invariant
Lorentz metric. Other geometric features of oscillator groups in dimension 4 have
been studied in [17]. In this example we have shown:

Theorem 6.2. Any solvmanifold of a group G(a1,...,an) admits invariant Vaisman
structures. In particular any oscillator solvmanifold admits this kind of structures.

Lattices in oscillator groups have been characterized in [22]. Here we will provide
an explicit construction of some families of lattices in G(a1,...,an), and later we will
determine the first homology group and first Betti number of the associated solvman-
ifolds.

We begin by recalling the following result, which deals with the isomorphism
classes of these Lie algebras.

Lemma 6.3 ([35]). Let g(a1,...,an) and g(b1,...,bn) be two Lie algebras as defined
above. If there exists c ∈ R − {0} such that aj = cbj for all j = 1, . . . , n then
g(a1,...,an)

∼= g(b1,...,bn).

The Lie group G(a1,...,an) can be described as follows. We consider the Lie group
homomorphism ϕ : R −→ Aut(H2n+1) given by

ϕ(t) = etD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
cos(a1t) − sin(a1t)
sin(a1t) cos(a1t)

. . .

cos(ant) − sin(ant)
sin(ant) cos(ant)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where H2n+1 is the (2n + 1)-dimensional Heisenberg Lie group, i.e. the Euclidean
manifold R2n+1 equipped with the following product:

(z, x1, y1, . . . , xn, yn) · (z′, x′
1, y

′
1, . . . , x

′
n, y

′
n)

= (z + z′ +
1

2

n∑
j=1

(xjy
′
j − x′

jyj), x1 + x′
1, . . . , yn + y′n).

Then G(a1,...,an) is the semidirect product G(a1,...,an) = R�ϕ H2n+1.
We show next the existence of lattices for some choice of the parameters ai (com-

pare [35]):

Proposition 6.4. If ai ∈ Q for i = 1, . . . , n, then G(a1,...,an) admits lattices.

Proof. If ai ∈ Q, then ai = pi

qi
for some pi ∈ Z, qi ∈ N with (pi, qi) = 1.

Setting t0 := 2π
∏

qi, we obtain that ϕ(t0) is an integer matrix. Moreover, the
structure constants of g(a1,...,an) corresponding to the basis {B, e1, f1, . . . , en, fn} are
all rational. As G(a1,...,an) is an almost nilpotent Lie group, it follows from [15] (see
also [20]) that G(a1,...,an) admits lattices.
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Therefore we will consider ai ∈ Q for all i = 1, . . . , n; moreover, it follows from
Lemma 6.3 that we may assume ai ∈ Z for all i = 1, . . . , n, with gcd(a1, . . . , an) = 1.

Beginning with a lattice in H2n+1 we may extend it to a lattice in G(a1,...,an).
Consider the following lattices in H2n+1: for each k ∈ N there exists a lattice Γk in
H2n+1 given by Γk = 1

2kZ×Z×· · ·×Z. It can be shown that Γk/[Γk,Γk] is isomorphic
to Z2n ⊕ Z2k. Hence, Γr and Γs are non-isomorphic for r �= s.

Any lattice Γk in H2n+1 is invariant under the subgroups generated by ϕ(π/2),
ϕ(π) and ϕ(2π). According to Lemma 6.1 we have three families of lattices in
G(a1,...,an):

Λk,π2
=

π

2
Z �ϕ Γk,

Λk,π = πZ �ϕ Γk,

Λk,2π = 2πZ �ϕ Γk.

We analyze next some topological properties of the solvmanifolds Λk,j\G(a1,...,an)

for j = 2π, π, π/2:
• Note that ϕ(2π) = Id, therefore Λk,2π = 2πZ × Γk, which is isomorphic to

a lattice in R × H2n+1. According to Corollary 1.3, we have that the solvmanifold
Λk,2π\G(a1,...,an) is isomorphic to the nilmanifold S1 × Γk\H2n+1, for any choice of
(a1, . . . , an). It is easy to see that the first homology group of this nilmanifold is
Z2n+1 ⊕ Z2k and hence its first Betti number is b1 = 2n+ 1.

• For the family Λk,π, note that the isomorphism class of this lattice depends only
on the parity of the integers aj , therefore according to Corollary 1.3, we may assume
that aj ∈ {0, 1} for all j, not all of them equal to 0. After reordering, we have that
there exists p ∈ {0, 1, . . . , n− 1} such that aj = 0 if j ≤ p and aj = 1 if j > p. Then
it can be seen that

[Λk,π,Λk,π] = {(0, r, s1, t1, . . . , sn, tn) ∈ Λk,π : r ∈ Z;

sj = tj = 0 (j = 1, . . . , p); sj , tj ∈ 2Z (j = p+ 1, . . . , n)},
thus the first homology group of the solvmanifold Λk,π\G(a1,...,an) is

Λk,π/[Λk,π,Λk,π] ∼= Z⊕ Z2k ⊕ (Z⊕ Z)p ⊕ (Z2 ⊕ Z2)
n−p.

The first Betti number is b1 = 2p+ 1.
• For the family Λk,π/2, note that the isomorphism class of this lattice depends

only on the congruence class of the integers aj modulo 4, therefore according to
Corollary 1.3, we may assume that aj ∈ {0, 1, 2, 3} for all j, not all of them even.
After reordering, we have that there exist c, d ∈ {0, 1, . . . , n−1} with 0 ≤ c+d ≤ n−1
such that a1 = · · · = ac = 0, ac+1 = · · · = ac+d = 2 and aj ∈ {1, 3} for j > c + d. It
can be seen that

[Λk,π2
,Λk,π2

] = {(0, r, s1, t1, . . . , sn, tn) ∈ Λk,π2
: r ∈ Z, sj = tj = 0 (j = 1, . . . , c);

sj , tj ∈ 2Z (j = c+ 1, . . . , c+ d); sj + tj ∈ 2Z (j > c+ d)},
thus the first homology group of the solvmanifold Λk,π2

\G(a1,...,an) is

Λk,π2
/[Λk,π2

,Λk,π2
] ∼= Z⊕ Z2k ⊕ (Z⊕ Z)c ⊕ (Z2 ⊕ Z2)

d ⊕ (Z2)
n−(c+d).

The first Betti number is b1 = 2c+ 1.
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Clearly, the first homology groups of a solvmanifold in one of the last two families
is not isomorphic to the first homology group of the nilmanifolds in the first family.
Therefore, the solvmanifolds in the last two families are not diffeomorphic to the
nilmanifolds S1 × Γk\H2n+1.

Note that for any n ∈ N and r ∈ {0, 1, . . . , n − 1}, we can find a (2n + 2)-
dimensional Vaisman solvmanifold Λk,j\G(a1,...,an) with first Betti number b1 = 2r+1.

It is clear that the solvmanifolds we have just constructed admit a Rieman-
nian submersion to the circle S1, with fibers isometric to the Sasakian nilmanifold
Γk\H2n+1.

Remark 6.5. In [34] the authors provide examples of compact Vaisman mani-
folds which are obtained as the total spaces of a principal S1-bundle over coKähler
manifolds, and they show that they are diffeomorphic to solvmanifolds. The Lie al-
gebras associated to these solvmanifolds are isomorphic to some g(a1,...,an), but the
lattices that they consider are different from ours.

6.2. Example 2. We start with a Kähler flat Lie algebra (k, J, 〈· , · 〉) such that
dim h = 1, where k = z⊕h⊕k′ is the orthogonal decomposition of k given by Proposition
4.1. Let h = RH with |H| = 1, and let us set 2m := dim k′ and 2l + 1 := dim z.
According to Proposition 4.3, if Z := JH then Z ∈ z and there exists a J-invariant
subspace u of z such that z = RZ ⊕⊥ u. If ω denotes the fundamental 2-form of
(J, 〈· , · 〉), then it is easy to verify that the Sasakian central extension of k by ω can
be decomposed as:

kω(B) = RH �M (RZ × h2(m+l)+1),

where M is the operator given by the following matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 0

02l×2l

0 −a1
a1 0

. . .

0 −am
am 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

in an orthonormal basis {Z,B, e1, f1, . . . , el, fl, u1, v1, . . . , um, vm} such that:
{e1, f1, . . . , el, fl} is a basis of u, {u1, v1, . . . , um, vm} is a basis of k′ and Jei = fi,
Jui = vi. Moreover, [ej , fj ] = B and [uj , vj ] = B for all j. It follows from Proposition
4.1 that aj �= 0 for all j = 1, . . . ,m.

Let g be the double extension

g = k(D,ω) = RA�D (RH �M (RZ × h2(m+l)+1)),
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where D is the derivation of kω(B) given by

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0
0 −α1

α1 0
. . .

0 −αm+l

αm+l 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for some αj ∈ R, in the basis {H,Z,B, e1, f1, . . . , el, fl, u1, v1, . . . , um, vm}. Since D|k
satisfies the conditions of Theorem 3.10 we have that g admits a Vaisman structure.

Now we study lattices in the simply connected Lie group G associated to g when
ai, αi ∈ Z for any i. Set n := m + l and consider the Lie group homomorphism
ψ : R −→ Aut(R×H2n+1) given by

ψ(t) = etM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
t 1

Id2l×2l

cos(a1t) − sin(a1t)
sin(a1t) cos(a1t)

. . .

cos(amt) − sin(amt)
sin(amt) cos(amt)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

On R2n+3 consider the algebraic structure given by the semidirect product of R
and R×H2n+1 via ψ and we obtain the simply connected Lie group

S = R�ψ (R×H2n+1).

If Γk is the lattice in H2n+1 considered in the examples in §6.1, then the group
Lk = aZ×Γk is a lattice in R×H2n+1 for any a ∈ R, a �= 0. In particular, according
to Lemma 6.1, for each j = 2π, π, π

2 we obtain a lattice Γk,j in S defined by

Γk,j = jZ � (j−1Z× Γk).

Now we consider the Lie group homomorphism ϕ : R −→ Aut(S) given by

ϕ(t) = etD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
cos(α1t) − sin(α1t)
sin(α1t) cos(α1t)

. . .

cos(αnt) − sin(αnt)
sin(αnt) cos(αnt)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

On R2n+4 consider the algebraic structure given by the semidirect product of R
and S via ϕ and we obtain the simply connected Lie group

G = R�ϕ S.
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Since Γk,j is invariant under the subgroups generated by ϕ(2π), ϕ(π), ϕ(π2 ), then
for each Γk,j we have three new lattices in G, given by

Λk,j,i = iZ � Γk,j ,

for i = 2π, π, π
2 . Therefore we get new examples of solvmanifolds

Mk,j,i = Λk,j,i\R�ϕ (R�ψ (R×H2n+1))

equipped with a Vaisman structure arising from a Vaisman structure on the Lie alge-
bra.

The solvmanifolds we have just constructed admit a Riemannian submersion to
the circle S1, with fibers isometric to a Sasakian solvmanifold Γk,j\(R�ψ(R×H2n+1)).

6.3. Classification of Vaisman Lie algebras in low dimensions. In this
section we determine all unimodular solvable Lie algebras of dimension 4 and 6 that
admit a Vaisman structure, up to Lie algebra isomorphism.

(i) According to Theorem 3.9, any 4-dimensional unimodular solvable Lie algebra
with a Vaisman structure is a double extension g = k(D,ω), where k = R2. It is easy
to see that g has an orthonormal basis {A,B, e, f} such that

[A, e] = cf, [A, f ] = −cf, [e, f ] = B, JA = B, Je = f, c ∈ R.

These Lie algebras belong to the family of examples constructed in §6.1. If c = 0,
then g is isomorphic to the nilpotent Lie algebra R× h3, equipped with its canonical
Vaisman structure (see Example 3.3), and any nilmanifold obtained as a quotient of
R × H3 is a primary Kodaira surface. If c �= 0, then we may assume c = 1 (via a
Lie algebra isomorphism), and g is a solvable non-nilpotent Lie algebra R � h3, and
any solvmanifold obtained as a quotient of R �H3 is either a primary or secondary
Kodaira surface, depending on the lattice considered (see [26] and §6.1).

(ii) According to Theorem 3.9, any 6-dimensional unimodular solvable Lie algebra
with a Vaisman structure is a double extension g = k(D,ω), where k is a 4-dimensional
Kähler flat Lie algebra which decomposes orthogonally as k = z ⊕ h ⊕ k′, according
to Proposition 4.1. In particular, the dimension of k′ must be 0 or 2 and, as a
consequence, dim h is equal to 0 or 1. Therefore there are only two cases for k,
namely, k1 = z = R4 or k2 = RZ ⊕ RH ⊕ R2 for some Z ∈ z, H ∈ h with JH = Z.

In the latter case, the action of H on k′ is given by a matrix

(
0 −a
a 0

)
, with a �= 0,

and it is easy to see that these Lie algebras are all isomorphic to the one with a = 1.
The Sasakian central extension of k1 is isomorphic to h5, while the Sasakian central
extension of k2 is the Lie algebra s5 generated by {B,Z,H, e, f} with Lie brackets

[H, e] = f, [H, f ] = −e, [H,Z] = [e, f ] = B,

where {e, f} is an orthonormal basis of R2 with Je = f . It is a consequence of Corol-
lary 3.11 that h5 and s5 are the only unimodular solvable Lie algebras of dimension 5
which admit Sasakian structures (this follows also from [6]).

The corresponding unimodular solvable Vaisman Lie algebras, obtained as double
extensions of k1 and k2, are given in the next result. Note that the double extensions
k1(D,ω) belong to the family in §6.1, while the double extensions k2(D,ω) belong to
the family in §6.2.

Proposition 6.6. Let g be a 6-dimensional unimodular solvable Lie algebra. If g
admits a Vaisman structure, then g is isomorphic to one of the following Lie algebras:
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(i) R × h5 or R �Dr
h5 for r ∈ [−1, 1], where h5 = span{B, e1, e2, e3, e4}, with Lie

brackets given by: [e1, e2] = [e3, e4] = B and

Dr =

⎛
⎜⎜⎜⎜⎝

0
0 −r
r 0

0 −1
1 0

⎞
⎟⎟⎟⎟⎠

in this basis.
(ii) R × s5 or R �D0

s5 where s5 = span{B, e1, e2, e3, e4}, with Lie brackets given
by: [e1, e3] = e4, [e1, e4] = −e3, [e1, e2] = [e3, e4] = B and D0 is as in (i) with
r = 0.

Moreover, all these Lie algebras are pairwise non-isomorphic and the corresponding
simply connected Lie groups admit lattices (with r ∈ Q for R�Dr h5).

Proof. It is easy to see, taking into account Lemma 6.3, that k1(D,ω) is isomorphic
to either R×h5 or R�Dr h5 with r ∈ [−1, 1]. It can be verified that these Lie algebras
are pairwise non-isomorphic. On the other hand, for k2(D,ω), using Theorem 4.6 it
can be easily seen that this Lie algebra is isomorphic to either R × s5 or R �D0

s5.
Using Proposition 5.1 and after some computations, it can be seen that R × s5 or
R�D0

s5 are not isomorphic to neither R× h5 nor R�Dr
h5.

Note that R�Dr
h5 corresponds to the Lie algebra g(r,1) with r ∈ [−1, 1] studied in

§6.1. Therefore the existence of lattices for the group G(r,1) with r ∈ Q was established
in Proposition 6.4. In the case of R× s5 and R�D0 s5 the existence of lattices in the
associated simply connected Lie group follows from §6.2 (see also [6]).

It follows from Lemma 6.3 that the Lie algebra g(r,1) = R �Dr h5, r ∈ Q, from
Proposition 6.6 is isomorphic to g(a,b) for some a, b ∈ Z, (a, b) = 1. Next we determine
the first homology group and the first Betti number of the 6-dimensional solvmanifolds
Λk,j\G(a,b) for j = 2π, π, π/2, following §6.1.

• For the familiy Λk,2π = 2πZ×Γk, the solvmanifold Λk,2π\G(a,b) is diffeomorphic
to a nilmanifold S1×Γk\H5, for all (a, b). The first homology group of this nilmanifold
is Z5 ⊕ Z2k and hence its first Betti number is b1 = 5.

• For the family Λk,π, the isomorphism class of this lattice depends only on the
parity of the integers a, b. Then it is straightforward to verify that the first homology
group of the solvmanifold M := Λk,π\G(a,b) and its first Betti number are given by:

a, b H1(M,Z) b1(M)

ab ≡ 1 (mod 2) Z⊕ Z2k ⊕ Z4
2 1

ab ≡ 0 (mod 2) Z3 ⊕ Z2k ⊕ Z2
2 3

• For the family Λk,π/2, the isomorphism class of this lattice depends only on
the congruence class of the integers a, b modulo 4, and it can be seen that the first
homology group of the solvmanifold M := Λk,π2

\G(a,b) and its first Betti number are
given by:
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a, b H1(M,Z) b1(M)

ab ≡ ±1 (mod 4) Z⊕ Z2k ⊕ Z2
2 1

ab ≡ 2 (mod 4) Z⊕ Z2k ⊕ Z3
2 1

ab ≡ 0 (mod 4) Z3 ⊕ Z2k ⊕ Z2 3

7. Relation with other geometric structures.

7.1. CoKähler Lie algebras. In previous sections we have seen that any uni-
modular solvable Lie algebra admitting a Vaisman structure is the semidirect product
of R with a Sasakian Lie algebra and this Sasakian Lie algebra, in turn, is a central
extension of a Kähler flat Lie algebra. In what follows we will establish a relation with
another type of almost contact metric Lie algebras, namely, coKähler ones. In fact,
we will show that a unimodular solvable Lie algebra admitting a Vaisman structure is
a central extension of a coKähler Lie algebra which is, in turn, a semidirect product
of R with a Kähler flat Lie algebra.

Let g be a unimodular solvable Lie algebra that admits a Vaisman structure
(J, 〈· , · 〉), with ω its fundamental 2-form, θ the corresponding Lee form and A ∈ g
its metric dual, as before. We know from Theorem 3.9 that g is a double extension
g = k(D,ω′) of the Kähler flat Lie algebra k by certain derivation D of kω′(ξ) such
that D′ := D|k is a unitary derivation of k.

Theorem 7.1. With notation as above, the Lie algebra d = RA �D′ k admits a
coKähler structure (〈· , · 〉|d×d, φ, ξ, η), where φ ∈ End(d) is defined by φ(aA + x) =
Jx for a ∈ R, x ∈ k, and η := θ|d, ξ := A. Moreover, if Φ denotes the (closed)
fundamental 2-form on d associated to this coKähler structure, then g is isomorphic
to the central extension dΦ(JA).

Proof. It is readily verified that (〈· , · 〉|d×d, φ, ξ, η) is an almost contact metric
structure on d. Let us prove now that it is almost coKähler, i.e., dη = 0 and dΦ = 0,
where Φ is the fundamental 2-form defined by Φ(x, y) = 〈φx, y〉, x, y ∈ d.

Since [d, d] ⊂ k = ker η, we have that dη = 0. Now, for a, b, c ∈ R and x, y, z ∈ k,
we compute easily

dΦ(aA+ x, bA+ y, cA+ z) (11)

= dkω′(x, y, z) + a(〈D′y, Jz〉 − 〈D′z, Jy〉)
+ b(〈D′z, Jx〉 − 〈D′x, Jz〉) + c(〈D′x, Jy〉 − 〈D′y, Jx〉),

where ω′ = ω|k×k. Since ω′ is the Kähler form on k, we have that dkω′ = 0. Since
both D and J are skew-symmetric and D′J |k = J |kD′, we obtain that the last terms
in (11) vanish, and therefore dΦ = 0.

To verify the normality of this structure, since dη = 0 we only have to check that
Nφ = 0. For a, b ∈ R and x, y ∈ k, we compute

Nφ(aA+ x, bA+ y) = N k
J|k(x, y)− a(D′y + JD′Jy) + b(D′x+ JD′Jx).

Since N k
J|k = 0 and D′J |k = J |kD′, it follows that Nφ = 0.

To prove the last statement we compute the Lie bracket [·, ·]′ on the central
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extension dΦ(JA). We have that JA is central and for a, b ∈ R, x, y ∈ k we compute

[aA+ x, bA+ y]′ = Φ(aA+ x, bA+ y)JA+ [aA+ x, bA+ y]d

= 〈φ(aA+ x), bA+ y〉JA+ aD′y − bD′x+ [x, y]k

= 〈Jx, y〉JA+ aDy − bDx+ [x, y]k

= ω(x, y)JA+ aDy − bDx+ [x, y]k,

which coincides with the Lie bracket on g, according to Theorem 3.7 and (6). This
completes the proof.

Remark 7.2. The first part of Theorem 7.1 follows also from [21, Theorem 6.1].
Moreover, according to [21, Proposition 6.4], (d, 〈· , · 〉) is a flat Lie algebra, since d is
unimodular. If, as above, k = z⊕h⊕ k′ is the decomposition of k given by Proposition
4.1, then the corresponding decomposition of d is d = z̃⊕h̃⊕d′, where z̃ = ker(D′|z∩Jz),

h̃ = RA ⊕ h and d′ = k′ ⊕ Im(D′|z∩Jz), whenever D′ �= 0. If D′ = 0, we have that

z̃ = RA⊕ z, h̃ = h and d′ = k′.

7.2. Left-symmetric algebra structures. In this section we show that any
unimodular solvable Lie algebra equipped with either a Sasakian or a Vaisman struc-
ture admits also another kind of algebraic structure with a geometrical interpretation.

A left-symmetric algebra (LSA) structure on a Lie algebra a is a bilinear product
a× a −→ a, (x, y) �→ x · y, which satisfies

[x, y] = x · y − y · x (12)

and

x · (y · z)− (x · y) · z = y · (x · z)− (y · x) · z, (13)

for any x, y, z ∈ a. See [16] for a very interesting review on this subject.
LSA structures have the following well known geometrical interpretation. If G

is a Lie group and g is its Lie algebra, then LSA structures on g are in one-to-one
correspondence with left invariant flat torsion-free connections ∇ on G. Indeed, this
correspondence is given as follows: ∇xy = x · y for x, y ∈ g. Since this connection
is left invariant, any quotient Γ\G of G by a discrete subgroup Γ also inherits a flat
torsion-free connection. It is well known that one can study the completeness of the
connection ∇ on G in terms only of the corresponding LSA structure on g. Indeed, ∇
is geodesically complete if and only if the endomorphisms Id+ρ(x) of g are bijective
for all x ∈ g, where ρ(x) denotes right-multiplication by x, i.e., ρ(x)y = y · x (see for
instance [49]). In this case, it is said that the LSA structure is complete.

Note that the Levi-Civita connection of a flat metric on a Lie algebra is an example
of a complete LSA structure, since the corresponding left invariant metric on any
associated Lie group is homogeneous and therefore complete.

Theorem 7.3. Let (h, 〈· , · 〉) be a flat Lie algebra and let β denote a 2-form which
is parallel with respect to the Levi-Civita connection ∇ of 〈· , · 〉 (hence β is closed).
Then the central extension g = hβ(ξ) admits an LSA structure defined by

(aξ + x) · (bξ + y) =
1

2
β(x, y)ξ +∇xy, a, b ∈ R, x, y ∈ h.

Furthermore, this LSA structure is complete.



VAISMAN SOLVMANIFOLDS 143

Proof. Taking into account that ∇ is a torsion-free connection on h and the fact
that ξ is central in g, it is easily verified that

(aξ + x) · (bξ + y)− (bξ + y) · (aξ + x) = [aξ + x, bξ + y]β .

Therefore, (12) holds for this product. In order to prove (13), let us compute

(aξ + x) · ((bξ + y) · (cξ + z))− (bξ + y) · ((aξ + x) · (cξ + z)) =

=
1

2
β(x,∇yz)ξ +∇x∇yz − 1

2
β(y,∇xz)ξ −∇y∇xz

= −1

2
β(∇yx, z)ξ +

1

2
β(∇xy, z)ξ +∇x∇yz −∇y∇xz

=
1

2
β([x, y], z)ξ +∇[x,y]z

= [aξ + x, bξ + y]β · (cξ + z),

where we have used ∇β = 0 in the third line and the fact that ∇ is torsion-free and
flat in the fourth line. This is equivalent to (13), thus this product is an LSA structure
on g.

Let us prove the completeness. Fix bξ + y ∈ g and assume that (Id+ρ(bξ +
y))(aξ + x) = 0. Then

0 = aξ + x+
1

2
β(x, y)ξ +∇xy

=

(
a+

1

2
β(x, y)

)
ξ + (x+∇xy) ,

hence a + 1
2β(x, y) = 0 and x + ∇xy = 0. But, since ∇ itself is a complete LSA

structure on h, it follows that x = 0. This implies that a = 0, and the completeness
follows.

Corollary 7.4. Let g be a unimodular solvable Lie algebra.
(1) If g carries a Vaisman structure, then g admits a complete LSA structure.
(2) If g carries a Sasakian structure, then g admits a complete LSA structure.

Proof. If g admits a Vaisman structure then, according to Theorem 7.1, g is a
central extension of a coKähler Lie algebra d by the fundamental 2-form Φ, which
is parallel. As mentioned in Remark 7.2, d is flat, and therefore (1) follows from
Theorem 7.3.

If g admits a Sasakian structure, then it follows from Corollary 3.11 that g is a
central extension of a Kähler flat Lie algebra. Hence, (2) follows from Theorem 7.3
again.

Corollary 7.5. Any solvmanifold admitting either an invariant Vaisman struc-
ture or an invariant Sasakian structure carries a geodesically complete flat torsion-free
connection.
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[18] L. Cordero, M. Fernández and M. de Léon, Compact locally conformal Kähler nilmanifolds,

Geom. Dedicata, 21 (1986), pp. 187–192.
[19] S. Dragomir and L. Ornea, Locally conformal Kähler geometry. Progress in Mathematics

155, Birkhäuser, 1998.
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