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We study the effect of quenched disorder in square artificial spin ice by means of numerical
simulations. We introduce disorder in the length of magnetic islands using two kinds of distributions:
Gaussian and uniform. As the system behavior depends on its geometrical parameters, we focus
on studying it in the proximity of the ice regime which is quite difficult to thermalize both in
experiments and simulations. We show how length disorder affect the antiferromagnetic and (locally)
ferromagnetic ordering, by inducing the system, in the case of weak disorder, to intermediate or mix
states. Moreover, in the case of strong disorder, ferromagnetic plaquettes prevail regardless of
whether the mean length of the islands corresponds to an antiferromagnetic ordering.

I. INTRODUCTION

Artificial spin ice (ASI) consists of a lithographically
manufactured two-dimensional array of ferromagnetic
nanoislands with a strong shape anisotropy resulting in
single-domains that behave like giant Ising spins1. In
natural spin ices, such as, for example, the rare earth py-
rochlore Ho2Ti2O7, the local ordering of magnetic mo-
ments is particularly difficult to measure2. But artifi-
cial frustrated magnetic systems make possible to ac-
cess directly the degrees of freedom, i.e. the spins3–10.
This advantage allows to test and reproduce theoreti-
cal models, as well as to understand more about their
three-dimensional analogs. But even more importantly,
it allows us to design a system rather than discover it11.

In 2006, Wang and collaborators created experimen-
tally an ASI with ferromagnetic islands forming a square
lattice11. The magnetic force microscopy measurement
of these samples showed a strong orientation of the mag-
netic moments in the longitudinal direction of each is-
land; then, each island can be modeled as an in-plane
spin. The point where four islands concur is called a
vertex. For each vertex, there are 24 possible configura-
tions, according to the orientation of the four spins that
form the vertex, which in turn can be grouped into four
topologically different types (see Fig. 1). Type I and II
have two spins pointing inwards and two outwards of the
vertex, meeting the so-called ice rule. This rule was origi-
nally proposed by Pauling for the proton orderings in wa-
ter ice, but a perfect mapping with these magnetic mate-
rials was found later, hence the name spin ice2,12–16. The
difference between these two types is that, unlike Type
II vertices, Type I have null magnetization. In contrast,
Type III and IV vertices do not meet the ice rule; in this
context, they are usually called defects. If the orienta-
tion of the spins were completely random, the following
vertex population is expected according to the number of
configuration each group has: 12.5% Type I, 25% Type
II, 50% Type III and 12, 5% Type IV. At room temper-
ature, Wang et al. measured that more than 70% of the
vertices met the ice rule and that this percentage was
reduced by increasing the lattice spacing11. The greater
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FIG. 1. There are 16 possible configurations for each vertex
according to the orientation of its spins. Furthermore, these
can be classified into four different topological groups. Type I
and II satisfy the ice rule while Type III and IV do not. Type
II and III vertices have a net magnetization.

the spacing, the more similar the situation to having a
random configuration, which is equivalent to having non-
interacting islands. In this way, they managed to observe
the spin-ice behavior in these artificial systems.

Inspired by these results, Möller and Moessner mod-
eled this system and performed numerical simulations
with an array of spins under dipolar interactions17. They
added a height separation between the spins oriented
vertically and those oriented horizontally. In a tetra-
hedrical lattice, such as the one found in natural spin
ices, the distance between any pair of spins (belonging to
the same tetrahedron) is the same, and therefore, the
dipolar energy has the same value for any pair. On
the contrary, in the square ASI, the distance between
collinear spins is different from the distance between per-
pendicular spins. Hence, the need to add this height
parameter. In this way, this system is halfway between
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three-dimensional (natural) and two-dimensional (arti-
ficial) spin ices18. Another lattice that is also studied
in the cited article and in Ref.19, and which is usually
used to model its three-dimensional counterpart, is the
kagome. Unlike the square lattice, the distance between
the spins of each plaquette in a kagome lattice is the
same, so the height parameter is no longer necessary.

The study of these two geometries is very extensive, ei-
ther through simulations or experiments, and allowed to
understand more about spin ices and frustrated systems
in bulk materials3,15,20–24. In particular, it allowed to
understand more about the interactions. Various models
were studied where both short and long-ranged interac-
tions were considered25–28.

The effect of disorder is still an open question and a
field to study in ASI15–17,29. Budrikis et al. (2012) stud-
ied from the point of view of theory, simulations and
experiments the influence of disorder on the response of
the system to an external field30. To do this, in the sim-
ulations, they proposed that each spin had an internal
(coercive) field given by a Gaussian distribution. With
this model, they managed to estimate the strength of
disorder in a sample. There are several works that quan-
tify the disorder3,4,31,32, what is new in Budrikis’ work is
that they also study how disorder affects the dynamics
of ASI. Chern et al. (2014) take this same idea to model
disorder and study the avalanches and critical behavior in
square and kagome ASI when a magnetic field is applied
in-plane33. This system shows a phase transition out-of-
equilibrium induced by disorder strength. Reichhardt et
al. show that the avalanche distributions of this process
follow a power law34. Another way to include disorder
in the system is to disconnect the islands by eliminating
a given percentage of them at random. Greenberg et al.
showed through simulations that this system changes its
thermal behavior as the percentage of holes increases35.
These results coincide with what was observed experi-
mentally in diluted spin ice36,37, once again showing that
the study of ASI allows modeling and better understand-
ing of the behavior of spin ice.

The aim of this paper is to study, through simulations
and an energetic analysis, the effect of geometrical disor-
der on an square ASI. To do this, we propose to include
disorder in the length of the islands. In this way, the
strength of disorder could be easily controlled and de-
signed experimentally.

This article is organized as follows. Firstly, in Sec. II,
we present the details about the model and the way to in-
troduce disorder. We calculate the energy for this system
and analyze the relationship between the strength of dis-
order and the spin interactions. In Sec. III, we show the
results of numerical simulations, first, without disorder,
to verify with previous results, and then, with disorder.
We present the effect on thermodynamic regimes and an-
alyze the results by studying how the energy contained
in each type of vertex changes with the strength of dis-
order. Also, we characterize the spin dynamics under
the effect of disorder. Finally, in Sec. IV, we present the
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FIG. 2. Square ASI array with dipolar interactions: a is the
lattice spacing and d is the island length; the width is consid-
ered negligible. There is a height gap h between the position
of islands which are oriented in perpendicular directions; this
means that dark-gray shaded islands are located at height
z = h while light-gray shaded islands are located at height
z = 0. Each spin Sκ = µŜκ is considered as a magnetic
dipole, with uniform magnetic density, whose magnetic field
is equivalent to that of two effective charges ±qκ = µ/dκ lo-
cated one at each end of the island. Two islands which are
first nearest-neighbors are marked in blue, and two islands
which are second nearest-neighbors are marked in red.

conclusions.

II. MODELING AN ARTIFICIAL SPIN-ICE

A. Description of the system

The square ASI is formed by islands of length d ar-
ranged as shown in Fig. 2; the lattice spacing is a. In
this model, the width of the islands is considered negligi-
ble. In turn, as said in the previous section, we consider a
height gap h between the spins oriented in different direc-
tions. In the figure, this is marked with different shades
of gray. In the experiments, the islands are formed by
a ferromagnetic material and due to the strong shape
anisotropy, the magnetization of these is forced to align
along the easy axis. In this way, the islands behave effec-
tively like Ising spins. Then, each magnetic moment can
have only two possible orientations.

B. Hamiltonian

The system is described by the Hamiltonian

H =
1

2

∑
α,β(α 6=β)

εαβ , (1)

where εαβ is the interaction energy between two spins and
the sum is done over all pairs in the lattice. To calculate
εαβ , we take the spin Sκ = µŜκ as a magnetic dipole with
uniform magnetic density. This needle-shaped islands
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create a field equivalent to that of two effective charges
±qκ = µ/dκ located one at each end of the island, r+κ and
r−κ , and separated a distance dκ

19 (see Fig. 2). Then, the
potential created by a magnetic dipole is simply

Φκ(r) =
qκ

4πε0

(
1

|r− r+κ |
− 1

|r− r−κ |

)
. (2)

Then, the interaction energy between two spins Sα and
Sβ is

εαβ = qβ
[
Φα(r+β )− Φα(r−β )

]
. (3)

Replacing the equation (2) in (3) and taking into account

that r±κ = rκ± 1
2 dκ Ŝκ (with κ = α, β) and rαβ = rβ−rα,

the equation can be rewritten as

εαβ =
D

dαdβ

(
1

|rαβ + 1
2 (dβŜβ − dαŜα)|

+
1

|rαβ − 1
2 (dβŜβ − dαŜα)|

− 1

|rαβ + 1
2 (dβŜβ + dαŜα)|

− 1

|rαβ − 1
2 (dβŜβ + dαŜα)|

)
,

(4)

where D = µ0µ
2/4π. It can be shown that the limit

dκ → 0 (κ = α, β) for this expression is

lim
d→0

εαβ = D
(
Ŝα · Ŝβ
r3αβ

− 3
(Ŝα · r̂αβ)(Ŝβ · r̂αβ)

r5αβ

)
, (5)

which corresponds to the energy for point-like magnetic
dipoles.

To study the effect of disorder, we consider that the
length of each island dκ is given by a Gaussian distribu-
tion with mean d and standard deviation σ, which deter-
mines the disorder strength. The distribution is cut to

dκ < a to avoid island overlapping. To implement strong
disorder, we use an uniform distribution with interval
[−∆,∆].

C. First and second nearest-neighbors bond energy

While the interactions considered in this model are
long-ranged (see Eq. (4)), a good prediction of the ground
state can be made by analyzing only the bond ener-
gies of first and second nearest-neighbors, J1 and J2,
respectively17,38. In Fig. 2, the two islands marked in
red are first nearest-neighbors and the two blue ones
are second nearest-neighbors. Replacing Ŝα = (0, 1, 0),

Ŝβ = (1, 0, 0) and rαβ = (a/2, a/2, h) in Eq. (4), the bond
energy of two first nearest-neighbor spins is

J1 =
D
d2
[
|(a/2 + d/2, a/2− d/2, h)|−1

+ |(a/2− d/2, a/2 + d/2, h)|−1

− |(a/2 + d/2, a/2 + d/2, h)|−1

−|(a/2− d/2, a/2− d/2, h)|−1
]

=
D
a d2

[
2

(
1 + (d/a)2

2
+ (h/a)2

)−1/2
−
(

(1 + d/a)2

2
+ (h/a)2

)−1/2
−
(

(1− d/a)2

2
+ (h/a)2

)−1/2]
.

(6)

While, replacing Ŝα = (0, 1, 0), Ŝβ = (0, 1, 0) and rαβ =
(0, a, 0) in Eq. 4, the bond energy of two second nearest-
neighbors is

J2 =
D
d2

(
2

a
− |(0, a+ d, 0)|−1 − |(0, a− d, 0)|−1

)
=
D
a d2

(
2− |1 + d/a|−1 − |1− d/a|−1

)
.

(7)

If the ratio J2/J1 < 1, Type I vertices are expected

to be favored since they have lower energy (−J Ŝα · Ŝβ).
While if J2/J1 > 1, Type II vertices will prevail. In
Fig. 3 (a), contour plots are shown for the expression

J2/J1 =
2− |1 + d/a|−1 − |1− d/a|−1

2
(

1+(d/a)2

2 +
(
h
a

)2)−1/2 − ( (1+d/a)2

2 +
(
h
a

)2)−1/2 − ( (1−d/a)2
2 +

(
h
a

)2)−1/2 , (8)

as a function of the geometrical parameters h and d. By
appropriately selecting these parameters, it can be ob-
tained an antiferromagnetic system, where all the ver-
tices are Type I, or a (locally) ferromagnetic system,

where all the vertices are Type II. In their article, Möller
et al. obtains an antiferromagnetic system for the pa-
rameters h = 0.205 and d = 0.7, and a ferromagnetic
for h = 0.207 and d = 0.7 (with a = 1). The goal in



4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

d
2
/
a

d1/a

0

20

40

60

80

100

120

140

160

180

200

C
ou

nt
s

[a
rb

.
un

it
s]2

1.4

1
0.8

0.6

h
/
a

d/a

2
1.4

10.80.6

J2/J1 < 1 Antiferro

J2/J1 > 1 Ferro

FIG. 3. (a) Contour plots for the ratio J2/J1 (Eq. (8)) as a function of the geometrical parameters when there is no disorder
in the lattice; these results match the ones from Ref.17. When J2/J1 < 1, Type I vertices have a lower energy and so
the antiferromagnic ordering is expected. While, when J2/J1 > 1, Types II vertices have lower energy and so the (locally)
ferromagnetic ordering is predicted. (b) Contour plots for the ratio J2/J1 when island lengths d1 and d2 are different (Eqs. (9)
and (10)). The length of each island is given by a Gaussian distribution with mean d and standard deviation σ, or by a uniform
distribution. The color map (a histogram of lengths) was obtained for d = 0.702 and σ = 0.1. The circles indicate where the
first σ of the distribution would be if the deviation were 0.01, 0.05 or 0.1. The case of uniform disorder, with ∆ = 0.298, is
indicated with a solid-line rectangle. In addition, the restriction dk < a imposed to avoid island overlapping is indicated with
dashed lines.

choosing these values, where J2/J1 is close to 1, is to
evidence the ferromagnetic-antiferromagnetic transition.
Nevertheless, tuning the parameters so that Type I and
II vertices have exactly the same energy (ice-like regime)
is very difficult.

Eq. (8) was obtained considering a system where all is-
lands have the same length d. If the lengths are different,
the equations for J1 and J2 take the form

J1 =
D

ad1d2

((
(1 + d2/a)2

4
+

(1− d1/a)2

4
+ (h/a)2

)−1/2
+

(
(1− d2/a)2

4
+

(1 + d1/a)2

4
+ (h/a)2

)−1/2
−
(

(1 + d2/a)2

4
+

(1 + d1/a)2

4
+ (h/a)2

)−1/2
−
(

(1− d2/a)2

4
+

(1− d1/a)2

4
+ (h/a)2

)−1/2)
,

(9)

J2 =
D

ad1d2

(∣∣∣∣1 +
d2 − d1

2a

∣∣∣∣−1 +

∣∣∣∣1− d2 − d1
2a

∣∣∣∣−1
−
∣∣∣∣1 +

d2 + d1
2a

∣∣∣∣−1 − ∣∣∣∣1− d2 + d1
2a

∣∣∣∣−1
)
.

(10)

In Fig. 3 (b), contour plots for the ratio J2/J1 ac-
cording to Eqs. (9) and (10) are shown, as a function of

the lengths d1 and d2; the height gap is h = 0.205. In
the following, without loss of generality, we fixed a = 1.
The distribution of island lengths for Gaussian disorder
with mean d = 0.702 and standard deviation σ = 0.1 is
shown as a color map. Note that to avoid overlapping,
the length is restricted to dk < a; this is marked with
a dashed line. Circles indicate the first σ region of the
distribution for σ = 0.01, 0.05 and 0.1, while the rect-
angle indicates the amplitude of the uniform distribution
with ∆ = 0.298. These are the disorder strengths that
we study in this paper.

III. DISORDER EFFECTS

A. Thermodynamic regimes

In this section, we present the results of numerical
simulations with different disorder strengths; see Ap-
pendix A for computational details. In Fig. 4, we show
the vertex population and the specific heat as functions
of the temperature T for a system with h = 0.205 and
mean length d = 0.702 (plots (a) and (b)) or d = 0.704
(plots (c) and (d)).

Let us analyze first the system without disorder, σ = 0,
whose behavior is known, starting from the high tem-
perature regime. This corresponds, both for d = 0.702
and d = 0.704, to the random state where the vertex
population is given according to the number of config-
urations each group has (see Fig. 1). The specific heat
Cv shows, for both systems, an increase for T ≈ 4 due
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FIG. 4. Plots (a) and (c) show the population for each type of vertex, as a function of the temperature T , and plots (b) and (d)
show the specific heats as functions of the temperature T , for different disorder strengths σ, or ∆ in case of uniform disorder.
Simulation parameters: N = 576, rcut = 4, a = 1, h = 0.205 and d = 0.702 for (a) and (b), or d = 0.704 for (c) and (d).

to the disappearance of Type III vertices. There is a
crossover between the random state and the ice regime,
where there are only ice-type vertices, i.e. Type I and
II. This crossover is also characterized by a the decrease
to zero of the single-spin-flip algorithm efficiency, which
shows the need to use other algorithm, as discused in Ap-
pendix A. Then, as the temperature decreases, a phase
transition at T ≈ 0.5 appears, evidenced by the spe-
cific heat peak observed both in plots (b) and (d). Fi-
nally, the degeneracy is lift and Type I vertices prevail
for d = 0.702, while Type II predominates for d = 0.704.
Then, it is said that for d = 0.702 the ground state is an-
tiferromagnetic, while for d = 0.704 it is ferromagnetic.
These results agree with those already known and pub-
lished17,39,40. Let us now analyze the effect of disorder.

First, it can be observed that disorder, regardless of
its intensity, does not affect the random behavior at high
temperatures, as well as the behavior of Type III and
IV vertices at all temperatures. However, it does affect
Type I and II for lower temperatures. In the antiferro-
magnetic case, we found that weak disorder, σ = 0.01, al-
lows a small percentage of Type II vertices at the ground
state. As disorder increases, the amount of Type I ver-
tices reduces and so Type II population grows, and, at
the same time, the phase transition peak dissolves. A
priori, one could expect this to continue until reaching
the ice regime. However, for maximum disorder a differ-
ent ground state is found where there are 25% Type I
vertices and 75% Type II. And, what is most striking is
that for the ferromagnetic case the same sequence occurs:
As disorder increases, the population of Type II vertices
reduces at first until it reaches the 50–50% ground state.
And then, it grows again until the state where 25% of
the vertices are Type I and 75% are Type II.

Simulation results show that, with disorder, the com-
pletely antiferromagnetic or ferromagnetic ground states
are lost, and intermediate regimes are found instead.
This is also observed in the specific heat, in which the
phase transition peak decreases in intensity until is lost,
while, at the same time, it shifts to higher temperatures.

A relevant result is that disorder strength can be tuned
to obtain the ice regime, for which the energies of the
Type I and II vertices are equal. For σ ≤ 0.05, popu-
lation changes until it reaches the 50–50 state. In the
case of maximum possible disorder, that is, for uniform
disorder with ∆ = 0.298 (or ∆ = 0.296 for d = 0.704),
the final state is the same for both systems. Regardless of
whether the system was originally (i.e. without disorder)
antiferromagnetic or ferromagnetic, for strong disorder a
low temperature regime is obtained where approximately
3/4 of the vertices are Type II and 1/4 are Type I.

Another question that rises is whether the thermody-
namic regimes have an additional frustration created by
disorder. To study this, we perform different runs with
the same seed for generating the island lengths, i.e. the
same realization of disorder, but with different initial spin
configurations. After relaxation, we found that the sam-
ples evolve not only to the same percentage of Type I and
II vertices as expected, but also to the same vertex config-
uration. This means that a particular vertex always finds
the same state related to the realization of disorder. In
Fig. 5, we show an example of two runs for h = 0.205,
d = 0.702 and σ = 0.05 with a 95% of overlapping.

Furthermore, if we measure the entropy, we found that
there is no residual entropy (see Fig. 5). When there is
no disorder in the sample, the high-temperature entropy
equals ln 2, which is related to the 2n possible configura-
tions. Then, there is a plateau related to the ice regime,
where each vertex can be Type I or II indistinctly. Fi-
nally, for lower temperatures, the frustration is lifted as
the system orders antiferromagnetically or ferromagneti-
cally according to the chosen island length d, hence there
is no residual entropy. When introducing disorder, we
observe that the step related to the phase transition be-
comes less steep, which agrees with the decreasing of the
pick in the heat capacity, but there is no residual term
related to disorder.
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realization are shown (σ = 0.05). Simulation parameters:
N = 576, rcut = 4, a = 1, h = 0.205 and d = 0.702.

B. Vertex energy

To analyze the regimes from an energetic point of view,
we calculate the energy contained in each type of ver-

tex and the dispersion in their values caused by disor-
der. The occurrence of different types of vertices will be
linked to these results. To do this, we consider a vertex
formed by islands of lengths d1, d2, d3 and d4, located
at r1 = (0, 0, 0), r2 = (a/2, a/2, h), r3 = (0, a, 0) and
r4 = (−a/2, a/2, h), respectively. The interaction energy
between any pair of islands of the vertex, Sα and Sβ , sep-
arated a distance rαβ = rβ − rα is given by Eq. 4, where

εαβ = ε(rαβ , Ŝα, Ŝβ , dα, dβ). Then, the energy contained

in a vertex is E
[
Ŝ1, Ŝ2, Ŝ3, Ŝ4

]
= 1

2

∑4
α,β=1
α6=β

εαβ . Actu-

ally, E is also a function of the lengths d1, d2, d3 and d4,
but we omit it to lighten the notation. We can obtain
the energy for each type of vertex EType by replacing Ŝ

by the corresponding values. Then, the energy of a Type
I vertex is calculated as

EI =
1

2

{
E
[
(0,−1, 0), (−1, 0, 0), (0, 1, 0), (1, 0, 0)

]
+ E

[
(0, 1, 0), (1, 0, 0), (0,−1, 0), (−1, 0, 0)

]}
,

(11)

where we averaged over the two configurations that be-
long to the same topological group (see Fig. 1). Solving
the previous equation, we get

EI =
∑

i,j={(1,2),(1,4),(2,3),(3,4)}

−
didj

√
h2 +

d2j
4

+
adj
2

+
d2i
4

+
adi
2

+
a2

2

−1

+

didj
√
h2 +

d2j
4

+
adj
2

+
d2i
4
− adi

2
+
a2

2

−1

+

didj
√
h2 +

d2j
4
− adj

2
+
d2i
4

+
adi
2

+
a2

2

−1

−

didj
√
h2 +

d2j
4
− adj

2
+
d2i
4
− adi

2
+
a2

2

−1


+
∑

i,j={(2,4),(1,3)}

[(
didj

∣∣∣∣di2 +
dj
2

+ a

∣∣∣∣)−1 +

(
didj

∣∣∣∣di2 +
dj
2
− a
∣∣∣∣)−1

−
(
didj

∣∣∣∣dj2 − di
2

+ a

∣∣∣∣)−1 − (didj ∣∣∣∣dj2 − di
2
− a
∣∣∣∣)−1

]
.

(12)

Similarly, for the other types we have that
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EII =
1

4
{E [(0, 1, 0), (1, 0, 0), (0, 1, 0), (1, 0, 0)] + E [(0, 1, 0), (−1, 0, 0), (0, 1, 0), (−1, 0, 0)]

+ E [(0,−1, 0), (1, 0, 0), (0,−1, 0), (1, 0, 0)] + E [(0,−1, 0), (−1, 0, 0), (0,−1, 0), (−1, 0, 0)]}

=
∑

i,j={(2,4),(1,3)}

[
−
(
didj

∣∣∣∣dj2 +
di
2

+ a

∣∣∣∣)−1 − (didj ∣∣∣∣dj2 +
di
2
− a
∣∣∣∣)−1

+

(
didj

∣∣∣∣dj2 − di
2

+ a

∣∣∣∣)−1 +

(
didj

∣∣∣∣dj2 − di
2
− a
∣∣∣∣)−1

]
,

(13)

EIII =
1

8
{E [(0, 1, 0), (−1, 0, 0), (0, 1, 0), (1, 0, 0)] + E [(0,−1, 0), (1, 0, 0), (0, 1, 0), (1, 0, 0)]

+ E [(0, 1, 0), (1, 0, 0), (0,−1, 0), (1, 0, 0)] + E [(0, 1, 0), (1, 0, 0), (0, 1, 0), (−1, 0, 0)]

+ E [(0,−1, 0), (−1, 0, 0), (0,−1, 0), (1, 0, 0)] + E [(0,−1, 0), (−1, 0, 0), (0, 1, 0), (−1, 0, 0)]

+ E [(0, 1, 0), (−1, 0, 0), (0,−1, 0), (−1, 0, 0)] + E [(0,−1, 0), (1, 0, 0), (0,−1, 0), (−1, 0, 0)]}
= 0,

(14)

EIV =
1

2
{E [(0,−1, 0), (1, 0, 0), (0, 1, 0), (−1, 0, 0)] + E [(0, 1, 0), (−1, 0, 0), (0,−1, 0), (1, 0, 0)]}

=
∑

i,j={(1,2),(1,4),(2,3),(3,4)}


didj

√
h2 +

d2j
4

+
adj
2

+
d2i
4

+
adi
2

+
a2

2

−1

−

didj
√
h2 +

d2j
4

+
adj
2

+
d2i
4
− adi

2
+
a2

2

−1 −
didj

√
h2 +

d2j
4
− adj

2
+
d2i
4

+
adi
2

+
a2

2

−1

+

didj
√
h2 +

d2j
4
− adj

2
+
d2i
4
− adi

2
+
a2

2

−1


+
∑

i,j={(2,4),(1,3)}

[(
didj

∣∣∣∣di2 +
dj
2

+ a

∣∣∣∣)−1 +

(
didj

∣∣∣∣di2 +
dj
2
− a
∣∣∣∣)−1

−
(
didj

∣∣∣∣dj2 − di
2

+ a

∣∣∣∣)−1 − (didj ∣∣∣∣dj2 − di
2
− a
∣∣∣∣)−1

]
.

(15)

Note that each term of the energy of Type III vertices
is zero (Eq. (14)). Using Eqs. 12, 13 and 15 and sampling
over the possible values of dκ, we can calculate the dis-
persion of the vertex energies due to disorder. In Fig. 6,
we show the results obtained. It can be observed how
as disorder strength increases, the dispersion in the ener-
gies increases as well, which was expected. But, what is
most interesting is to see how it increases. As disorder in-
creases, the energy distributions begin to overlap, which
would allow to obtain the ice state we mentioned in the
previous section by adjusting the value of σ. Then, while
for Type I vertices the tail in the distribution extends to
positive energy values, for Type II vertices this does it
towards negative values. This causes Type II vertices to
be more likely and increase their population as seen in
Fig. 4. Another interesting result is that we can see why

disorder does not allow defects to remain at low tem-
peratures as could be expected. The energy of Type III
vertices is not affected by disorder since it is always zero
and, in addition, the dispersion in the energy of Type IV
vertices is always greater than that of other vertices and
even their tail grows towards positive values.

On the other hand, to estimate the values obtained
in the simulations for the population of Type I and II
vertices at low temperatures (Fig. 4), we can use the
expressions found for the energies and perform the fol-
lowing algorithm. Given a vertex with islands of lengths
{d1, d2, d3, d4}, if the energy EI(d1, d2, d3, d4) (Eq. (12))
is smaller than EII(d1, d2, d3, d4) (Eq. (13)), then that
vertex is of Type I and the number of Type I vertices,
NI , increases by 1. If, on the other hand, EI > EII, then
NII increases by 1. If we repeat this enough times, where
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FIG. 6. Vertex energy spread for each topological group. Each
graph corresponds to a different disorder strength. The dis-
tribution is in logarithmic scale so that the dispersion of the
energies can be fully appreciated.

the configuration {d1, d2, d3, d4} is obtained according to
the distribution and intensity of the disorder we want to
analyze, we can estimate the value of NI and NII in the
ground state for each value of σ. Performing this algo-
rithm for the parameters of Fig. 6, we obtain the results
shown in the Table I, and we found that the energetic
analysis, regardless of its simplicity, manages to estimate
the results from the MC numerical simulation, with a
specially good match for σ = 0.05.

Using this simple algorithm, it also possible to show
in detail the ferromagnetic-antiferromagnetic transition
with the geometrical parameters. In Fig. 7, for σ = 0,
we show how the population for Type I vertices changes

NI [%] NII [%]

Disorder
strength

energetic
analysis

numerical
simulation

energetic
analysis

numerical
simulation

σ = 0.000 100 100 0 0
σ = 0.010 84.7(2) 96.6(6) 15.3(2) 3.4(6)
σ = 0.050 51.0(2) 50.3(5) 49.0(2) 49.7(5)
σ = 0.100 41.0(2) 38.1(1) 59.0(1) 61.9(1)
∆ = 0.298 30.3(1) 25.3(4) 69.7(2) 74.8(4)

TABLE I. Estimated vertex population according to the en-
ergetic analysis described in Sec. III B, compared with the
lowest-temperature vertex population obtained from numeri-
cal simulations.
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FIG. 7. Estimated population of Type I vertices for different
disorder strengths as a function of the height parameter, ob-
tained according to the algorithm described in Sec. III B for
the energetic analysis.

abruptly from 100% (antiferromagnetic state) to 0% (fer-
romagnetic state) while increasing the height parameter
h. We found that quenched disorder yields a rounding
in this transition. Samples with different values for h
have been manufactured experimentally and the transi-
tion observed when measuring the vertex population for
each sample is not abrupt as the non-disordered model
predicts but it is in fact rounded38.

C. Slow dynamics

We characterize the spin dynamics by calculating the
spin-spin autocorrelation function

CSS(t) = 〈Si(0)Si(t)〉, (16)

where the initial orientation of each spin is compared
with its orientation at time t and brakets indicate an av-
erage over the N sites of the lattice. In this way, we have
that, at the beginning, CSS(0) = 1 and, as time passes
and the system evolves, CSS(t) decreases, indicating the
decorrelation and memory loss of the original state.

In the simplest case, the functional behavior of CSS(t)
is given by an exponential e−t/τ or stretched exponen-

tial e−(t/τ)
β 41,42, where τ is the relaxation time and β
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FIG. 8. (a) Spin-spin autocorrelation CSS(t) = 〈Si(0)Si(t)〉
as a function of MC steps for different temperatures; simu-
lation parameters: N = 576, rcut = 4, a = 1, h = 0.205,
d = 0.702 and σ = 0.05. (b) Relaxation time as a function of
the temperature T for different disorder strengths. Vertical
lines indicate the crossover and phase transition temperatures
for σ = 0.

is an exponent that takes values between 0 and 1. The
stretched exponential behavior is usually understood as
the superposition of several exponential relaxations, each
with a different decay43. However, there are some cases
where CSS(t) can not be fitted with an exponential func-
tion; ours is one of them. To estimate the time from
which we can assume decorrelation, we define τ0 as the
minimum time for which CSS(t) = 0.00 ± 0.01 for all
t > τ0, where the error used in this definition is linked to
fluctuations in our simulations. According to this defini-
tion, τ0 will be systematically bigger than τ , but it will
be an useful estimator for our purposes.

In Fig. 8 (a), we show the spin-spin autocorrelation
CSS(t) for σ = 0.05. Different curves correspond to dif-
ferent temperatures. It can be seen that, as we lower the
temperature, the system slows down its dynamics. Note
that, to measure CSS , the Parallel Tempering algorithm
must be off (see Appendix A for computational details).

Using this curves, we can calculate τ0 for each temper-
ature; we show these results in Fig.8 (b). We can observe
how, as disorder strength increases, low temperature dy-
namic freezes, losing ergodicity. The energy map is full
of local minima induced by disorder and these results are
an indicator of how the system gets trapped in one of
those.

IV. CONCLUSIONS

We studied the effect of disorder on the geometry of
an artificial spin ice with dipolar interactions. First, we
analyzed how disorder affects first and second nearest-
neighbor bonds, and we selected appropriate geometri-
cal parameters as well as the disorder intensities for our
study. Then, we studied the thermodynamic regimes
for different disorder strengths. Without disorder, the
ground state of this system can be ferromagnetic or anti-

ferromagnetic depending on the island lengths d. Specif-
ically, when d . 0.702, 100% of the vertices are of Type
I (antiferromagnetic); but, if we increase d, the ground
state will now be 100% Type II vertices (locally ferro-
magnetic). This ferromagnetic-antiferromagnetic transi-
tion with d, evidenced by a peak at the specific heat,
disappears when disorder is added in the island lengths.
Instead, the ground state is formed by a mix of Type I
and II vertices. An important result is that this means
that disorder strength can be chosen and tuned to ther-
malize the ice regime, where Type I and II vertices are
equally likely. Geometrical disorder shows interesting in-
termediate regimes such as the 50–50% ground state for
σ = 0.05, or, for strong disorder, a regime for which ap-
proximately 3/4 of the vertices are Type II and 1/4 are
Type I.

To explain this behavior, we analyzed how disorder af-
fects the spread of vertex energies. To calculate this en-
ergy, we considered a single vertex and computed the in-
teractions between each of its four islands. By doing this,
we found an asymmetry in this distribution that makes
Type II vertices more likely. The tail of this distribution
moves towards negative values, while the tail of the distri-
bution of Type I vertices moves towards positive values.
This also allows to understand why disorder does not
permit defects at low temperatures in the needle model,
contrary to expectations. Also, with this analysis, we
show in detail how the ferromagnetic-antiferromagnetic
transition with h is rounded by quenched disorder. Fi-
nally, we found that disorder in the geometry causes a
slowdown in the dynamics of the system which increases
with disorder.

Appendix A: Computational details

We performed numerical simulations of the described
system using the Monte Carlo (MC) method and the
single-spin-flip44 and short-loop-move algorithms. The
latter is used to avoid the characteristic low-temperature
freezing4539 (p. 143–148). At low temperatures, the ver-
tices that do not meet the ice rule disappear (called “de-
fects” in this context), leaving only Type I and II vertices.
Flipping a single spin in these circumstances implies mak-
ing a defect appear, which is unfavorable energetically.
As a consequence, the ocurrence of the single-spin-flip
algorithm drops significantly, freezing the system. The
short-loop-move algorithm consists of finding a chain of
spins and flipping them all together at once. This process
keeps the energy constant but allows access to a different
configuration, thus recovering ergodicity.

We call MC step to N iterations of the single-spin-
flip algorithm, where N is the size of the system, plus
Nloop iterations of the short-loop-move algorithm. The
value of Nloop is chosen to maximize the efficiency of the
simulation. The energy change is calculated according
to Eqs. (1) and (4), and we use a cut-off distance for
the dipolar sum. According to previous works17,19,39,
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it is known that the value for the temperature of the
phase transition which appears in this system depends on
this distance; if one were interested in calculating a more
precise value for this transition temperature, it would be
necessary to perform an Ewald sum. Also, we assume
periodic boundary conditions.

The use of quenched disorder also makes it necessary to
use the Parallel Tempering (PT) method46,47. This con-
sists of running simultaneously NPT copies of the system
at different temperatures. This copies, called replicas, are
initialized randomly. At the end of each MC step, the dif-
ferent temperature configurations are switched according
to Metropolis algorithm. In this way, the high tempera-
ture configurations become accessible at low temperature
and vice versa, accelerating considerably the dynamics
and improving the ergodicity of the process. The amount
of replicas NPT must be chosen in such a way that the
method has high acceptance, thus guaranteeing that all
temperature configurations can be exchanged. We chose
the parameters to ensure an acceptance greater than 40%
at all temperatures. We used this algorithm in all nu-
merical simulations of this paper, except when spin-spin
autocorrelation is measured.

We performed thermal and disorder average to calcu-
late the values of the thermodynamic observables. To
ensure equilibrium, we measured the energy autocorrela-
tion and we found that at least 106 MC steps are neces-
sary when σ > 0.05, while 103 MC steps is enough for
weaker disorder.

The program was implemented in C++ using the
Thrust library48, which allows parallelizing the calcula-
tion and running the same code in both GPUs and CPU’s
multicore, and it is available on demand.
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