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Abstract. In the first part of this article we deal with the existence of at least three non-
trivial weak solutions of a nonlocal problem with nonstandard growth involving a nonlocal
Robin type boundary condition. The second part of the article is devoted to study eigenvalues
and minimizers of several nonlocal problems for the fractional g−Laplacian (−∆g)

s with
different boundary conditions, namely, Dirichlet, Neumann and Robin.
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1. Introduction

In the recent years has been an increasing interest in studying non-local problems with
p−structure due to its accurate description of models involving anomalous diffusion. In several
branches of science have been observed some phenomena having a non-local nature, which,
nonetheless, do not obey a power-like growth law. See for instance [2, 3, 6, 12, 23] and
references therein.

The suitable operator to describe these kind of phenomena is the fractional g−Laplacian
introduced in [12] and defined as

(−∆g)
su := p.v.

∫
Rn
g (|Dsu|)

Dsu

|Dsu|
dy

|x− y|n+s
, (1.1)
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and defined in the principal value sense; here G is a Young function such that g = G′ and

s ∈ (0, 1) is a fractional parameter. The quantity Dsu := u(x)−u(y)
|x−y|s is the s−Hölder quotient.

Problems involving this operator have recently attracted some attention. We refer the
readers to [3, 4, 5, 7, 8, 9, 10, 12, 13, 18, 35]. Observe that when G(t) = tp/p, p > 1,
(1.1) becomes the well-known fractional p−Laplacian operator. See also [11] for a non-singular
version.

Given an open bounded domain Ω ⊂ Rn with smooth boundary (∂Ω ∈ C0,1 is enough) the
first aim of the present article is to study existence of nontrivial solutions of the following
equation involving the nonlinearities f and h with homogeneous Robin boundary condition on
Rn \ Ω {

(−∆g)
su+ g(u) u

|u| = λf(x, u) + µh(x, u) in Ω

Ngu+ β(x)g(u) u
|u| = 0 in Rn \ Ω.

(1.2)

Here, we introduce a non-local normal derivative in this settings as

Ngu(x) :=

∫
Ω
g (|Dsu|)

Dsu

|Dsu|
dy

|x− y|n+s
, x ∈ Rn \ Ω̄, (1.3)

which can be seen as the natural generalization of the non-local derivative introduced in [19].

Nonlocal equations for the fractional p−Laplacian with boundary conditions involving non-
local normal derivatives have been recently developed in the literature; see for instance [1, 16,
17, 19, 20, 31, 37, 38].

Regarding existence of solutions to problem (1.2) in the particular case of the fractional
p−Laplacian, there has been some recent develops. In [31], under suitable conditions on
the nonlinearities, the authors obtain existence of at most one positive solution by following
the celebrated paper of Brezis-Oswald. The authors in [30], for the same problem but with
β ≡ 0, and under suitable conditions on f , by using variational methods obtain existence
of two positive solutions. It worths to be mention that the local counterpart of (1.2) for
Orlicz functions in the Dirichlet case was studied in [15, 25, 32]. For some existence results in
the nonlocal Orlicz case with Dirichlet boundary conditions see [5]. For problems with critical
Trudinger-Moser nonlinearities see [28]. Finally, for an introduction to the theory of variational
methods for nonlocal fractional problems we recommend [29].

Our first main scope is to provide conditions on the Young function G, on the nonlinearities
f and h, and over λ, µ and β to ensure existence of at least three nontrivial (weak) solutions
of (1.2). Our arguments are based in the celebrated result [34] by B. Ricceri together with an
integration by parts formula related to the operator (−∆g)

s.

The Young function G =
∫ t

0 g(t) dt is assumed to satisfy the following growing condition

1 < p− ≤ tg(t)

G(t)
≤ p+ <∞ ∀t > 0 (G1)

for fixed constants p±. Moreover, the following structural condition is assumed

t 7→ G(
√
t), t ∈ [0,∞[ is convex. (G2)

To ensure compactness we restrict ourselves to the sub-critical case of the fractional Orlicz-
Sobolev embeddings: ∫ 1

0

G−1(τ)

τ
n+s
n

dτ <∞ and

∫ +∞

1

G−1(τ)

τ
n+s
n

dτ =∞. (G3)



NEUMANN AND ROBIN TYPE BOUNDARY CONDITIONS IN FRACTIONAL ORLICZ-SOBOLEV SPACES 3

Here, λ and µ are two positive real parameters in a suitable range and β ∈ L∞(Rn\Ω) is
strictly positive. The nonlinearities f, h : Ω × R → R will be suitable Carathéodory functions
assumed to belong to the class A defined as follows: f ∈ A if it fulfills the growth condition

|f(x, t)| ≤ w(x)(1 +m(|t|)) for a.e x ∈ Ω and for all t ∈ R, (f1)

where w is a positive function such that w ∈ L∞(Ω) and m = M ′, being M a Young function
decreasing essentially more rapidly than the critical Sobolev function G∗, i.e., M ≺≺ G∗, being
G∗ the critical function in the fractional Orlicz-Sobolev embedding (see section 2.2 for details).
We remark that (f1) is fulfilled, for instance, if |f(x, t)| ≤ w(x)(1+ |u|)q−1 for some q ∈ (1, p−∗ ),

being p−∗ := np−

n−p− .

From now on, we denote

F (x, t) =

∫ t

0
f(x, s) ds, H(x, t) =

∫ t

0
h(x, s) ds, F(u) =

∫
Ω
F (x, u) dx,

and we anticipate that the natural space to look for (weak) solutions of (1.2) is given by (see
Section 3 for details and motivations)

X =

{
u measurable :

∫∫
R2n\(Ωc)2

G(|Dsu(x, y)|) dµ+

∫
Ω
G(|u|) dx+

∫
Rn\Ω

βG(|u|) dx <∞

}
,

where we have denoted dµ := dx dy
|x−y|n .

With these preliminaries, our first result reads as follows.

Theorem 1.1. Let G be a Young function satisfying the structural hypotheses (G1),(G2) and
(G3), let β ∈ L∞(Rn \ Ω) and let f, h ∈ A be such that

max

{
lim sup
|u|→0

supx∈Ω F (x, u)

G(u)
, lim sup
|u|→+∞

supx∈Ω F (x, u)

G(u)

}
≤ 0, (F1)

sup
u∈X

∫
Ω
F (x, u) dx > 0. (F2)

Then, if we set

δ = inf

{
J (u)

F(u)
: u ∈ X , F(u) > 0

}
,

where

J (u) :=

∫∫
R2n\(Ωc)2

G(|Dsu|) dµ+

∫
Ω
G(|u|) dx+

∫
Rn\Ω

βG(|u|) dx,

for each compact interval [a, b] ⊂ (δ,∞) there exists ν > 0 with the following property: for
every λ ∈ [a, b] and h, there exists γ > 0 such that, for each µ ∈ [0, γ], problem (1.2) has at
least three weak solutions whose norms in X are less than ν.

We also prove the following result characterizing the geometry involved in the class of ad-
missible nonlinearities.

Theorem 1.2. Let G be a Young function satisfying (G1),(G2) and (G3), let β ∈ L∞(Rn \Ω)
and let f, h ∈ A such that

(i) there exists a Young function B(t) =
∫ t

0 b(τ) dτ such that tb(t)
B(t) ≤ b

+ < p− and B ≺≺ G,

and a constant c1 > 0 for which

F (x, t) ≤ c1(1 +B(t)) for all (x, t) ∈ Ω× R;
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(ii) there exist a constant c2 > 0, τ1 > 0 and a Young function D(t) =
∫ t

0 d(τ) dτ such that

p+ < d− ≤ td(t)
D(t) and G ≺≺ D for which

F (x, t) ≤ c2D(t) for all (x, t) ∈ Ω× [−τ1, τ1];

(iii) there exists τ2 ∈ R \ {0} such that

F (x, τ2) > 0 and F (x, t) ≥ 0 for all (x, t) ∈ Ω× [0, τ2].

Then there exists δ > 0 such that for every compact interval [a, b] ⊂ (δ,∞) there exists a real
number ν such that, for every λ ∈ [a, b] and every continuous function h there exists γ > 0
such that, for each µ ∈ [0, γ], then problem (1.2) has at least three weak solutions whose norms
in X are less than ν.

We remark that the class of admissible nonlinearities in Theorem 1.1 includes perturbations
of powers and concave-convex type combinations, among other. See Section 4 for further
examples.

Very close to (1.2), as a second aim, we will study eigenvalues and minimizers of several
nonlocal problems with non-standard growth involving different boundary conditions. For
the case of powers, that is, for fractional p−Laplacian type operators, the Dirichlet case was
studied for instance in [27, 36], for the Neumann case see for instance [17, 30], the Robin case
was dealt in [21]. For general Orlicz functions and Dirichlet boundary conditions we refer to
[35].

To be more precise, we consider the following Dirichlet eigenvalue problem{
(−∆g)

su+ g(|u|) u
|u| = λg(|u|) u

|u| in Ω

u = 0 in Rn \ Ω,
(1.4)

the following Neumann problem in terms of the nonlocal normal derivative Ng{
(−∆g)

su+ g(|u|) u
|u| = λg(|u|) u

|u| in Ω

Ngu = 0 in Rn \ Ω,
(1.5)

the following problem, which, from a probabilistic point of view can be seen also as a Neumann
eigenvalue problem (see [17]){

(−∆g)
s
Ωu+ g(|u|) u

|u| = λg(|u|) u
|u| in Ω

u ∈W s,G
reg .

(1.6)

and finally, the following Robin eigenvalue problem{
(−∆g)

su+ g(|u|) u
|u| = λg(|u|) u

|u| in Ω

Ngu+ βg(|u|) u
|u| = 0 in Rn \ Ω.

(1.7)

Here, for 0 < s < 1 we have denoted the regional fractional g−Laplacian as

(−∆g)
s
Ωu := 2 p.v.

∫
Ω×Ω

g(|Dsu|)
Dsu

|Dsu|
dy

|x− y|n+s
,

which is naturally defined in the space

W s,G
reg (Ω) :=

{
u :

∫
Ω
G(|u|) dx+

∫∫
Ω×Ω

G (Dsu) dµ <∞
}
.

A substantial difference which contrasts with the case of powers is that, in general, eigen-
values of (1.4), (1.5), (1.6) and (1.7) are not variational, i.e., they cannot be obtained by
minimizing some Rayleigh quotient on a suitable space. For this reason, it is very interesting
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to study also the natural variational minimization problem related to Dirichlet, Neumann,
regional Neumann and Robin boundary conditions. In order to not extend considerably the
length of this introduction, we anticipate that the corresponding minimizers exist, are well
defined (see Proposition (5.4)) and are denoted as ΛD, ΛN , ΛÑ and ΛR, respectively, but we
will not define them here (see equations (5.5), (5.6), (5.7) and (5.8) for the precise definition).

In spite of the fact that eigenvalues and minimizers are different quantities in general, in
light of Proposition 5.8 they are comparable, with equality in the case of powers (i.e., when
G(t) = tp/p, p > 1). Regarding the relation among the different minimizers, in Proposition 5.6
we prove that they are ordered as

ΛÑ ≤ ΛN ≤ ΛR ≤ ΛD.

In view of the aforementioned Proposition 5.8, eigenvalues are consequently ordered as

λÑ ≤ c
2λN ≤ c4λR ≤ c6λD,

where c = p+/p−.

In Theorem 5.5 we prove that a function reaching the minimization problem for Λ ∈
{ΛÑ ,ΛN ,ΛR,ΛD} is an eigenfunction for λ ∈ {λÑ , λN , λR, λD}, respectively. A considerable
difference with the case of powers is that, due to the non-homogeneous nature of the problems,
both eigenvalues and minimizers strongly depend on the energy level: for each µ > 0, if the
eigenfunction/minimizing function is normalized such that

∫
ΩG(|u|) = µ, then Λ and λ depend

on µ. Nevertheless, in Proposition 5.7 we prove that Λ and λ are uniformly bounded by below
independently of µ.

Before concluding this introduction, we mention some interesting issues we not deal and let
as open questions: to establish positivity of eigenfunctions, to obtain its boundedness, and to
study its interior/up to the boundary regularity.

This paper is organized as follows. In Section 2 we introduce some preliminary results and
definitions, as well as a proof of an integration by parts formula related to the operator (−∆)sg.
Section 3 deals with the proof of our existence results. Some examples of nonlinearities which
illustrate Theorems 1.1 and 1.2 are given in Section 4. Finally, Section 5 is devoted to study
the eigenvalue problems (1.4),(1.5),(1.6) and (1.7).

2. Preliminaries

In this section we introduce the classes of Young function and fractional Orlicz-Sobolev
functions, the suitable class where the fractional g-Laplacian is well defined.

2.1. Young functions. An application G : R+ → R+ is said to be a Young function if it

admits the integral formulationG(t) =
∫ t

0 g(τ) dτ , where the right continuous function g defined
on [0,∞) has the following properties:

g(0) = 0, g(t) > 0 for t > 0,

g is nondecreasing on (0,∞),

lim
t→∞

g(t) =∞.

From these properties it is easy to see that a Young function G is continuous, nonnegative,
strictly increasing and convex on [0,∞).

We will assume from now on that the Young functions satisfy the growth behavior given in
(G1). Roughly speaking, this condition indicates that G remains between two power functions.
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The following properties on Young functions are well-known. See for instance [24] for a
proof.

Lemma 2.1. Let G be a Young function satisfying (G1) and a, b ≥ 0. Then

min{ap− , ap+}G(b) ≤ G(ab) ≤ max{ap− , ap+}G(b), (L1)

G(a+ b) ≤ C(G(a) +G(b)) with C := 2p
+
, (L2)

G is Lipschitz continuous.

Condition (L2) is known as the ∆2 condition or doubling condition and, as it is showed in
[24, Theorem 3.4.4], it is equivalent to the right hand side inequality in (G1).

The complementary Young function G̃ of a Young function G is defined as

G̃(t) := sup{tw −G(w) : w > 0}.

From this definition the following Young-type inequality holds

ab ≤ G(a) + G̃(b) for all a, b ≥ 0,

and the following Hölder’s type inequality∫
Ω
|uv| dx ≤ ‖u‖G‖v‖G̃

for all u ∈ LG(Ω) and v ∈ LG̃(Ω). Moreover, it is not hard to see that G̃ can be written in
terms of the inverse of g as

G̃(t) =

∫ t

0
g−1(τ) dτ, (2.1)

see [33, Theorem 2.6.8].

Since ϕ−1 is increasing, from (2.1) and (G1) it is immediate the following relation.

Lemma 2.2. Let G be an Young function satisfying (G1) such that g = G′ and denote by G̃
its complementary function. Then

G̃(g(t)) ≤ (p+ + 1)G(t)

holds for any t ≥ 0.

The following convexity property will be useful.

Lemma 2.3. [26, Lemma 2.1] Let G be a Young function satisfying (G1) and (G2). Then for
every a, b ∈ R,

G(|a|) +G(|b|)
2

≥ G
(∣∣∣∣a+ b

2

∣∣∣∣)+G

(∣∣∣∣a− b2

∣∣∣∣) .
2.2. Fractional Orlicz-Sobolev spaces. Given a Young function G, a parameter s ∈ (0, 1)
and an open and bounded set Ω ⊆ Rn we consider the spaces

LG(Ω) := {u : Ω→ R measurable : ΦG,Ω(u) <∞} ,
W s,G(Ω) :=

{
u ∈ LG(Ω): Φs,G,Rn(u) <∞

}
,

W s,G
reg (Ω) := {u ∈ LG(Ω): Φs,G,Ω(u) <∞}
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where the modulars ΦG,Ω and Φs,G are defined as

ΦG,Ω(u) :=

∫
Ω
G(|u(x)|) dx

Φs,G,Rn(u) :=

∫∫
Rn×Rn

G(|Dsu(x, y)|) dµ,

Φs,G,Ω(u) :=

∫∫
Ω×Ω

G(|Dsu(x, y)|) dµ,

and the s−Hölder quotient is defined as

Dsu(x, y) :=
u(x)− u(y)

|x− y|s
,

with dµ(x, y) := dx dy
|x−y|n . These spaces are endowed with the so-called Luxemburg norms

‖u‖LG(Ω) := inf
{
λ > 0: ΦG,Ω

(u
λ

)
≤ 1
}
,

‖u‖W s,G(Ω) := ‖u‖LG(Ω) + [u]W s,G(Rn),

‖u‖
W s,G
reg (Ω)

:= ‖u‖LG(Ω) + [u]
W s,G
reg (Ω)

,

where the (s,G)-Gagliardo semi-norms are defined as

[u]W s,G(Rn) := inf
{
λ > 0: Φs,G,Rn

(u
λ

)
≤ 1
}
,

[u]
W s,G
reg (Ω)

:= inf
{
λ > 0: Φs,G,Ω

(u
λ

)
≤ 1
}
.

The space W s,G(Ω) is a reflexive Banach space. Moreover C∞c is dense in W s,G(Rn). See [12,
Proposition 2.11] and [18, Proposition 2.9] for details.

We also consider the following space

W s,G
0 (Ω) :=

{
u ∈W s,G(Rn) : u = 0 a.e. in Rn \ Ω

}
.

Observe that W s,G
0 (Ω) ⊂W s,G(Rn) ⊂ LG(Rn).

In order to state some embedding results for fractional Orlicz-Sobolev spaces we introduce
the following notation.

Given two Young functions A and B, we say that B is essentially stronger than A or
equivalently that A decreases essentially more rapidly than B, and denoted by A ≺≺ B, if for
each a > 0 there exists xa ≥ 0 such that A(x) ≤ B(ax) for x ≥ xa.

When the Young function G fulfills condition (G3), the critical function for the fractional
Orlicz-Sobolev embedding is given by

G−1
∗ (t) =

∫ t

0

G−1(τ)

τ
n+s
n

dτ.

The following result can be found in [8]. See also [3] for further generalizations.

Theorem 2.4. Let G be a Young function satisfying (G3) and s ∈ (0, 1). Let Ω ⊂ Rn be a
C0,1 bounded open subset. Then

(i) the embedding W s,G
reg (Ω) ↪→ LG∗(Ω) is continuous;

(ii) for any Young function B such that B ≺≺ G∗, the embedding W s,G
reg (Ω) ↪→ LB(Ω) is

compact.
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From (2.1) it follows the following relation between modulars and norms. See [7, Lemma
3.1] or [22, Lemma 2.1].

Lemma 2.5. Let G be a Young function satisfying (G1) and let ξ−(t) = min{tp− , tp+}, ξ+(t) =

max{tp− , tp+}, for all t ≥ 0. Then, given Ω ⊂ Rn,

(i) ξ−(‖u‖G) ≤ ΦG,Ω(u) ≤ ξ+(‖u‖G) for u ∈ LG(Ω),

(ii) ξ−([u]s,G) ≤ Φs,G,Ω(u) ≤ ξ+([u]s,G) for u ∈W s,G(Ω).

2.3. The fractional g-Laplacian operator. Let G be a Young function such that G′ = g
and s ∈ (0, 1). As anticipated, the fractional g−Laplacian operator is defined as

(−∆g)
su := 2 p.v.

∫
Rn
g(|Dsu|)

Dsu

|Dsu|
dy

|x− y|n+s
,

where p.v. stands for in principal value. This operator is well defined between W s,G(Rn) and
its dual space W−s,G

∗
(Rn). In fact, in [12, Theorem 6.12] the following representation formula

is provided

〈(−∆g)
su, v〉 =

∫∫
Rn×Rn

g(|Dsu|)
Dsu

|Dsu|
Dsv dµ,

for any v ∈W s,G(Rn).

On the other hand, the censored or regional fractional g−Laplacian is well defined between

W s,G
reg (Ω) and its dual space and it is defined as

(−∆g)
s
Ωu := 2 p.v.

∫
Ω
g(|Dsu|)

Dsu

|Dsu|
dy

|x− y|n+s
,

which acts as

〈(−∆g)
s
Ωu, v〉 =

∫∫
Ω×Ω

g(|Dsu|)
Dsu

|Dsu|
Dsv dµ,

for any v ∈W s,G
reg (Ω).

2.4. Integration by parts formula. Here we prove an integration by parts formula in our
settings which exploits the divergence form of the operator. We introduce the following notation

〈(−∆g)
su, v〉∗ =

1

2

∫
R2n\(Ωc)2

g(|Dsu|)
Dsu

|Dsu|
Dsv dµ,

the modular

Φs,G,∗(u) =

∫∫
R2n\(Ωc)2

G(|Dsu(x, y)|) dµ

and the corresponding Luxemburg semi-norm

[u]
W s,G
∗ (Rn)

= inf
{
λ > 0: Φs,G,∗

(u
λ

)
≤ 1
}
.

Of course, it is naturally defined the space

W s,G
∗ (Ω) := {u ∈ LG(Ω): Φs,G,∗(u) <∞}.

Proposition 2.6. Given u ∈ X , the following holds.

(i) The following version of the divergence theorem is true∫
Ω

(−∆g)
su = −

∫
Rn\Ω

Ngu.
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(ii) More generally, we have the following integration by parts formula

〈(−∆g)
su, v〉∗ =

∫
Ω
v(−∆g)

su dx+

∫
Rn\Ω

vNgu dx ∀v ∈ X .

Proof. In light of [18][Proposition 2.9], it suffices to prove the result for u ∈ C2
c (Rn).

Let us prove (i). Observe that, since the role of x and y are symmetric, we get∫
Ω

∫
Ω
g (|Dsu|)

u(x)

|Dsu|
dxdy

|x− y|n+s
=

∫
Ω

∫
Ω
g (|Dsu|)

u(y)

|Dsu|
dxdy

|x− y|n+s

from where it is immediate that∫
Ω

∫
Ω
g (|Dsu|)

Dsu

|Dsu|
dxdy

|x− y|n+s
= 0.

Hence, we have that∫
Ω

(−∆g)
su(x) dx =

∫
Ω

∫
Rn
g (|Dsu|)

Dsu

|Dsu|
dydx

|x− y|n+s

=

∫
Ω

∫
Rn\Ω

g (|Dsu|)
Dsu

|Dsu|
dydx

|x− y|n+s

=

∫
Rn\Ω

(∫
Ω
g (|Dsu|)

Dsu

|Dsu|
dx

|x− y|n+s

)
dy

= −
∫
Rn\Ω

Ngu(y) dy.

as desired. Now, let us prove (ii). Since R2n \ (Ωc)2 = (Ω× Rn) ∪ [(Rn \ Ω)× Ω], we get

〈(−∆g)
su, v〉∗ =

∫
Ω
v(x)

(∫
Rn
g(|Dsu|)

Dsu

|Dsu|
dy

|x− y|n+s

)
dx

+

∫
Rn\Ω

v(x)

(∫
Ω
g(|Dsu|)

Dsu

|Dsu|
dy

|x− y|n+s

)
dx.

In light of (1.1) and (1.3) we obtain the desired relation. �

Remark 2.7. If we consider the function ws,Ω(x) =
∫

Ω

∫
Rn\Ω g(|x− y|−s)|x− y|n+s dy and the

normalization of Ng given by Ñg(x) :=
Ng(x)
ws,Ω(x) , if Ñg(x) = 1 for any x ∈ Rn \ Ω̄, we can define

a generalization of the fractional perimeter defined in [14] as follows∫
Rn\Ω

Ng dx =

∫
Rn\Ω

ws,Ω dx =

∫
Ω

∫
Rn\Ω

g

(
1

|x− y|s

)
dxdy

|x− y|n+s
:= Pers,g(Ω).

3. Variational setting and proofs of Theorems 1.1 and 1.2

We start defining the notion of weak solution for problem (1.2). With that end it will be
useful introducing the following functional settings. Let us denote

X := {u : Rn → R measurable s.t. : ‖u‖X <∞}
where

‖u‖X := [u]
W s,G
∗ (Rn)

+ ‖u‖LG(Ω) + ‖u‖LG,β(Ωc),

and

‖u‖LG,β(Ωc) = inf

{
λ > 0:

∫
Rn\Ω

β G
(u
λ

)
dµ ≤ 1

}
.
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By following standard arguments it can be seen that X is a reflexive Banach space with
respect to the norm ‖ · ‖X . See for instance [18].

The integration by parts formula given in Proposition 2.6 leads to the following definition.

Definition 3.1. We say that u ∈ X is a weak solution of (1.2) if

〈(−∆g)
su, v〉∗ +

∫
Ω
g(|u|) u

|u|
v dx = λ

∫
Ω
fv dx+ µ

∫
Ω
hv dx−

∫
Rn\Ω

βg(|u|) u
|u|
v dx

for all v ∈ X .

As anticipated in the introduction, we will approach problem (1.2) through the machinery
of variational methods, and in particular, it will be done by using the abstract multiplicity
result given in Theorem A.2. With that aim, we consider the functional Ψ: X → R defined as

Ψ(u) := J (u)− λF(u)− µH(u)

for every u ∈ X , where J ,F ,H : X → R are defined as

J (u) :=

∫
R2n\(Ωc)2

G(|Dsu|) dµ+

∫
Ω
G(|u|) dx+

∫
Rn\Ω

βG(|u|) dx,

F(u) =

∫
Ω
F (x, u) dx and H(u) =

∫
Ω
H(x, u) dx.

The following compact embedding for the space X holds.

Lemma 3.2. Given a Young function A such that A ≺≺ G∗, then the embedding X ↪→ LA(Ω)
is compact.

Proof. Let u ∈ X . Observe that [u]
W s,G
reg (Ω)

≤ [u]
W s,G
∗ (Rn)

as a consequence of the inequality∫
Ω×Ω

G

(
|Dsu|
‖u‖∗

)
dµ ≤

∫
R2n\(Ωc)2

G

(
|Dsu|
‖u‖∗

)
dµ ≤ 1

together with the definition of the Luxemburg norm. Then, from Theorem 2.4, there exists a
constant c > 0 such that

‖u‖LA(Ω) ≤ c[u‖W s,G
reg (Ω)

≤ c([u]
W s,G
∗ (Rn)

+ ‖u‖LG(Ω)) ≤ c‖u‖X

concluding the proof due to the compactness of W s,G
reg (Ω) into LA(Ω). �

The next proposition proves the well-posedness of Ψ.

Proposition 3.3. Let f, h ∈ A, then the functional Ψ is well defined on the space X .

Proof. First, we notice that given u ∈ X , from Lemma 2.5 it follows that J (u) ≤ Cξ+(‖u‖X )
for some constant C = C(p±). Moreover, by (f1) and the fact that m is increasing we get∫

Ω
F (x, u) dx ≤

∫
Ω
w(x)

∫ u

0
m(|t|) dt dx ≤ ‖w‖∞

∫
Ω
|u|m(|u|) dx.

In light of Lemma 2.2, m(|u|) ∈ LM̃ (Ω), and then, by applying Hölder’s inequality for Young
function we get that ∫

Ω
|u|m(|u|) dx ≤ ‖u‖LM (Ω)‖m(u)‖

LM̃ (Ω)
.

Observe that [24, Theorem 3.17.1] and Lemma 2.2 give that ‖m(u)‖
LM̃ (Ω)

≤ c‖u‖LM (Ω). More-

over, from Lemma 3.2 it follows that ‖u‖LM (Ω) ≤ c‖u‖X , and therefore F is well defined.

The well-posedness of H follows analogously, concluding that Ψ is well defined on X . �
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Next, we prove some useful properties of the functional J .

Lemma 3.4. Assume that (G1), (G2) and (G3) hold. Then,

(i) the functional J : X → R is C1 with derivative given by

〈J ′(u), v〉 = 〈(−∆g)
su, v〉∗ +

∫
Ω
g(|u(x)|) u

|u|
v(x) dx+

∫
Rn\Ω

β g(|u(x)|)v(x) dx

for all u, v ∈ X ;
(ii) J is coercive, sequentially weakly lower semicontinuous;
(iii) J ∈ WX , where the class WX is given in Definition (A.1);
(iv) J is bounded on each bounded subset of X and its derivative admits a continuous

inverse on X ∗.

Proof. (i) From [35, Proposition 4.1], it is easy to see that J is class C1.

(ii) Let u ∈ X with ‖u‖X > 1. In view of Lemma 2.5, J is coercive since

J (u) ≥ ξ−(‖u‖LG(Ω)) + ξ−([u]
W s,G
∗ (Rn)

) + ξ−(‖u‖LG,β(Ωc)) ≥ cξ−(‖u‖X ),

where c > 0 depends only on p±. Moreover, the sequential weak lower semicontinuity of J
follows by [8, Lemma 19].

(iii) Let {uk}k∈N be a sequence in X such that uk ⇀ u in X and lim infk→∞ J (uk) ≤ J (u).
Then, by the sequential weak lower semicontinuity of J proven in (ii) we get that, up to a
subsequence, J (uk) → J (u) as k → +∞. Since uk+u

2 converges weakly to u, and modulars
are lower semicontinuous with respect to the weak convergence, we get

J (u) ≤ lim inf
k→∞

J
(
uk + u

2

)
. (3.1)

We assume by contradiction that uk does not converge to u in X . Hence, there exists ε > 0
such that

∥∥uk+u
2

∥∥
X > ε. Then, by Lemma 2.5

J
(
uk + u

2

)
> ξ−(ε). (3.2)

On the other hand, by applying Lemma 2.3 it follows that

1

2
(G(u) +G(uk))−G

(
uk + u

2

)
≥ G

(
uk − u

2

)
,

which together with (3.2) leads to

1

2
(J (u) + J (uk))− J

(
uk + u

2

)
≥ J

(
uk − u

2

)
> ξ−(ε).

Taking limsup in the above inequality we obtain that

J (u)− ξ−(ε) ≥ lim sup
k→+∞

J
(
uk + u

2

)
,

which contradicts (3.1). Therefore uk → u strongly in X , and then J ∈ WX .

(iv) When ‖u‖X ≤ ρ, in light of Lemma 2.5 we have that J (u) ≤ ξ+(ρ), i.e., J is bounded
on any bounded subset of X .

We prove now that J admits a continuous inverse J −1 : X ∗ → X by means of the monotone
operator method introduced by Browder and Minty (see [39, Theorem 26.A (d)]). Therefore,
it suffices to verify that J ′ is coercive, hemicontinuous and uniformly monotone.
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Observe that since G is convex, J also is convex. Thus J (u) ≤ 〈J ′(u), u〉 for all u ∈ X ,
and, by using Lemma 2.5, for any u ∈ X such that ‖u‖X > 1 we have

〈J ′(u), u〉
‖u‖X

≥ J (u)

‖u‖X
≥ min{‖u‖p

−−1
X , ‖u‖p

+−1
X },

from where the coercivity of J ′ follows by taking ‖u‖X →∞.

Furthermore, since the real function t 7→ 〈J ′(u + tv), w〉 is continuous in [0, 1] for any
u, v, w ∈ X , we have that J ′ is hemicontinuous.

Let us finally prove that J ′ is uniformly monotone. Since G is convex we have that for every
u, v ∈ X it holds

G(|u|) ≤ G
(∣∣∣∣u+ v

2

∣∣∣∣)+ g(|u|) u
|u|

u− v
2

and G(|v|) ≤ G
(∣∣∣∣u+ v

2

∣∣∣∣)+ g(|v|) v
|v|
v − u

2
.

Adding the above two relations and integrating over Ω we find that

1

2

∫
Ω

(
g(|u|) u

|u|
− g(|v|) v

|v|

)
(u− v) dx

≥
∫

Ω
G(|u|) dx+

∫
Ω
G(|v|) dx− 2

∫
Ω
G

(∣∣∣∣u+ v

2

∣∣∣∣) dx ∀u, v ∈ X .

On the other hand, we deduce by Lemma 2.3 that∫
Ω

(G(|u|) +G(|v|)) dx ≥ 2

∫
Ω
G

(
u+ v

2

)
dx+ 2

∫
Ω
G

(
u− v

2

)
dx ∀u, v ∈ X .

From the last two relations it follows that∫
Ω

(g(|u|) u
|u|
− g(|v|) v

|v|
)(u− v) dx ≥ 4

∫
Ω
G

(
|u− v|

2

)
dx ∀u, v ∈ X .

Similarly, for any u, v ∈ X it holds that∫
Rn\Ω

β (g(|u|) u
|u|
− g(|v|) v

|v|
)(u− v) dx ≥ 4

∫
Rn\Ω

β G

(
|u− v|

2

)
dx

and

〈(−∆g)
s(u− v), u− v〉∗ ≥ 4

∫
R2n\(Ωc)2

G

(
|Dsu−Dsv|

2

)
dµ.

Gathering the last three inequalities one gets that

〈J ′(u)− J ′(v), u− v〉 ≥ 4J
(
u− v

2

)
∀u, v ∈ X .

Define now the function α : [0,+∞)→ [0,+∞) by

α(t) =
1

p+ − 2

{
tp

+−1 for t ≤ 1

tp
−−1 for t ≥ 1.

It is easy to check that α is an increasing function with α(0) = 0 and α(t) → ∞ as t → ∞.
Taking into account the above information and Lemma 2.5, we deduce that

〈J ′(u)− J ′(v), u− v〉 ≥ α(‖u− v‖X ),

that is, J ′ is uniformly monotone, which concludes our proof. �



NEUMANN AND ROBIN TYPE BOUNDARY CONDITIONS IN FRACTIONAL ORLICZ-SOBOLEV SPACES13

Lemma 3.5. F : X → R is C1 with derivative given by

〈F ′(u), v〉 =

∫
Ω
f(x, u)v dx,

for all u, v ∈ X . Moreover, F : X → X ∗ is compact.

Proof. Usual arguments show that F ∈ C1(X ,R). In order to verify the compactness of F , let
{uk}k∈N ⊂ X be a bounded sequence. Then up to a subsequence uk weakly converges in X to
u ∈ X . Moreover, in light of Lemma 3.2, uk → u strongly in LM (Ω) and a.e. in Ω.

Fixed v ∈ X with ‖v‖X ≤ 1, thanks to the Hölder’s inequality for Young functions and the
embedding of Lemma 3.2 we have

|〈F ′(uk), v〉 − 〈F ′(u), v〉| =
∣∣∣∣∫

Ω
(f(x, uk)− f(x, u))v dx

∣∣∣∣
≤ ‖f(·, uk(·))− f(·, u(·))‖

LM̃ (Ω)
‖v‖LM (Ω)

≤ c ‖f(·, uk(·))− f(·, u(·))‖
LM̃ (Ω)

‖v‖X ,

for some c > 0. Thus, taking supremum for ‖v‖X ≤ 1, we get

‖F ′(uk)−F ′(u)‖X ∗ ≤ c‖f(·, uk(·))− f(·, u(·))‖
LM̃ (Ω)

.

Being f ∈ A we deduce immediately that

f(x, uk(x))− f(x, u(x))→ 0 as k →∞,

for almost all x ∈ Ω and

|f(x, uk(x))− f(x, u(x))| ≤ |f(x, uk(x))|+ |f(x, u(x))|
≤ ‖w‖∞(m(|uk(x)|) +m(|u(x)|)).

Note that the majorant function in the previous relation is uniformly bounded in LM̃ (Ω).
Hence, by applying the dominate convergence theorem we get that∫

Ω
M̃(|f(x, uk(x))− f(x, u(x))|) dx→ 0 as k →∞.

Since M satisfies (G1), M̃−mean convergence is equivalent to norm convergence (see [24,
Lemma 3.10.4]), that is,

‖f(·, uk(·))− f(·, u(·))‖
LM̃ (Ω)

→ 0 as k →∞.

Therefore ‖F ′(uk)−F ′(u)‖X ∗ → 0 as k →∞, giving that F ′ is a compact operator. �

Remark 3.6. Combining Lemmas 3.4 and 3.5, we deduce that Ψ ∈ C1(X ,R) with the deriv-
ative given by

〈Ψ′(u), v〉 = 〈(−∆g)
su, v〉∗ +

∫
Rn\Ω

β g(|u(x)|) u
|u|
v(x) dx+

∫
Ω
g(|u(x)|) u

|u|
v(x) dx

− λ
∫

Ω
f(x, u(x))v(x) dx− µ

∫
Ω
g(x, u(x))v(x) dx,

for every v ∈ X . Then, critical points of Ψ are weak solutions of problem (1.2).

Having proved these preliminaries, we are in position to prove our first main theorem.
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Proof of Theorem 1.1. Fix λ, µ and f, h ∈ A, we check the conditions needed to apply
Theorem A.2.

Fixed ε > 0, in light of (F1) there exist intervals I1 = [−r2,−r1] and I2 = [r1, r2] such that

F (x, t) ≤ εG(|t|) (x, t) ∈ Ω× R \ (I1 ∪ I2). (3.3)

In I1 ∪ I2, F (x, ·) is bounded in Ω, then there exist d > 0 and a Young function B such that

b = B′, G ≺≺ B ≺≺ G∗ and p+ < b− (here b− denotes a constant such that b− < tb(t)
B(t)) for

which

F (x, t) ≤ dB(|t|) (x, t) ∈ Ω× (I1 ∪ I2).

Then, from the inequalities above we obtain that

F(u)

J (u)
≤
∫

Ω F (x, u) dx∫
ΩG(|u|) dx

≤ ε+ d

∫
ΩB(|u|) dx∫
ΩG(|u|) dx

.

Observe that, assuming that ‖u‖X ≤ 1, from Lemma 2.5 and [24, Theorem 3.17.1] it holds
that

lim
u→0

∫
ΩB(|u|) dx∫
ΩG(|u|) dx

≤ lim
u→0

‖u‖b−
LB(Ω)

‖u‖p
+

LG(Ω)

≤ c lim
u→0
‖u‖b

−−p+

LG(Ω)
= 0.

From the previous computations it follows that

J1 := lim sup
u→0

F(u)

J (u)
≤ ε.

Moreover, assuming that ‖u‖X ≥ 1, by using again (3.3) and Lemma 2.5 we get

F(u)

J (u)
≤

∫
{x∈Ω: |u(x)|≤r2} F (x, u) dx

J (u)
+

∫
{x∈Ω: |u(x)|>r2} F (x, u) dx∫

ΩG(|u|) dx

≤ |Ω|
‖u‖p

+

X

sup{F (x, u(x)) : (x, u(x)) ∈ Ω× [−r2, r2]}+ ε

from where we obtain that

J2 := lim sup
‖u‖→∞

F(u)

J (u)
≤ ε.

Therefore, since ε is arbitrary we obtain that max{0, J1, J2} = 0.

Finally, since we are assuming (F2) it follows that the quantity sup{F(u)/J (u) : u ∈ J −1([0,∞])}
is strictly positive.

Finally, gathering Lemma 3.4, Lemma 3.5 and the last computations, we are in position of
applying Theorem A.2 to obtain our conclusion. �

Finally, we prove our second existence result.

Proof of Theorem 1.2. Since G ≺≺ G∗, hypothesis (i) implies (f1).

Note that hypothesis (i) also implies that

F(u)

J (u)
≤
∫

Ω F (x, u) dx∫
ΩG(|u|) dx

≤ c1

∫
Ω(1 +B(|u|) dx)∫

ΩG(|u|) dx
.

Assuming that ‖u‖X ≥ 1, from Lemma 2.5 and [24, Theorem 3.17.1] it holds that

lim
‖u‖X→∞

∫
ΩB(|u|) dx∫
ΩG(|u|) dx

≤ lim
u→∞

‖u‖b+
LB(Ω)

‖u‖p
−

LG(Ω)

≤ c lim
u→∞

‖u‖b
+−p−
LG(Ω)

= 0.
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From where

J1 := lim sup
‖u‖X→∞

F(u)

J (u)
= 0.

Similarly, assuming that ‖u‖X ≤ 1, hypothesis (ii) implies that

J2 := lim sup
‖u‖X→0

F(u)

J (u)
≤ c2 lim

‖u‖X→0

∫
ΩD(|u|) dx∫
ΩG(|u|) dx

≤ c lim
‖u‖X→0

‖u‖d
−−p+

LG(Ω)
= 0.

From these relations it follows that max{0, J1, J2} = 0.

Now, without loss of generality we assume that τ2 > 0 and choose a function u ∈ X such
that u(x) ≥ 0 in Ω and such that there exists x0 ∈ Ω with u(x0) > τ2. It follows that
U := {x ∈ Ω: u(x) > τ2} is a nonempty open subset of Ω.

Let k : R→ R defined by k(t) = min{t, τ2}. Then k(0) = 0 and k is Lipschitz with Lipschitz
constant 1. Therefore, the function u1 = k ◦u ∈ X satisfies that u1(x) = t for every x ∈ U and
0 ≤ u1(x) ≤ τ2 for every x ∈ Ω. Then, by hypothesis (iii) we obtain that

F (x, u1(x)) > 0 for any x ∈ U , F (x, u1(x)) ≥ 0 for every x ∈ Ω.

From this we conclude that F(u1) > 0 and thus

δ−1 = sup

{
F(u)

J (u)
: u ∈ J −1((0,∞))

}
> 0.

Therefore, from Lemma 3.4, Lemma 3.5 and the last computations, the result follows by
applying Theorem A.2. �

4. Some examples of nonlinearities

Let G be a Young function satisfying (G1), (G2) and (G3). Let us prove that the following
examples of nonlinearities belong to the class A and satisfy the hypothesis of Theorem 1.1.

(i) Consider the function f(t) = p| sin t|p−2 sin t cos t with p+ < p < p+
∗ and observe that

|f(t)| ≤ p(1 + |t|p
+
∗ −1),

and since F (t) = | sin t|p we obtain

lim
|t|→0

supx F (t)

G(t)
≤ lim
|t|→0

| sin t|p

|t|p+ = 0, lim
|t|→∞

supx F (t)

G(t)
≤ lim
|t|→∞

| sin t|p

|t|p−
= 0.

Finally, given a compact set C ⊂ Ω of positive measure, we consider a function v ∈ X
such that v(x) = π

2 in C and 0 ≤ v(x) ≤ π
2 in Ω \ C. Then

sup
u∈X

∫
Ω
F (u) dx ≥

∫
Ω
| sin v(x)|p dx = |C|+

∫
Ω\C
| sin v(x)|p dx > 0.

(ii) More generally, let M be a Young function such that p− < p+ < m− < m+, where

1 < m− <
tm(t)

M(t)
< m+ <∞ for all t ≥ 0.

Consider the function f(t) = m(| sin t|) cos t for t ≥ 0, and observe that this function
fulfills that |f(t)| ≤ max{m(1), 1}+m(|t|). Moreover, taking τ = sin r, we get∫ t

0
m(sin r) cos r dr =

∫ t

0
m(τ) dτ = M(| sin t|)
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from where

lim
|t|→0

supx F (t)

G(t)
≤ lim
|t|→0

M(| sin t|)
G(|t|)

= 0 ≤ lim
|t|→0

| sin t|m−

|t|p+ = 0

and

lim
|t|→∞

supx F (t)

G(t)
≤ lim
|t|→∞

M(| sin t|)
G(|t|)

= 0 ≤ lim
|t|→∞

| sin t|m+

|t|p−
= 0.

As before, given a compact set C ⊂ Ω of positive measure, we consider a function
u ∈ X such that v(x) = π

2 in C and 0 ≤ v(x) ≤ π
2 in Ω \ C. Then

sup
u∈X

∫
Ω
F (u) dx ≥

∫
Ω
G(| sin v(x)|) dx = |C|+

∫
Ω\C

G(| sin v(x)|) dx > 0.

(iii) We consider the following concave-convex combination

f(t) = tp−1 − tq−1 with p+ < p < q < p+
∗ :=

np+

n− sp+
.

Note that for some positive constant c = c(p±) it holds that

|f(t)| ≤ c(1 + |t|p−1) ≤ c(1 + |t|p
+
∗ −1).

Moreover,

lim
|t|→0

supx F (t)

G(t)
≤ lim
|t|→0

|t|p
p −

|t|q
q

|t|p+ = 0, lim
|t|→∞

supx F (x, t)

G(t)
≤ lim
|t|→∞

|t|p
p −

|t|q
q

|t|p−
= −∞.

Finally, let a compact set C ⊂ Ω large enough and v ∈ X such that v(x) = τ in C and
0 ≤ v(x) ≤ τ in Ω \ C, where τ is chosen such that τq

q −
τp

p > 0. Then

sup
u∈X

∫
Ω
F (u) dx ≥

∫
Ω
F (v) dx =

1

q

∫
Ω
vq dx− 1

p

∫
Ω
vp dx

≥ 1

q

∫
C
vq dx− 1

p

∫
C
vp dx− 1

p

∫
Ω\C

vp dx

≥ |C|
(
τ q

q
− τp

p

)
− τp

p
|Ω \ C| > 0.

The following example satisfies the hypothesis of Theorem 1.2.

(iv) Let 0 < α < p− ≤ p+ < β. Consider the function

f1(t) =

{
|t|α−2t if |t| ≤ 1

|t|β−2t if |t| > 1.

Then, it easily follows that

F1(t) =

{
|t|α
α if |t| ≤ 1

1
α −

1
β + 1

β |t|
β if |t| > 1,

and conditions (i)–(iii) from Theorem 1.2 are fulfilled.
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5. Eigenvalues and minimizers

We start this section by defining the notion of eigenvalues.

Definition 5.1. We say that λ is an eigenvalue of (1.4) with eigenfunction u ∈W s,G
0 (Ω) if

〈(−∆g)
su, v〉 = (λ− 1)

∫
Ω
g(|u|) u

|u|
v dx ∀v ∈W s,G

0 (Ω). (5.1)

We say that λ is an eigenvalue of (1.5) with eigenfunction u ∈W s,G
∗ (Ω) if

〈(−∆g)
su, v〉∗ = (λ− 1)

∫
Ω
g(|u|) u

|u|
v dx ∀v ∈W s,G

∗ (Ω). (5.2)

We say that λ is an eigenvalue of (1.6) with eigenfunction u ∈W s,G
reg (Ω) if

〈(−∆g)
s
Ωu, v〉 = (λ− 1)

∫
Ω
g(|u|) u

|u|
v dx ∀v ∈W s,G

reg (Ω). (5.3)

We say that λ is an eigenvalue of (1.7) with eigenfunction u ∈ X if

〈(−∆g)
s
Ωu, v〉∗ = (λ− 1)

∫
Ω
g(|u|) u

|u|
v dx−

∫
Rn\Ω

βg(|u|) u
|u|
v dx ∀v ∈ X . (5.4)

In order to prove our eigenvalues and minimizers results we will consider the following
functionals defined in Sections 2.2 and 2.4

Φs,G,Rn(u) : W s,G
0 (Ω)→ R, Φs,G,Ω(u) : W s,G

reg (Ω)→ R, Φs,G,∗(u) : W s,G
∗ (Ω)→ R

and
ΦG,Ω(u) : W(Ω)→ R

where its definition domain W(Ω) is either W s,G
0 (Ω), W s,G

reg (Ω) or W s,G
∗ (Ω).

Following [35, Proposition 4.1] it is straightforward to see that these functionals are well-
defined and are Fréchet derivable. Moreover, the following expressions can be deduced.

Proposition 5.2. We have that (Φs,G,Rn)′ is defined from W s,G
0 (Ω) onto its dual, (Φs,G,Ω)′

from W s,G
reg (Ω) onto its dual, (Φs,G,∗)

′ from W s,G
∗ (Ω) onto its dual, and (ΦG,Ω)′ from W(Ω)

onto its dual, are C1 and their Fréchet derivatives are given by

〈(Φs,G,Rn)′(u), v〉 = 〈(−∆g)
su, v〉 ∀v ∈W s,G

0 (Ω),

〈(Φs,G,Ω)′(u), v〉 = 〈(−∆g)
su, v〉 ∀v ∈W s,G

reg (Ω),

〈(Φs,G,∗)
′(u), v〉 = 〈(−∆g)

su, v〉∗ ∀v ∈W s,G
∗ (Ω),

〈(ΦG,Ω)′(u), v〉 =

∫
Ω
g(|u|) u

|u|
v dx ∀v ∈ W(Ω).

Proof. See [35, Proposition 4.1] with the pertinent changes. �

Given µ > 0, we consider the minimization problems

ΛD := inf
u∈MD

µ

Φs,G,Rn(u) + ΦG,Ω(u)

ΦG,Ω(u)
with MD

µ = {u ∈W s,G
0 : ΦG,Ω(u) = µ}, (5.5)

ΛN := inf
u∈MN

µ

Φs,G,∗(u) + ΦG,Ω(u)

ΦG,Ω(u)
with MN

µ = {u ∈W s,G
∗ (Ω): ΦG,Ω(u) = µ}, (5.6)
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ΛÑ := inf
u∈MÑ

µ

Φs,G,Ω(u) + ΦG,Ω(u)

ΦG,Ω(u)
with M Ñ

µ = {u ∈W s,G
reg (Ω): ΦG,Ω(u) = µ}, (5.7)

and

ΛR := inf
u∈MR

µ

Φs,G,∗(u) + ΦG,Ω(u) + ΦG,β,Ωc(u)

ΦG,Ω(u)
(5.8)

with

MR
µ = {u ∈ X : ΦG,Ω(u) = µ} and ΦG,β,Ωc(u) :=

∫
Rn\Ω

β G(|u(x)|) dx.

Note the subindex refers to Dirichlet, Neumann, regional Neumann and Robin, respectively.
Moreover, due to the possible lack of homogeneity, in general the quantities defined above
depend on the energy level µ.

Remark 5.3. By using the Poincaré’s inequality [35, Proposition 3.2] it follows that [·] is an

equivalent norm in W s,G
0 (Ω).

Proposition 5.4. For each µ > 0 there exist solutions of the minimization problems (5.5),
(5.6), (5.7) and (5.8), respectively.

Proof. It follows just by applying the direct method of the calculus of variations. See [35,
Proposition 5.1]. �

Existence of minimizers allow us to prove existence of eigenvalues.

Theorem 5.5. For every µ > 0 there exist positive numbers λD, λN , λÑ and λR which
are eigenvalues of (1.4), (1.5), (1.6) and (1.7), respectively, with non-negative eigenfunctions

uD ∈W s,G
0 (Ω), uN ∈W s,G

∗ (Ω), uÑ ∈W
s,G
reg (Ω) and uR ∈ X , respectively, normalized such that

ΦG,Ω(uD) = ΦG,Ω(uN ) = ΦG,Ω(uÑ ) = ΦG,Ω(uR) = µ.

Proof. Given a fixed µ > 0, in light of Proposition 5.4 there exist functions uD ∈W s,G
0 (Ω), uN ∈

W s,G
∗ (Rn), uÑ ∈W

s,G(Ω) and uR ∈ X , respectively, normalized such that their modular ΦG,Ω

is equal to µ, which attain the minimization problems (5.5), (5.6), (5.7) and (5.8), respectively.

Therefore, by the Lagrange multipliers rule, since the involved functionals are C1, there
exist numbers λD, λN , λÑ and λR for which the corresponding function uD, uN , uÑ and uR
satisfy the weak formulations (5.1), (5.2), (5.3) and (5.4), respectively. �

Proposition 5.6. The following relations among the minimizers of (5.5), (5.6) and (5.7) holds

ΛÑ ≤ ΛN ≤ ΛR ≤ ΛD.

Proof. Observe that since Φs,G,Ω(u) ≤ Φs,G,∗(u) it follows that W s,G
∗ (Ω) ⊂ W s,G

reg (Ω). Then,

given a minimizer u ∈MN
µ of ΛN we get that

min
u∈W s,G

∗ (Ω)

1

µ
(µ+ Φs,G,Ω(u)) ≤ min

u∈Ws,G,∗(Ω)

1

µ

(
µ+ Φs,G

∗ (u),
)

= ΛN

but since minimizing over a small set enlarges the minimum, we conclude that

ΛÑ = min
u∈W s,G

reg (Ω)

1

µ
(µ+ Φs,G,Ω(u)) ≤ min

u∈W s,G
∗ (Ω)

1

µ
(µ+ Φs,G,Ω(u)) ≤ ΛN .

Moreover, since X ⊂W s,G
∗ (Ω) it follows that ΛN ≤ ΛR.
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Finally, note that u ∈W s,G
0 (Ω) if Φs,G,∗(u) <∞ and u = 0 in Rn \Ω. Therefore, W s,G

0 (Ω) ⊂
X and Φs,G,Rn(u) = Φs,G,∗(u). Then, proceeding as before, ΛR ≤ ΛD. �

The following proposition claims that minimizers are uniformly bounded away from zero
independently of the energy level.

Proposition 5.7. Given µ > 0, the minimizers ΛÑ , ΛN , ΛR and ΛD are positive and bounded
by below independently on µ.

Proof. The Dirichlet case is treated in [35, Theorem 4.2]. We deal here with the general case.

Given µ > 0, let u ∈ M Ñ
µ be a minimizer of ΛÑ , that is, u ∈ W s,G

reg (Ω) is such that
ΦG,Ω(u) = µ and

ΛÑ =
Φs,G,Ω(u) + ΦG,Ω(u)

ΦG,Ω(u)
.

Denote by ū = 1
|Ω|
∫

Ω u(x) dx the average of u on Ω. By using the ∆2 condition we have that∫
Ω
G(|u|) dx ≤ C

∫
Ω
G(|u− ū|) dx+ C

∫
Ω
G(|ū|) dx.

By using Jensen’s inequality and (L1) we get∫
Ω
G(|u− ū|) dx =

∫
Ω
G

(∣∣∣∣ 1

|Ω|

∫
Ω

(u(x)− u(y)) dy

∣∣∣∣) dx

≤ 1

|Ω|

∫
Ω

∫
Ω
G(|u(x)− u(y)|) dy dx

≤ 1

|Ω|

∫
Ω

∫
Ω
G

(
|u(x)− u(y)|
|x− y|s

diam (Ω)s
)
dy dx

≤ c(|Ω|)Φs,G,Ω(u).

Finally, since again the Jensen’s inequality gives∫
Ω
G(|ū|) ≤

∫
Ω
G

(
1

|Ω|

∫
Ω
|u(y)| dy

)
dx ≤ 1

|Ω|

∫
Ω

∫
Ω
G(|u(y)|) dy dx = ΦG,Ω(u)

we obtain that ΦG,Ω(u) ≤ c(C, |Ω|)(Φs,G,Ω(u)+ΦG,Ω(u)), which implies a lower bound for ΛÑ :

ΛÑ =
Φs,G,Ω(u) + ΦG,Ω(u)

ΦG,Ω(u)
≥ 1

c(|Ω|)
.

In view of Proposition 5.6, the same lower bound is admissible for ΛN , ΛR and ΛD. �

The following proposition states that, although eigenvalues and minimizers differ in general,
both quantities are indeed comparable.

Proposition 5.8. It holds that

p−

p+
Λ ≤ λ ≤ p+

p−
Λ

where Λ ∈ {ΛD,ΛR,ΛN , λÑ} and Λ ∈ {λD, λR, λN , λÑ}, respectively.

As a direct consequence, denoting c = p+/p−, we have

λÑ ≤ c
2λN ≤ c4λR ≤ c6λD.
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Proof. These first chain of inequalities just follow by testing in the definition of eigenvalue with
the eigenfunction itself and using the fact that condition (G1), for all t ≥ 0, relates tg(t) with
G(t) up to the constants p±.

The second chain of inequalities are obtained just gathering the first one together with
Proposition 5.6. �

As a consequence of Proposition 5.7 and 5.8 we obtain a lower bound for eigenvalues.

Theorem 5.9. λD, λR, λN , λÑ are bounded by below by a positive constant independent on
µ.

Appendix A. An abstract existence result

Definition A.1. We introduce the following definitions.

(i) If X is a real Banach space, we denote by WX the class of all functionals J : X → R
possessing the following property: if {uk}k∈N is a sequence in X converging weakly
to u ∈ X and lim infk→∞ J (uk) ≤ J (u), then {uk}k∈N has a subsequence converging
strongly to u.

(ii) We say that the derivative of J admits a continuous inverse on X∗ we mean that there
exists a continuous operator T : X∗ → X such that T (J (x)) = x for all x ∈ X.

The above property is somehow a compactness property, stating the existence of a convergent
subsequence of a given sequence.

Theorem A.2 ([34]). Let X be a separable and reflexive real Banach space; J : X → R a
coercive, sequentially weakly lower semicontinuous C1 functional, belonging to WX , bounded
on each bounded subset of X and whose derivative admits a continuous inverse on X∗, and
F : X → R a C1 functional with compact derivative. Assume that Ψ has a strict local minimum
x0 with J (x0) = F(x0) = 0. Finally, setting

α = max

{
0, lim sup
‖x‖→+∞

F(x)

J (x)
, lim sup
‖x‖→x0

F(x)

J (x)

}
,

β = sup
x∈J−1(]0,+∞[)

F(x)

J (x)
,

and assume α < β. Then, for each compact interval [a, b] ∈ ( 1
β ,

1
α) (with the conventions

1
0 = +∞, 1

+∞ = 0) there exists ν > 0 with the following property: for every λ ∈ [a, b] and

every C1 functional J : X → R with compact derivative, there exists γ > 0 such that, for each
µ ∈ [0, γ], the equation

J ′(x) = λF ′(x) + µH′(x)

has at least three solutions whose norms are less than ν.
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Orlicz fractional Laplacians, arXiv:1807.01669. 2

[14] L. Caffarelli, J.M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math, 63
(2009), 1111-1144. 9

[15] F. Cammaroto and L. Vilasi, Multiple solutions for a nonhomogeneous Dirichlet problem in Orlicz–Sobolev
spaces, Applied Mathematics and Computation, 218 (2012), 11518–11527 2

[16] L.M. Del Pezzo, J.D. Rossi and A.M. Salort, Fractional eigenvalue problems that approximate Steklov
eigenvalues. Proc. R. Soc. Edinb. Sect. A, 148 (3)(2018), 499-516. 2

[17] L. Del Pezzo and A. M. Salort, The first non-zero Neumann p-fractional eigenvalue, Nonlinear Analysis:
Theory, Methods and Applications, 118 (2015), 130-143. 2, 4
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