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ABSTRACT

Historically, cow selection criteria were developed for 
conventional milking systems that have regular milking 
intervals (MI). However, in automatic milking systems 
(AMS), there is variability in MI within and between 
cows. These sources of variability provide an opportu-
nity to identify cows with high daily milk yield (DY) 
and long MI. An extended MI (longer than 16 h in 
pasture-based systems) has a negative effect on DY. 
Cows that tolerate extended MI and maintain high DY 
can be considered more efficient than cows with low DY 
and long MI, or with high DY but short MI, thereby 
improving robotic system use. Knowledge of the be-
havior and parameters of lactation curves of cows in 
AMS could help farmers to identify cows with a specific 
lactational phenotype. The objective of this study was 
to identify individual cows with high DY and long MI 
within herds, which could reflect increased tolerance to 
milk accumulation under AMS. A database containing 
records for 773,483 milking events for one year (July 
2016–June 2017) from 4 pasture-based AMS farms was 
used. Lactation curves within each herd were fitted 
using several mixed models including fixed effects for 
the parameters of the lactation curve and random cow 
effects. Predicted curves of average DY according to 
parity (multiparous and primiparous) were obtained. 
The best linear unbiased prediction of the random cow 
effect allowed us to categorize lactations as having 
either high or low milk production. The median MI 
of each lactation was then used to categorize cows as 
having either short or long MI. Daily yield at the peak 
of lactation, days to peak and 305-d cumulative milk 
production were used to compare the effect of DY and 

MI categories, as well as the DY × MI interaction. Milk 
production by multiparous and primiparous cows with 
high DY and long MI was between 35 and 45% higher 
than that of the low DY and short MI. From all lacta-
tions analyzed, the incidence of animals with high DY 
and long MI across farms was 7.5%. We have identified 
and quantified a new, AMS-specific, phenotype (the 
combination of a relatively higher DY with relatively 
longer MI) with potential to increase use of AMS units. 
Identifying more efficient animals should help generate 
new approaches for differential management and for 
selecting cows in AMS.
Key words: robotic system, milk yield, automatic 
milking farm, milking interval

INTRODUCTION

Since they were first introduced in the early 1990s, 
automatic milking systems (AMS) have been increas-
ingly adopted on dairy farms across the world (de Kon-
ing, 2010; Barkema et al., 2015). Indeed, AMS offers 
the opportunity to reduce labor on dairy farms, increase 
daily milk yield (DY, defined as the cumulative milk 
production of individual milking events within a 24-h 
period, in kg of milk/cow per day), and improve the 
lifestyle of dairy farmers (de Koning, 2011; Rodenburg, 
2017). Maximal efficiency of AMS relies on voluntary 
and distributed attendance of cows to the milking unit 
throughout lactation. This voluntary attendance gener-
ates variation in milking intervals (MI, defined as the 
time period that elapses between 2 consecutive milk-
ing events for each cow, in hours). This variability in 
MI, both within and between cows, is logically greater 
for AMS cows than for cows managed in conventional 
milking systems (CMS), where MI remains relatively 
constant.

Variation in MI is affected by management and 
might also have an individual cow variance component 
(Løvendahl and Chagunda, 2011). In pasture-based 
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AMS, MI above 16 h has been related to negative effects 
on milk yield (Lyons et al., 2013a) and udder health 
(Hammer et al., 2012). Achieving an optimal MI for all 
individual cows will ensure that milk secretion is not 
impaired, therefore maximizing individual production 
and minimizing any risk of negative effects on udder 
health (André et al., 2010). Given that cows managed 
in AMS store different amounts of milk in the udder, 
depending on MI, those with relatively high DY and 
relatively long MI could be considered more “efficient” 
(Molfino, 2018). A greater proportion of these animals 
within a herd could allow an increase in the volumes of 
milk harvested per robot (MHR, in kg of milk/robot 
per day) through an increased number of cows milked 
per robot.

Maximizing the amount of MHR, which is a function 
of the number of daily milkings and the amount of milk 
collected in each milking visit, is critical for maximiz-
ing farm revenue (Sonck and Donkers, 1995; Hyde and 
Engel, 2002; Salfer et al., 2017). In a study that moni-
tored several pasture-based commercial AMS farms in 
Australia on a monthly basis throughout a whole year, 
Lyons and Kerrisk (2017) concluded that the average 
pasture-based AMS farm could increase MHR by up to 
60%. Identifying groups of cows that tolerate extended 
MI and still have high DY could be an opportunity to 
increase MHR.

Milk production can be described by modeling lacta-
tion curves (Ehrlich 2011), where adding random cow 
effects to these models provides a measure of variability 
among cows (Piccardi et al., 2017). Modeled lactation 
curves have been used to calculate milk production at 
the individual cow level using the peak DY, days to 
peak, and 305-d cumulative milk production as the es-
timated parameters (Bouallegue et al., 2015). To date, 
most of the proposed statistical models have fitted 
lactation curves for cows in CMS (Piccardi et al., 2017; 
Kong et al., 2017) although the development of these 
predictions for AMS is scarce. We hypothesized that 
variability among cows in lactation curve parameters 
could be used to identify and monitor a new AMS-
specific phenotype, first described by Molfino (2018), as 
the combination of relatively greater DY with relatively 
longer MI.

The objectives of the present study were to (a) es-
timate lactation curve parameters for cows milked in 
AMS and (b) assess the potential of using these param-
eters to describe individual cows with contrasting DY 
and MI as a means to identifying cows that are more 
“efficient” in AMS.

MATERIALS AND METHODS

Data

Data from 4 commercial pasture-based AMS farms, 
2 in Australia, 1 in New Zealand, and 1 in Chile, were 
used in this study. The farms covered different dairy re-
gions, calving systems, breeds, and herd sizes (Table 1).

The study was conducted using a database contain-
ing 773,483 individual milking records for one year 
(July 2016–June 2017) from the aforementioned farms 
as part of a study that captured key performance indi-
cators related to AMS utilization on commercial farms 
(for full details, refer to Lyons and Kerrisk, 2017). The 
data set comprised a total of 790 lactations, all longer 
than DIM. Each record included date, farm number, 
cow number, and lactation, as well as DIM, MI, and 
milk yield defined as the milk production of an indi-
vidual milking events, in kg of milk/cow per milking). 
Milk yield was used to calculate DY. Records with MI 
less than 1 h and greater than 24 h were removed from 
analysis as this generally indicated animals temporarily 
removed from the herd (commonly for health-related 
reasons) or missing data (lost data during system 
failure, such as a power interruption). This criterion 
removed 0.2% of the data available for analysis.

Statistical Analysis

Lactation curves for every lactation of every cow 
within every farm were fitted using 3 nonlinear func-
tions, namely incomplete gamma function (Wood, 
1967), the MilkBot model (Ehrlich, 2011), and diphasic 
model (Grossman and Koops, 1988). In every case, 
the outcome was DY. In the fixed part of the model, 
DY was explained as a function of DIM. Given that 
observations were expected to be temporarily auto-
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Table 1. Automatic milking systems farms used for analysis

Farm   Country   Calving system1   Breed2

1   Australia   Split   Holstein and crossbreds
2   Australia   Year-round   Holstein and crossbreds
3   New Zealand   Split   Holstein and crossbreds
4   Chile   Split   Jersey
1Split = calves in 2 or 3 distinct periods each year. If 2, usually spring and autumn.
2Crossbreeds = predominantly Holstein × Jersey.
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correlated within lactation, a random cow effect was 
added to a lactation curve parameter in the model. 
The models were fitted using the PROC NLMIXED 
procedure in SAS 9.4 (SAS Institute Inc., Cary, NC) 
with the direct likelihood approach as the estimated 
method. Lactations were analyzed separately for parity, 
as either primiparous or multiparous cows, where the 
second lactations were discarded given they showed an 
intermediate behavior, as suggested by Dematawewa 
et al. (2007). For model selection, Akaike information 
criterion (Sakamoto et al., 1986) and Bayesian informa-
tion criterion (Schwarz, 1978) were used. The lactation 
parameters identified as production at peak of lactation 
(Ppeak), days to peak (Dpeak), and 305-d cumulative 
milk production (305-DY) were then obtained for each 
cow (lactation).

The incomplete gamma function, mixed Wood model, 
was selected as the best fit, yielding the equation

	 Y(t) = (a + u)bexp(−ct),	

where Y(t) is milk yield on day t of lactation, a is the 
parameter representing production at the beginning of 
lactation, and u is the random effect; parameters b and 
c are associated with the increase and decrease of the 
slopes of the lactation curve, respectively.

The 305-DY was defined as the cumulative milk pro-
duction from d 1 to 305 of the lactation period and 
was calculated using the integral of the fitted lactation 
curves:

	 305
0

305
DY a u dY

b
ct= +( )∫ −( )exp . 	

The random component added to the intercept was as-
sumed to be normally distributed with zero mean and 
variance σa

2,  which should be interpreted as an unob-
servable variable that represents a random deviation of 
the coefficient a of the ith lactation from the popula-

tion parameter. Such random deviation is assumed to 
be independent of the error term. Thus, BLUP (David-
ian and Giltinan, 2003) was obtained to identify ani-
mals with high, medium, or low DY (upper, medium, or 
lower tertile of the DY distribution, respectively).

The median MI was obtained for cows within each 
lactation on a given farm and was used to identify 
animals with relatively long, medium, and short MI 
(upper, medium, or lower tertile of the MI distribution, 
respectively).

An ANOVA model was then fitted for each lactation 
curve parameter to evaluate the effect of contrasting 
(high vs. low) DY category, MI category, and their 
interaction, treating the primiparous and multiparous 
cows separately. The category of low DY with short MI 
was established as a reference group for comparisons.

RESULTS

Milking Interval and Daily Milk Yield

Analysis of data from all 4 farms established that 
multiparous cows in the low and high DY tertiles had 
MI that were 10 and 14 h, and DY that were 20.1 and 
27.2 kg milk/day, respectively. Similarly, primiparous 
cows in the low and high DY tertiles had MI that were 
11 and 14 h, and DY that were 15.1 and 20.7 kg of 
milk/day, respectively (Table 2).

Characterization of the Lactation Curve Estimation

The Wood model fitted the individual lactation 
curves better than the other 2 models (smaller Akaike 
information criteria in more than the 70% of the fit-
tings, Supplemental Table S1, https:​/​/​doi​.org/​0​.3168/​
jds​.2019​-17962). Average estimates of the Wood model 
parameters for primiparous and multiparous cows are 
shown in Table 3. Furthermore, estimates of the Wood 
model parameters for lactation curves of primiparous 
and multiparous cows within each farm are shown in 
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Table 2. Average and SE lower and upper tertile of daily milk yield (DY) and milking interval (MI) for parity and farm1

Parity   Farm Short MI, h Long MI, h Low DY, kg/d High DY, kg/d No. of lactations

Primiparous 1 10 ± 0.24 12 ± 0.26 22.2 ± 0.27 28.9 ± 0.26 138
2 11 ± 0.24 14 ± 0.30 15.6 ± 0.29 20.8 ± 0.35 90
3 12 ± 0.18 14 ± 0.19 13.0 ± 0.27 19.4 ± 0.35 27
4 11 ± 0.22 14 ± 0.34 9.8 ± 0.20 14.0 ± 0.27 59

  Average 11 ± 0.23 14 ± 0.30 15.1 ± 0.25 20.7 ± 0.31 79
Multiparous 1 10 ± 0.22 15 ± 0.26 28.4 ± 0.50 36.8 ± 0.59 239

2 11 ± 0.22 15 ± 0.28 18.1 ± 0.36 24.4 ± 0.47 141
3 9 ± 0.21 12 ± 0.20 18.8 ± 0.45 25.8 ± 0.49 42
4 10 ± 0.22 12 ± 0.23 15.4 ± 0.35 21.8 ± 0.44 54

  Average 10 ± 0.22 14 ± 0.26 20.1 ± 0.43 27.2 ± 0.53 119
1Short MI = lower tertile of MI; Long MI = upper tertile of MI; Low DY = lower tertile of DY; High DY = upper tertile of DY.

https://doi.org/0.3168/jds.2019-17962
https://doi.org/0.3168/jds.2019-17962
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Table 4. The value of parameter a of the model that de-
scribes the milk yield at the beginning of the lactation, 
was smaller for primiparous than for multiparous cows 
in all farms. There were differences between primipa-
rous and multiparous cows within farms for parameter 
b of the model, which affect the slope of the curve from 
the beginning of lactation until it reaches its peak. The 
decline in production after the peak, expressed by pa-
rameter c of the model, was greater for multiparous 
than for primiparous cows (Table 3). On average, the 
Ppeak for multiparous cows was 15.5 kg of milk/day 
higher than for primiparous cows and occurred almost 
10 d earlier. Moreover, the 305-DY for primiparous was 
on average 59% of that for multiparous cows.

Production at Peak, Days to Peak, and 305-DY 
Cumulative Milk Production

On average, low DY primiparous cows had lower 
Ppeak than high DY primiparous cows (P < 0.05). 
Furthermore, the comparison of contrasting MI groups 
revealed a significant effect on Ppeak within high DY 
first-lactation cows. For primiparous cows, the greatest 
difference (8.1 kg of milk/day) was between the high 
DY/short MI and the reference group (animals with 
low DY and short MI) (Table 5).

Low DY multiparous cows had a lower Ppeak than 
the high DY multiparous cows (P < 0.05). Further-
more, for multiparous cows the contrasting MI groups 
within the DY group had no effect on Ppeak.

Neither DY nor MI within parity had an effect on 
Dpeak. On average, primiparous peaked at 53 DIM, 
whereas multiparous cows peaked at 40 DIM (Table 5).

First-lactation cows with high DY and either short or 
long MI produced 59 and 45% more 305-DY than low 
DY primiparous cows (Table 5), respectively. Multipa-
rous cows with high DY and short MI produced 38% 
more 305-DY than the reference group, whereas mul-
tiparous cows with high DY and long MI produced 35% 
more 305-DY than the reference group (Table 5). There 
was no statistical difference in 305-DY for primiparous 
and multiparous cows with low DY and either short or 
long MI (P < 0.05).

Grouping of Lactations

The clustering of lactations according to DY and MI 
showed that 12.37 and 19.62% of all lactations had high 
DY and short MI for primiparous and multiparous cow 
respectively, whereas 6.72 and 8.33% of the lactations 
had high DY and long MI (Table 5). Moreover, Figure 
1 shows estimated lactation curves of primiparous and 
multiparous cows according to production level and 
length of MI.

DISCUSSION

A key objective of this study was to estimate lacta-
tion curve parameters for pasture-based AMS cows, 
because these parameters had primarily been estimated 
for cows in CMS. As validation of our approach, we de-
termined values for Ppeak and Dpeak that were similar 
to those previously reported (Cole et al., 2011; Piccardi 
et al., 2017). Differences in the parameter between pri-
miparous and multiparous cows were also repeated, in 
general, among AMS farms when compared with pub-
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Table 3. Estimates of the Wood model parameters (mean ± SE) for primiparous and multiparous cows for all herds1

Parity a b c Ppeak, kg/d Dpeak, d 305-DY, kg

Primiparous 10.27 ± 0.58 0.23 ± 0.01 0.0044 ± 0.0002 19.3 ± 1 53 ± 2 4,590 ± 194
Multiparous 18.56 ± 0.43 0.24 ± 0.01 0.0053 ± 0.0001 34.8 ± 1 44 ± 1 7,752 ± 158
1a = parameter a of the Wood model; b = parameter b of the Wood model; c = parameter c of the Wood model; Ppeak = production at peak; 
Dpeak = days to peak; cumulative milk production at 305 d of lactation.

Table 4. Parameter estimates of the Wood model (mean ± SE) for primiparous and multiparous cows for herds1

Farm   Category a b c Ppeak, kg/d Dpeak, d 305-DY, kg

1   Primiparous 10.19 ± 1.33 0.29 ± 0.04 0.0041 ± 0.0004 24.4 ± 1.1 71.7 ± 4.9 6,183 ± 373
  Multiparous 18.35 ± 0.48 0.27 ± 0.01 0.0051 ± 0.0001 38.8 ± 0.6 52.2 ± 0.9 8,929 ± 132

2   Primiparous 12.79 ± 0.69 0.18 ± 0.01 0.0044 ± 0.0003 20.8 ± 0.9 43.0 ± 2.2 4,833 ± 227
  Multiparous 14.76 ± 0.59 0.22 ± 0.01 0.0055 ± 0.0002 25.6 ± 0.7 39.8 ± 1.5 5,508 ± 144

3   Primiparous 11.07 ± 1.65 0.23 ± 0.03 0.0055 ± 0.0004 20.1 ± 1.9 42.0 ± 4.0 4,372 ± 400
  Multiparous 21.15 ± 1.00 0.14 ± 0.01 0.0044 ± 0.0002 29.7 ± 0.6 32.0 ± 2.4 6,549 ± 139

4   Primiparous 6.68 ± 0.74 0.25 ± 0.03 0.0041 ± 0.0003 13.6 ± 1.1 59.5 ± 4.5 3,346 ± 265
  Multiparous 15.32 ± 0.92 0.20 ± 0.01 0.0056 ± 0.0003 24.5 ± 1.0 36.6 ± 2.5 5,081 ± 208

1a = parameter a of the Wood model; b = parameter b of the Wood model; c = parameter c of the Wood model; Ppeak = production at peak; 
Dpeak = days to peak; cumulative milk production at 305 d of lactation.
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lished values. The farms enrolled in the current study 
milked Holstein, Jersey, and crossbreed (predominantly 
Holstein × Jersey) cows. Although the aim of this study 
was not to look at the effect of breed in variation of MI, 
previous research has found that breed could have an 
effect in voluntary cow movement (Clark et al., 2014).

Understanding cow lactation curve dynamics, either 
individually or as a population, provides some of the 
key decision-making principles on commercial dairy 
farms (Macciotta et al., 2005). Moreover, it is possible 
to make inferences about management and physiology 
using values derived from a model that can then be 
used to monitor herd performance (Ehrlich, 2013). Pa-
rameters of the curves revealed that primiparous cows’ 
milk yield at peak lactation represented 55.5% of the 
production by multiparous cows, which is lower than 
the 75% (Bailey and Currin, 2009) industry standards 
that have been recommended. This observation sup-
ports the findings of Siewert et al. (2019).

The exact reason behind the underperformance 
of primiparous cows cannot be determined from this 
study. Previous studies have reported sparse training of 
first-lactation cows to the AMS before the first milking 
with the robot (Tse et al., 2018). Moreover, primiparous 
cows visit the AMS less frequently than multiparous 
cows in early lactation (Siewert et al., 2019). Further 
investigation into milking frequency of primiparous 
cows, particularly in early lactation, would be war-
ranted. Implementing practices such as pre-calving 

training, or managing first-lactation cows separately 
over the first part of the lactation could increase their 
milking frequency and therefore DY.

Parity has a strong influence on milk production, as 
primiparous cows have lower feed intake, and less udder 
and total secretory tissue than mature cows (Akers, 
2017; Connor et al., 2019). In addition, first-lactation 
cows are still growing and therefore partition part of 
their nutrient intake toward growth (Wathes et al., 
2007). As a result, milk production increases with lac-
tation number (Vijayakumar et al., 2017).

Criteria for cow selection has been traditionally 
based on data from CMS, where cows have a relatively 
regular MI. Geneticists predominantly focus on the 
BLUP methodology to select cows with high DY, even 
with data from only a single lactation. Primiparous cow 
performance for several traits, but not MI, has been 
found to be an efficient selection criterion under CMS 
(Meyer, 1983). Nixon et al. (2009), calculated heritabil-
ity for daily milking frequency and DY under AMS 
with primiparous Holstein cows, reporting values that 
ranged from 0.02 to 0.08 and 0.14 to 0.20, respectively. 
Identifying and recognizing efficient animals in AMS 
could be achieved by monitoring DY and MI. Thus, 
another key objective of this study was to use lacta-
tion curve modeling to identify animals with high DY 
and long MI to increase utilization of AMS unit. Only 
a relatively small proportion (6.72 and 8.33% for pri-
miparous and multiparous cows, respectively) appeared 

Masía et al.: LACTATION CURVES IN AUTOMATED MILKING SYSTEMS

Table 5. Parameter estimates of lactation curves according to cow production level (DY) and length of the milking interval (MI)1

Parameter2   DY   MI

Primiparous cow

 

Multiparous cow

Mean ± SE Difference, % Mean ± SE Difference, %

Ppeak, kg/d   High   Short 24.1 ± 0.5a 50.56 36.6 ± 0.5a 34.87
  High   Long 22.2 ± 0.8b 39.11 35.7 ± 0.7a 31.59
  Low   Short 16.0 ± 0.6c Referent 27.1 ± 0.5b Referent
  Low   Long 17.1 ± 0.6c 3.69 26.1 ± 0.5b −3.98

Dpeak, d   High   Short 57.4 ± 3.4a   40.2 ± 1.6a  
  High   Long 47.7 ± 5.2a   41.4 ± 2.3a  
  Low   Short 53.4 ± 3.7a   38.4 ± 1.8a  
  Low   Long 53.8 ± 3.9a   40.0 ± 1.7a  

305-DY, kg/1,000   High   Short 5.8 ± 0.1a 59.2 8.0 ± 0.9a 38.5
  High   Long 5.3 ± 0.2b 45.3 7.9 ± 0.1b 35.3
  Low   Short 3.7 ± 0.1c Referent 5.8 ± 0.1c Referent
  Low   Long 3.9 ± 0.1c 5.5 5.8 ± 0.9c −1.0

c   High   Short 0.004 ± 0.0003a   0.005 ± 0.0002a  
  High   Long 0.004 ± 0.0004a   0.005 ± 0.0003a  
  Low   Short 0.005 ± 0.0004a   0.006 ± 0.0002a  
  Low   Long 0.005 ± 0.0004a   0.005 ± 0.0002a  

Lactation, %   High   Short 12.37   19.62  
  High   Long 6.72   8.33  
  Low   Short 9.41   14.52  
  Low   Long 12.63   16.40  

a–cMeans with a different letter within a parameter and parity are statistically different (P < 0.05).
1Differences with respect to the reference group (in percentage). Positive and negative values indicate increases and decreases, respectively. 
2Ppeak = daily milk yield at peak; Dpeak = days to peak; 305-DY = 305-d cumulative milk production; c = parameter c of the Wood model; 
Lactation = percentage of total lactations.
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to have this phenotype. Molfino (2018) reported similar 
results (10.5% of cows with high DY and long MI) using 
linear mixed models to determine the effect of stage of 
lactation and parity and to obtain predicted means and 
residuals for the 2 traits. Further studies are needed to 
quantify the genetic component of MI within AMS.

Furthermore, compared with the reference groups, 
the high DY and long MI groups produced 45% and 
35% more across their whole lactation, for primiparous 
and multiparous cows, respectively. Several factors 
might explain how these animals sustained higher DY 
with longer MI. At the anatomical level, high DY/long 
MI animals may have a greater ability to store or drain 
secreted milk from alveoli due to a greater cisternal 
volume within their udder (Knight and Dewhurst, 
1994; Stelwagen and Knight, 1997). Indeed, the abil-
ity of the udder to withstand production losses due 
to once-daily milking reflects this capacity of alveolar 
milk to drain to the cistern (Davis et al., 1998). The 
fact that there is a genetic basis for the size of the 
cisternal and alveolar compartments raises the prospect 
of selecting animals for these characteristics (Davis et 
al., 1998). Additionally, high DY/long MI animals may 
be less sensitive to local negative feedback cues in cu-

mulative milk, including molecules such as serotonin, 
or physical changes including alveolar distension and 
cellular stretch (Weaver and Hernandez, 2016). The 
current data were from pastured-based cows producing 
a relatively low amount of milk, and typically man-
aged under a 3-way grazing system (Lyons et al., 2013a; 
2013b). Whether our findings apply to cows milked by 
AMS in confinement operations with higher per-cow 
milk production remains to be tested. More research 
with larger data sets comprising whole life productivity 
of animals would also help to address this question.

The ability to segregate high DY/long MI animals 
based on modeled production data presents a unique 
opportunity to further resolve the phenotypic and ge-
netic bases for a greater tolerance to longer MI. This 
same approach could be used to identify primiparous/
multiparous cows that visit the AMS more frequently 
in early lactation that might then lead to a sustained 
increase in production for the entire lactation, as has 
been reported for CMS (Wall and McFadden, 2012).

The number of cows milked per robot per day is one 
of the greatest drivers of overall system performance 
(Castro et al., 2012; Molfino, 2018). Our findings could 
also be used to improve management practices, includ-
ing animal selection criteria, which could improve the 
economic viability of AMS. In this sense, approaches to 
increase DY have been made by milking existing cows 
more often (Stockdale, 2006), although this strategy 
may negatively affect overall efficiency and should be 
evaluated at the farm level. Within the present data 
set, if 11% of lactations belonging to the low DY/short 
MI group (reference group, the worst performing) were 
replaced by animals similar to those in the 7% of lacta-
tions in the high DY/long MI group, then a theoretical 
24% increase in production at the farm level could be 
achieved. This assumption is similar to results reported 
by Molfino (2018) who, using a different approach to 
identify efficient (high DY/long MI) cows in AMS, 
estimated a theoretical increase in milk yield of 13 to 
24% if the whole herd was composed of “efficient” cows. 
Moreover, our findings indicate that with animal selec-
tion/discrimination, the same number of cows could 
potentially be managed with fewer robots. Considering 
that the initial investment required to install AMS has 
a marked effect on profitability (Salfer et al., 2017), 
such a strategy could make the investment more at-
tractive.

Cows in the upper tertile for both DY and MI had 
greater production with fewer visits to the AMS per 
day, making them readily identifiable as more efficient 
in terms of MHR. Although these cows produced less 
milk across the entire lactation compared with cows 
with a high DY and short MI, their total number of 
visits to the robot per day was lower. Although MI 

Masía et al.: LACTATION CURVES IN AUTOMATED MILKING SYSTEMS

Figure 1. Estimated lactation curves according to production level 
(daily yield, DY) and length of the milking interval (MI) for primipa-
rous (A) and multiparous cows (B). Dotted line = high DY and short 
MI; solid line = high DY and long MI; dashed line = low DY and short 
MI; dotted-dashed line = low DY and long MI.
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affects the time each animal spends in the robot, it is 
expected that the reduction in visits would compensate 
for the increase in time spent in the milking unit at 
each visit. In our study, cows in the short and long MI 
groups had 10 and 14 h between milkings, respectively. 
In Australian pasture-based farms using AMS, the aver-
age occupancy is 51 cows per robot per day (Lyons and 
Kerrisk, 2017). If these efficiency gains at a milking-
time level were achieved, a longer MI would enable the 
same robot to be used by more animals. Despite high 
DY/long MI cows producing less milk than high DY/
short MI cows, this loss would be compensated by the 
potential increase in the number of animals that could 
be milked per robot per day. Even though it has been 
reported that extended MI, particularly above 16 h, 
reduced daily milk production (Lyons et al., 2013a) and 
increased the risk of mastitis (Hammer et al., 2012), 
not all animals are expected to be affected in the same 
way, because subject-specific responses are highly con-
ditioned to individual abilities. André et al. (2010) re-
ported a wide variation between individual cows in the 
effect of interval length on daily DY. By improving the 
use of each AMS and increasing MHR, profitability of 
the operation should increase (Jago and Burke, 2010).

CONCLUSIONS

We have described a statistical modeling approach to 
successfully identify and quantify a new, AMS-specific 
phenotype namely lactating animals with relatively 
greater DY and relatively longer MI than the average 
cow. Our results show that ~7% of cows in AMS farms 
produce more milk with fewer milkings than aver-
age. More research is needed to analyze between-cow 
variability in voluntary attendance to the automatic 
milking facilities during early, middle, and late lacta-
tion, and its correlation with production over the entire 
lactation. Identifying cows with high DY and long MI 
could allow differential management practices and 
rules to be developed for cows of contrasting “AMS 
efficiency.” Future selection for this new AMS-specific 
phenotype could result in an increased number of ani-
mals milked per robot, which represents an opportunity 
to increase the MHR, improving the profitability of the 
system. This could make future adoption of technology 
in pasture-based AMS more attractive.
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