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THE ALGEBRA OF BOUNDED TYPE HOLOMORPHIC FUNCTIONS ON THE
BALL

DANIEL CARANDO, SANTIAGO MURO, AND DANIELA M. VIEIRA

Abstract. We study the spectrum Mb(U) of the algebra of bounded type holomorphic functions

on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold

over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each

connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide

estimates for this radius and in many natural cases we have the precise value. As a consequence,

we obtain that for connected components different from that of evaluations, these radii are strictly

smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces,

connected components do not necessarily identify with balls.

1. Introduction

The study of the spectrum of the algebra of bounded type analytic functions on a Banach space

E was initiated by the seminal article of Aron, Cole and Gamelin [3]. Their main motivation was its

relation with the algebra H∞(BE) of bounded holomorphic functions on the unit ball. As in the one

or finite dimensional case, there is a natural projection defined on the spectrum M of H∞, which in

the infinite dimensional case, has range contained in the closed unit ball of the bidual BE′′.

The results proved in [3] imply that the interior part of the spectrum M (i.e. the subset of

homomorphisms which lie in the fibers of the interior points of the ball) naturally identifies with

the spectrum Mb(BE) of the algebra of bounded type holomorphic functions on the unit ball of the

Banach space E.
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In [4], the authors continued the study of the spectrum of the algebra of bounded type analytic

functions. They showed that for symmetrically regular Banach spaces, the spectrum Mb(U) of the

algebra Hb(U) of bounded type holomorphic functions on an open set U ⊂ E may be endowed with

an analytic structure as an infinite dimensional Banach manifold modeled over the bidual E ′′ of

E. This was applied, for example, to characterize the envelope of holomorphy of U in [7, 12]. The

analytic structure of Mb(X) for X a Riemann domain over a symetrically regular Banach space was

studied in [9].

In this article, we study the spectrum of the algebra of bounded type analytic functions on the unit

ball of E (or on a complete Reinhardt domain) from this point of view. More precisely, we aim to

give an accurate description of Mb(U) as analytic manifold. We show that whenever U is a complete

Reinhardt domain in a reflexive space with 1-unconditional basis, each connected component of

Mb(U) is (identified with) a complete Reinhardt set, which is not necessarily a multiple of U . We

also prove that, when U is the unit ball of ℓp, the connected components are identified with balls in

the following sense (see definitions below): they are all of the form

(1) S = {ϕz : ‖z‖ < r},

for some ϕ in the fiber of 0 and some 0 < r ≤ 1. Moreover, with the exception of the component

formed by evaluations, the radius r is strictly smaller that 1. Also, there are connected components

with arbitrary small radius. To show these facts, we give estimates of the radius of each connected

component and, for the components of most natural homomorphisms, we give their exact value.

This altogether provides a thorough description of Mb(Bℓp), which in turn gives information on the

spectrum of H∞(Bℓp) by [3].

The fact that connected components are identified with balls as in (1) is a particular (isometric)

property of ℓp: we exhibit an example of a Banach space E with 1-unconditional basis for which the

connected components of Mb(BE) are not balls. The example is actually a Banach space isomorphic

to ℓ2.
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We refer to [8, 11] for general theory on complex analysis in Banach spaces, and to [5, 6, 8, 10, 13]

for background on the space of holomorphic functions of bounded type and its spectrum.

2. The spectrum of bounded type functions on complete Reinhardt domains

Let E be a complex Banach space. We denote by E ′ its dual, and by BE its open unit ball.

Sometimes, when the underlying Banach space is clear, we use Br(x) to denote the open ball of

radius r centered at x and write Br when the ball is centered at the origin.

For an open subset U ⊂ E, a U -bounded set is a bounded set A ⊂ U whose distance to the

boundary of U , denoted by dU(A), is positive. A family (Un)n∈N of subsets of U is a fundamental

family of U -bounded sets if each Un is U -bounded, and if every U -bounded set is contained in some

Un. Every open set U admits a fundamental family of U -bounded sets, for instance

Un = {x ∈ U : ‖x‖ ≤ n, dU(x) ≥
1

n
},

for every n ∈ N. A holomorphic function on U which is bounded on U -bounded sets is called of

bounded type on U . The algebra of all bounded type holomorphic functions on U is denoted by

Hb(U) and it is a Fréchet algebra when it is endowed with the topology of uniform convergence

on U -bounded sets. The spectrum of Hb(U), i.e. the set of non-zero continuous complex valued

homomorphisms on Hb(U), is denoted by Mb(U). For each homomorphism ϕ ∈ Mb(U), there exists

a U -bounded subset A such that

(2) |ϕ(f)| ≤ ‖f‖A, for every f ∈ Hb(U),

where ‖f‖A is the supremum of |f | over the set A. We will write ϕ ≺ A when (2) holds.

There is a natural projection π :Mb(U) → E ′′, defined by π(ϕ) = ϕ|E′ ∈ E ′′, ϕ ∈Mb(U). We thus

have the following commutative diagram:
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U Mb(U)

E ′′

✲

❄

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍❥

δ

πjE

where δ is the point evaluation mapping and jE : E → E ′′ is the natural inclusion.

A Banach space E is symmetrically regular if every continuous symmetric linear mapping T : E →

E ′ is weakly compact (an operator T : E → E ′ is symmetric if Tx1(x2) = Tx2(x1) for all x1, x2 ∈ E).

Every reflexive Banach space is symmetrically regular. In [4], for E a symmetrically regular Banach

space and U ⊂ E an open subset, a topology is defined on Mb(U) so that the mapping π above is a

local homeomorphism that makes (Mb(U), π) a Riemann domain over E ′′.

Let us briefly describe this topology (see [4] for details). Recall that any holomorphic function f

of bounded type on E may be extended to a function AB(f) ∈ Hb(E
′′) through the Aron-Berner

extension [1]. Given f ∈ Hb(U) and z ∈ E ′′, the function

x 7→ AB
(dnf(x)

n!

)

(z),

is a bounded type holomorphic function on U . For ϕ ∈ Mb(U), we denote by dU(ϕ) the supremum

of dU(A) over the U -bounded sets A satisfying ϕ ≺ A. If r < dU(ϕ), it is possible to define, for each

z ∈ E ′′ with ‖z‖ < r, the homomorphism ϕz given by

(3) ϕz(f) =
∞
∑

n=0

ϕ
(

AB
(dnf(·)

n!

)

(z)
)

.

When E is symmetrically regular, the sets {ϕz : ‖z‖ < r}, with ϕ ∈ Mb(U) and r < dU(ϕ), form a

basis of a Hausdorff topology for Mb(U), and each set {ϕz : ‖z‖ < r} is homeomorphic to the ball

π(ϕ) + rBE′′ via the projection π. This endows Mb(U) with an analytic structure over E ′′.

Definition 2.1. Let U be an open subset of a symmetrically regular Banach space. The connected

component of a homomorphism ϕ ∈ Mb(U) is called the sheet of ϕ in Mb(U) and is denoted by

SU(ϕ).
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In the case of bounded type entire functions (i.e., U = E), the description of the connected

components of Mb(E) is simpler than for a general open set U , as pointed out in [4] and [8, Section

6.3]. Given z ∈ E ′′, the function x 7→ τzf(x) := AB(f)(z+jEx) is an entire function of bounded type

on E. Thus, given ϕ ∈ Mb(E) and z ∈ E ′′, the homomorphism ϕz can be equivalently constructed

as

ϕz(f) := ϕ(τzf).

The sheet of ϕ is exactly

SE(ϕ) := {ϕz : z ∈ E ′′}.

Since π(ϕz) = π(ϕ) + z, π is a homeomorphism between SE(ϕ) and E
′′.

Remark 2.2. If U ⊂ E is a balanced open set (or more generally, if U is such that entire functions

of bounded type are dense in Hb(U)), the spectrum Mb(U) is naturally embedded in Mb(E). Indeed,

given ϕ ∈Mb(U) we can naturally associate a unique character on Hb(E) which is just the restriction

to the bounded type entire functions: ϕ|Hb(E)
. When the context is clear we will denote this restriction

by ϕ|. The natural projection defined on Mb(U) is just the restriction of the projection defined on

Mb(E), and we will denote both as π.

Suppose that U is balanced. The embedding of (Mb(U), π) into (Mb(E), π) is continuous (with

their topologies as Riemann domains), so each connected component of Mb(U) is embedded into a

connected component of Mb(E) (which is homeomorphic to E ′′). Therefore, restricted to each sheet,

the projection π|SU (ϕ) is a homeomorphism onto some open set of E ′′. Our main goal is to describe

the connected components SU(ϕ), and a natural way to do this is to understand the image π|SU (ϕ).

Under the same assumptions, given ϕ ∈ Mb(U) and ψ ∈ SU(ϕ) there exists z ∈ E ′′ such that

ψ| = (ϕ|)
z and then (ϕ|)

z belongs toMb(U) (that is, it can be extended to Hb(U)). Thus, to describe

what the connected components of Mb(U) look like, it will be useful to determine for which z ∈ E ′′

the homomorphism (ϕ|)
z belongs to Mb(U) (which means, again, that (ϕ|)

z can be extended to

Hb(U)).

The following lemma from [2] will be useful for our results, in particular for Lemma 2.4.
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Lemma 2.3. [2, Lemma 1.7]. Let E be a Banach space with Schauder basis (ek)k∈N, and denote by

(e′k)k∈N its dual basic sequence. Let z ∈ E ′′ and ϕ ∈ π−1(z). Then for f ∈ Hb(E) and N ∈ N:

ϕ(f) = ϕ
(

x 7→ f
(

N
∑

k=1

z(e′k)ek +
∞
∑

k=N+1

e′k(x)ek
)

)

.

Lemma 2.4. Let E be a Banach space with Schauder basis (ek)k∈N, and let ϕ ∈ Mb(E) ∩ π−1(0).

For each N ∈ N, the following assertions hold.

(1) For z ∈ E ′′ and f ∈ Hb(E),

ϕz(f) = ϕ(x 7→ AB(f)(z1, . . . , zN , xN+1 + zN+1, xN+2 + zN+2, . . . )).

(2) If ϕ ≺ A, then ϕ ≺ A(N), where

A(N) = {(0, . . . , 0, xN+1, xN+2, . . . ) : x = (xj) ∈ A}.

Proof: If ϕ ∈ π−1(0), then z = 0 in Lemma 2.3. Then

ϕ(f) = ϕ(x 7→ f
(

∞
∑

k=N+1

e′k(x)ek
)

) = ϕ(x 7→ f(0, . . . , 0, xN+1, xN+2, . . . )).

(1) If f ∈ Hb(E), then ϕ
z(f) = ϕ(x 7→ AB(f)(x + z)). If we denote g(x) = AB(f)(x + z), then

it follows from Lemma 2.3 that

ϕz(f) = ϕ(x 7→ g(0, . . . , 0, xN+1, xN+2, . . . ) = AB(f)(z1, . . . , zN , xN+1 + zN+1, xN+2 + zN+2, . . . )).

(2) Since ϕ ≺ A, we have

|ϕ(f)| = |ϕ(x 7→ f(0, . . . , 0, xN+1, xN+2, . . . ))| ≤ sup
x∈A

|f(0, . . . , 0, xN+1, xN+2, . . . )| = sup
A(N)

|f |. ✷

We recall that a subset U of a Banach space with unconditional basis (ek)k∈N is complete Reinhardt

if
∑∞

k=1 λkxkek ∈ U , whenever
∑∞

k=1 xkek ∈ U and |λk| ≤ 1 for all k. Proposition 2.6 states that if

U is a complete Reinhardt domain in a Banach space with 1-unconditional basis, then each sheet

in the spectrum is also a complete Reinhardt domain. First we need the following lemma, which is

probably known.



THE ALGEBRA OF BOUNDED TYPE HOLOMORPHIC FUNCTIONS ON THE BALL 7

Lemma 2.5. Let E be a Banach space with unconditional basis and let U ⊂ E be a complete

Reinhardt open set. Then U admits a fundamental system of U-bounded sets formed by complete

Reinhardt sets.

Proof: Any Banach space with unconditional basis can be renormed so that ‖λ · x‖ ≤ ‖x‖

whenever ‖λ‖∞ ≤ 1. Assuming that E has such a norm, let us show that the sets Un = {x ∈ U :

‖x‖ ≤ n, dU(x) ≥ 1
n
} are complete Reinhardt. Note that it suffices to prove that if Bδ(x) ⊂ U and

‖λ‖∞ ≤ 1, then Bδ(λ · x) ⊂ U .

Let y be a point in Bδ(λ · x) and define a vector z ∈ E by specifying its coordinates as follows:

zj =







yj, if xj = 0,

xj

|xj | max(|xj|, |yj|) otherwise.

If the index j is such that |xj | < |yj|, then |zj − xj | = |yj| − |xj | ≤ |yj| − |λjxj | ≤ |yj − λjxj | by

the triangle inequality. And if j is such that |xj | ≥ |yj|, then |zj − xj | = 0 ≤ |yj − λjxj |. Thus

|zj − xj | ≤ |yj − λjxj | for every index j, so ‖z − x‖ ≤ ‖y − λ · x‖ < δ. In other words, z ∈ Bδ(x), so

z ∈ U . Since |zj | ≥ |yj| for every j, and U is a complete Reinhardt set, it follows that y ∈ U . But y

is an arbitrary point of Bδ(λ · x), so we conclude that Bδ(λ · x) ⊂ U . ✷

If we only look at the subset of homomorphisms that project to E, then the above topology

restricted to Mb(U) ∩ π−1(E) is well defined, even though E is not symmetrically regular. Thus, for

an arbitrary Banach space E, (Mb(U) ∩ π−1(E), π|π−1(E)) is a Riemann domain over E (see [7]).

Proposition 2.6. Let E be Banach space with 1-unconditional basis (ek)k∈N and let U ⊂ E be a

complete Reinhardt open subset. Then, in each sheet ofMb(U) there is a character ϕ ∈Mb(U)∩π−1(0)

such that the set

{w ∈ E : (ϕ|)
w extends to Mb(U)}

is a complete Reinhardt subset of E.

Proof: Recall that since Hb(E) is dense in Hb(U), we have that Mb(U) is embedded in Mb(E).

Then, given ψ ∈Mb(U)∩ π−1(E) there exists ϕ ∈Mb(E)∩ π−1(0) and z ∈ E such that ψ| = ϕz. We
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must show that for every scalar sequence λ with ‖λ‖∞ ≤ 1, the vector w = λ · z satisfies that ϕw

extends to Mb(U) whenever ϕ
z extends to Mb(U). Note that since ϕw belongs to Mb(E), it suffices

to show that ϕw ≺ A for some U -bounded set A.

Let us start by assuming that z =
∑N

j=1 zjej . If f ∈ Hb(E), it follows by Lemma 2.4 that

ϕw(f) = ϕ(x 7→ f(λ1z1, . . . , λNzN , xN+1, xN+2, . . . )).

Let us consider the entire function of bounded type,

fλ(x) = f(λ1x1, . . . , λNxN , xN+1, xN+2, . . . ),

then, applying again Lemma 2.4,

ϕz(fλ) = ϕ(x 7→ fλ(z1, . . . , zN , xN+1, xN+2, . . . )) = ϕ(x 7→ f(λ1z1, . . . , λNzN , xN+1, xN+2, . . . )) = ϕw(f).

By the previous lemma we may take a complete Reinhardt U -bounded set, A, such that ϕz ≺ A.

Then,

|ϕw(f)| = |ϕz(fλ)| ≤ sup
A

|fλ| ≤ sup
A

|f |.

Therefore ϕw ∈Mb(U) and ϕ
w ≺ A.

Take now an arbitrary z ∈ E for which ϕz belongs to Mb(U) with ϕ
z ≺ A. Let us denote by πN

the projection onto the span of {e1, . . . , eN} and choose 0 < δ < dU (A)
3

. We can take N such that

‖πN (z) − z‖ < δ < dU (A)
3

. Now, proceeding as in [4, page 550], we have ϕπN (z) ≺ Aδ := A + Bδ.

By the first part of the proof, for ‖λ‖∞ ≤ 1 we have ϕλ·πN (z) ≺ Aδ. Since dU(Aδ) > 2δ and

‖λ · πN(z) − λ · z‖ < δ, we have ϕλ·z ≺ A2δ. Finally, since δ is arbitrary small, we conclude that

ϕλ·z ≺ A. ✷

If the Banach space E is reflexive (which obviously implies that E is symmetrically regular), the

above result tells us that the sheets of Mb(U) are complete Reinhardt domains.

Corollary 2.7. Let E be a reflexive Banach space with 1-unconditional basis and let U ⊂ E be

a complete Reinhardt open subset. Then for each sheet S of Mb(U) there exist a character ϕ ∈
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Mb(U) ∩ π−1(0) and a complete Reinhardt domain V ⊂ E such that

S = {(ϕ|)
z ∈Mb(U) : z ∈ V }.

3. The spectrum of bounded type functions on Bℓp

We now focus in the case where U is the unit ball of ℓp. The following theorem shows that each

sheet is also a ball centered at zero. We will see later in Theorem 3.3 that the radius of each sheet

other than the sheet of evaluations, is strictly smaller than 1.

Theorem 3.1. Let E = ℓp, 1 < p < ∞, and let U = Bℓp. Then all sheets are balls centered at 0,

that is, in each sheet there is some ϕ ∈Mb(U) ∩ π−1(0), and

π(SU(ϕ)) = {w ∈ E : (ϕ|)
w ∈Mb(U)} = rBℓp,

for some 0 < r ≤ 1.

Proof: By Corollary 2.7 we know that each sheet intersects π−1(0). So take ϕ ∈Mb(U) ∩ π−1(0)

and suppose that (ϕ|)
z belongs to Mb(U) for some z ∈ E. The theorem will be proved if we show

that (ϕ|)
w ∈Mb(U) whenever ‖w‖ < ‖z‖.

If w = (wj)j∈N and z = (zj)j∈N are such that ‖w‖ < ‖z‖, then there exists N1 ∈ N such that

‖
∑N

j=1wjej‖ < ‖
∑N

j=1 zjej‖ for every N ≥ N1. On the other hand, since (ϕ|)
z ∈ SU(ϕ), there exists

δ > 0 such that (ϕ|)
z+y ∈ SU(ϕ), for all ‖y‖ < δ. So let us take N ≥ N1 such that

∞
∑

j=N+1

|zj|p <
(δ

3

)p

and
∞
∑

j=N+1

|wj|p <
(δ

3

)p

.

Then, if v = (ΠN (z), (I − ΠN )(w)), where ΠN : ℓp −→ ℓp denotes the canonical projection, we

have that (ϕ|)
v also belongs to SU(ϕ). Note that ‖w‖ < ‖v‖ and that (I −ΠN )(w) = (I − ΠN)(v).

To show that (ϕ|)
w ∈ SU(ϕ), we will construct some auxiliary bounded linear transformations, as

follows. First, take γ : CN −→ C such that ‖γ‖ = ‖(v1, . . . , vN)‖−1 and γ(v1, . . . , vN) = 1. Next, we

define SN : CN −→ CN by

SN(x) = γ(x)(w1, . . . , wN),
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which clearly satisfies ‖SN‖ ≤ 1 and SN(v1, . . . , vN) = (w1, . . . , wN). Finally, let TN : ℓp −→ ℓp be

given by TN (x) = (SN(ΠN (x)), (I −ΠN )(x)). In other words,

TN(x) = (SN(x1, . . . , xN ), xN+1, xN+2, . . . ), for x ∈ ℓp.

Note that TN (v) = w and, since

‖TN(x)‖p = ‖SN(ΠN(x))‖p + ‖(I −ΠN )(x)‖p ≤ ‖SN‖p‖ΠN(x)‖p + ‖(I −ΠN )(x)‖p

≤ ‖ΠN(x)‖p + ‖(I − ΠN)(x)‖p = ‖x‖p,

we also have ‖TN‖ ≤ 1.

If f ∈ Hb(E), then it follows from Lemma 2.4 that

(ϕ|)
v(f) = ϕ(x 7→ f(ΠN(v), (I − ΠN)(x+ v))

and that

(ϕ|)
w(f) = (ϕ|)

TN (v)(f) = ϕ(x 7→ f(ΠN(TN (v)), (I −ΠN )(x+ TN (v))).

Since ΠN(TN (v)) = SN (ΠN(v)) and (I −ΠN )(TN(v)) = (I −ΠN )(v), we have

(4) (ϕ|)
w(f) = (ϕ|)

TN (v)(f) = ϕ(x 7→ f(SN(ΠN(v)), (I − ΠN)(x+ v)).

On the other hand, for f ∈ Hb(Bℓp), consider fN = f ◦ TN |Bℓp
∈ Hb(Bℓp). Then we have

fN(ΠN (v), (I −ΠN )(x+ v)) = f ◦ TN
(

ΠN (v), (I − ΠN)(x+ v)
)

= f(TN (v1, . . . , vN , xN+1 + wN+1, xN+2 + wN+2, . . . ))

= f(SN(ΠN (v)), (I −ΠN )(x+ v)).

Hence,

(ϕ|)
v(fN) = ϕ(x 7→ fN(ΠN (v), (I − ΠN)(x+ v)) = ϕ(x 7→ f(SN(ΠN (v)), (I − ΠN)(x+ v))

= (ϕ|)
w(f).

If A is a U -bounded ball such that ϕv ≺ A, then, using again that ‖TN‖ ≤ 1, we conclude that

|(ϕ|)
w(f)| = |(ϕ|)

v(fN)| ≤ sup
A

|fN | = sup
TN (A)

|f | ≤ sup
A

|f |,
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which shows that (ϕ|)
w ∈ SU(ϕ). ✷.

A natural question at this point is whether each sheet on Mb(BE) is necessarily a ball centered at

zero, for more general Banach spaces. The next example shows that this is not always true.

Example 3.2. Let E = 〈e0〉⊕∞ℓ2. Take ϕ ∈Mb(BE) to be any limit point of the sequence (δen/
√
2)n.

By Proposition 2.6 we know that the projection of the sheet of ϕ

π(SBE
(ϕ)) = {x ∈ E : (ϕ|)

x ∈Mb(BE)},

is a complete Reinhardt open set. Let us show that π(SBE
(ϕ)) is not a ball centered at 0. For this

we will see that (ϕ|)
se0 ∈ Mb(BE) for every |s| < 1 but that (ϕ|)

te1 /∈Mb(BE) for every |t| > 1/
√
2.

For the first assertion, just note that the set (se0 + en/
√
2)n is BE-bounded and clearly (ϕ|)

se0 ≺

(se0 + en/
√
2)n, thus (ϕ|)

se0 ∈Mb(BE). For the second assertion, define the function f(x) =
∑

k≥1 x
2
k.

Then f ∈ Hb(E) and for every m ∈ N, its mth-power satisfies ‖fm‖BE
= 1. On the other hand,

since (ϕ|)
te1 ∈ Mb(E), we know that for each m ∈ N, (ϕ|)

te1(fm) is a limit point of (δte1+en/
√
2f

m)n.

Finally, since f(te1 + en/
√
2)m = (t2 + 1

2
)m → ∞ as m → ∞, we conclude that (ϕ|)

te1 cannot be

extended to Hb(BE).

Now that we know that each sheet of Mb(Bℓp) is a ball centered at zero, we would like to estimate

its radius. Let us first recall some terminology from [3] that will be used in the next theorem. For

ϕ ∈ Mb(BE) and m ≥ 0 we associate ϕm ∈ P(mE)′, as ϕm := ϕ|P(mE). Recall also that R(ϕ), the

radius of ϕ, is defined as the infimum of all r > 0 such that ϕ ≺ rBE. In [3] it is shown that

R(ϕ) = lim sup
m∈N

‖ϕm‖
1
m = sup

m∈N
‖ϕm‖

1
m .

It should be mentioned that the definition of the radius and the above result were given for ϕ ∈

Mb(E), but it is easily checked that the same works for ϕ ∈Mb(BE).

Theorem 3.3. Let E = ℓp, 1 < p < ∞, and let U = Bℓp. Given a sheet S, we take ϕ ∈ S ∩ π−1(0)

(which exists thanks to Theorem 3.1). Then,

(1− R(ϕ)p)
1
p · Bℓp ⊂ π(S) ⊂

(

1− sup
m≥p

‖ϕm‖
)1/⌈p⌉ ·Bℓp ,



12 DANIEL CARANDO, SANTIAGO MURO, AND DANIELA M. VIEIRA

where ⌈p⌉ denotes the smallest natural number which is ≥ p.

Proof: Let us first prove the lower inclusion. Take z ∈ (1−R(ϕ)p)
1
p ·Bℓp. Since Mb(Bℓp) embeds

in Mb(ℓp), we know that (ϕ|)
z ∈ Mb(ℓp). We must show that (ϕ|)

z belongs to Mb(Bℓp), that is, that

(ϕ|)
z is continuous with respect to the topology in Hb(Bℓp) of uniform convergence on Bℓp-bounded

sets. Recall that the seminorms qs(f) =
∑∞

n=0 s
n
∥

∥

dnf(0)
n!

∥

∥, with 0 < s < 1, define the topology on

Hb(Bℓp) (see [8]).

Let f ∈ Hb(ℓp) and let us denote by
∑∞

n=0 Pn its Taylor series at the origin, then

(ϕ|)
z(f) =

∞
∑

n=0

ϕ
(

x 7→ Pn(x+ z)
)

.

Now, since ‖z‖p +R(ϕ)p < 1, we can find N ∈ N and r < 1 such that for every y ∈ R(ϕ) · B(N)
ℓp

, we

have z + y ∈ rBℓp. Then, by the definition of R(ϕ) and Lemma 2.4, it follows that

|ϕ
(

x 7→ Pn(z + x)
)

| ≤ sup
y∈R(ϕ)·B(N)

ℓp

‖Pn(z + y)‖ ≤ rn‖Pn‖.

Therefore,

|(ϕ|)
z(f)| ≤

∞
∑

n=0

|ϕ
(

x 7→ Pn(z + x)
)

| ≤
∞
∑

n=0

rn‖Pn‖ = qr(f).

This implies that (ϕ|)
z belongs to Mb(Bℓp).

Now we prove the upper inclusion. By Theorem 3.1 we already know that SBℓp
(ϕ) is a ball centered

at zero. Let z = te1, with t
⌈p⌉ + supm≥p ‖ϕm‖ > 1+ δ, for some δ > 0. We will show that (ϕ|)

z is not

continuous on Hb(Bℓp). This will prove that the radius of the ball SBℓp
(ϕ) is smaller than or equal

to (1− supm≥p ‖ϕm‖)1/⌈p⌉.

Let 0 < r < 1 be such that ϕ ≺ rBℓp. Consider m0 ≥ p with t⌈p⌉ + ‖ϕm0‖ > 1 + δ. For ε < δ, let

P0 ∈ P (m0E) be such that ϕ(P0) > ‖ϕm0‖ − ε, and ‖P0‖ ≤ 1. Note that by Lemma 2.4, we have

that ϕ(P0) = ϕ(P0 ◦ (I − e′1 ⊗ e1)). Let Q0 = P0 ◦ (I − e′1 ⊗ e1). It follows from Lemma 2.4 that

(ϕ|)
te1(Q0) = ϕ(x 7→ Q0(x+ te1)) = ϕ(x 7→ Q0(x)) = ϕ(Q0).
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Consider the polynomial Q(x) = (e′1)
⌈p⌉ + Q0(x). Since m0 ≥ p, we have sup‖x‖p≤1 |Q(x)| ≤ 1.

Indeed, for ‖x‖p ≤ 1,

|Q(x)| ≤ |x1|⌈p⌉ + |P0 ◦ (I − e′1 ⊗ e1)(x)| ≤ |x1|⌈p⌉ + ‖(I − e′1 ⊗ e1)(x)‖m0
p ≤ ‖x‖pp ≤ 1.

Moreover,

(ϕ|)
te1(Q) = (ϕ|)

te1
(

(e′1)
⌈p⌉ +Q0

)

= t⌈p⌉ + ϕ(Q0), and then

|(ϕ|)
te1(Q)| =t⌈p⌉ + ϕ(Q0) > t⌈p⌉ + ‖ϕm0‖ − ε > 1 + δ − ε > 1 + s, for some s > 0.

Therefore it follows that |(ϕ|)
te1(Qn)| = |(ϕ|)

te1(Q)|n > (1+s)n → ∞ when n→ ∞, while ‖Qn‖Bℓp
≤

1 for every n. Then (ϕ|)
te1 /∈ Mb(Bℓp). ✷

The only homomorphism ϕ such that ϕm = 0 for sufficiently large m is δ0, so the previous Theorem

allows us to conclude the following.

Corollary 3.4. Let 1 < p < ∞, and let S ⊂ Mb(Bℓp) be a sheet. Then π(S) = Bℓp if, and only if,

S is the sheet of evaluations.

Remark 3.5. The results of this section can be summarized in the following way. Given a connected

component S of Mb(Bℓp), there exists ϕ ∈Mb(Bℓp) ∩ π−1(0) and 0 < r ≤ 1 such that

S = {ϕz : ‖z‖ < r}.

Moreover, r and ϕ satisfy

(1−R(ϕ)p)
1
p ≤ r ≤

(

1− sup
m≥p

‖ϕm‖
)1/⌈p⌉

.

Some comments deserve to be highlighted. If p is a natural number and ϕ is a homomorphism

such that R(ϕ) = supm∈N ‖ϕm‖
1
m is attained at m = p , then it follows that π(SBℓp

(ϕ)) = B(0, (1−

R(ϕ)p)
1
p ), and then we have an accurate description of the sheet of ϕ. It is interesting to mention that

this is not an artificial hypothesis, since the r-block homomorphisms considered in [7, Definition 5.3]

satisfy this condition. From this point of view, [7, Proposition 5.4] can be seen now as a consequence

of Theorem 3.3.
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In [8, Section 6.3], the spectrum Mb(E) of a symmetrically regular Banach space was informally

referred to as the envelope of “bounded” holomorphy of E because each bounded type entire function

is proved to extend to a holomorphic function onMb(E) which is of bounded type on each connected

component of Mb(E). However, as shown in [7, Proposition 5.1], the extension need not be of

bounded type on the whole Riemann domain, even for a homogeneous polynomial. In the case of

the unit ball, we do not know whether the extensions to the spectrum are of bounded type or not.

If for any ϕ ∈Mb(Bℓp) the connected components would satisfy

π(SBℓp
(ϕ)) = B(0, (1− R(ϕ)p)

1
p )

(that is, if the left inclusion in Theorem 3.3 were always an equality), then it would be possible to

answer this question affirmatively.
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Departamento de Matemática, Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,

São Paulo, Brasil

E-mail address : dcarando@dm.uba.ar

E-mail address : muro@cifacis-conicet.gov.ar

E-mail address : danim@ime.usp.br


	1. Introduction
	2. The spectrum of bounded type functions on complete Reinhardt domains
	3. The spectrum of bounded type functions on Bp
	References

