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(PUCV), Av. Brasil 2950, 23-40025 Valparaı́so, Chile
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Abstract: Under the Geometrics Optics approximation is possible to
estimate the covariance between the displacements of two thin beams
after they have propagated through a turbulent medium. Previous works
have concentrated in long propagation distances to provide models for
the wandering statistics. These models are useful when the separation
between beams is smaller than the propagation path—regardless of the
characteristics scales of the turbulence. In this work we give a complete
model for these covariances, behavior introducing absolute limits to the
validity of former approximations. Moreover, these generalizations are
established for non-Kolmogorov atmospheric models.
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1. Introduction

As a result of the fluctuating nature of the refractive index in a turbulent medium any laser
beam that propagates through it experiments deflections. These displacements are always per-
pendicular to the initial unperturbed direction of propagation, and arise from the beam phase
fluctuations. This phenomenon is commonly known as laser beam wandering because of the
dancing the beam performs over a screen. Since it is very sensitive to the turbulence behaviour,
it has been used in different experimental configurations to measure the characteristic scales
and parameters associated to the turbulence.

For example, single beam wandering experiments have been applied to estimate the coher-
ence length, and turbulence spectrum power-law, through the angle-of-arrival fluctuations vari-
ance [1] in a convective water tank. Also, laser beam wandering was used to estimate refractive
index gradient variations at near ground levels [2]. But the wander of a single laser beam alone
is scant for obtaining all the optical characteristics of a turbulent medium. Therefore, several

#175466 - $15.00 USD Received 4 Sep 2012; revised 4 Nov 2012; accepted 15 Nov 2012; published 29 Nov 2012
(C) 2012 OSA 3 December 2012 / Vol. 20,  No. 25 / OPTICS EXPRESS  27767



papers discuss the determination of these characteristics by studying the angle-of-arrival at two
pupils (DIMM configuration) or several pupils [3–6]—usually employing a Shack-Hartmann
pupil decomposition. Experimentally the use of a Shack-Hartman sensor, or other multiple
pupil devices, is very common; nevertheless, this often requires complex and costly setups.

Consortini and O’Donnell [7,8] introduced a simpler technique, and therefore less expensive,
capable of capturing several parameters of the optical turbulence. They developed a Geometric
Optics (GO) model for the propagation of twin thin-beams through a turbulent media; par-
ticularly, for their covariances. Experimental measurements of these correlations allowed the
determination of the inner-, �0, and outer-scale, L0, of turbulent media. Further improvements
on this method provided alternative estimations of the outer-scale [9, 10]. This technique is
specifically useful when studying ground level propagation.

These works were circumscribed to models for Obukhov-Kolmogorov turbulence, but
through the years the presence of deviations from these models have been determined; specif-
ically, for ground-level turbulence, where this technique can be easily deployed—see [11, 12]
and references therein. Some authors have discussed the theoretical implications of non-
Kolmogorov power-spectra in Shack-Hartmann or DIMM arrangements [13, 14], experiments
have been performed [12, 15–19] and confirmed deviations under varied conditions.

Under the need to introduce more general statistical descriptions for the turbulent refractive
index, we have previously introduced Lévy fractional Brownian fields [20–23] to describe the
phase corrugations, and thus the angle-of-arrival. Also, experiments performed by us, on laser
beam wandering and wave-front propagation have shown the presence of memory effects re-
flected in some statistical quantifiers. Such as the wavelet entropy and Hurst exponent [24–26],
the latter, we have shown, is proportional to the power exponent in the non-Kolmogorov wave-
front phase [23].

The purpose of the present work is to develop a complete model for the propagation of twin-
beams in the GO approximation under the influence of non-Kolmogorov turbulence. We start
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Fig. 1. Two parallels thin beams propagating in a turbulent media. The turbulent region is
confined to the zone of length S, after that the beams propagate in a region of length P
without being deflected. Originally, the beams are separated a distance d, and the arrival
position with respect to the original trajectory is given by (η0,ζ0) and (ηd ,ζd).
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with the theory developed in [7] and review the conditions of validity for the long path approx-
imation introduced therein. This theory is used by Consortini et al. to obtain analytical results,
and is also used in their subsequent works. Later, we describe a non-Kolmogorov model valid
for any propagation distance. Specifically, we are mostly interested in short path propagation:
a condition frequently observed in the laboratory.

2. The Geometrical Optics approximation for thin beams: basics

Beckmann [27] was able to model the displacement of a thin laser beam in the limits of Ge-
ometrical Optics—whenever �0 �

√
Lλ is achieved; nevertheless, he did so by employing an

artificial covariance function far from the Obukhov-Kolmogorov (OK) theoretical model. Con-
sortini & O’Donnell [7,8] established the statistics for a thin-beam propagation under the latter.
That is, given two beams propagating (partially) across a turbulent region, Fig. 1, with beam
displacements at position d defined by ηd = xd −〈xd〉 and ζd = yd −〈yd〉, and at the origin by
η0 = x0 −〈x0〉 and ζ0 = y0 −〈y0〉, then

By(d) = 〈ζd ζ0〉=
∫ L

0
F (z,S,P)gn(z,d)dz (1)

is the off-plane covariance describing displacements perpendicular to the plane containing the
propagation axis, z, and the line joining the displacements centres, d; likewise, the on-plane
covariance is given by

Bx(d) = 〈ηd η0〉=
∫ L

0
F (z,S,P) fn(z,d)dz, (2)

since the displacements are along the axis defined by d. Here

F (z,S,P) = 2

(
S3

3
+PS2 +SP2

)
− z

(
S2 +2PS+2P2)+ z3

3
(3)

is the filter function moderating the contributions of both the region where the turbulence is
active, S, and where it is inactive, P—here S+P = L. While the action of the turbulence itself
in each axis along the direction of propagation is

fn(z,d) = (2π)3/2
∫ ∞

0
κΦn(κ)

[
κ3/2J3/2(κr)

r3/2
− d2κ5/2J5/2(κr)

r5/2

]
dκ (4)

gn(z,d) = (2π)3/2
∫ ∞

0
κΦn(κ)

[
κ3/2J3/2(κr)

r3/2

]
dκ , (5)

where r2 = z2 +d2, and Φn is the spectrum of structure function for the refractive index fluctu-
ations [28]. As discussed by Tatarskı̆ [29] the action of dissipative range in the spectrum is best
modeled by a decaying exponential function, severing almost any contribution after the inner-
scale cut-off κm = 2π/�0. For instance, the propagation of two parallel thin beams introduces
two distances that can be modified independently, L and d; therefore, the expressions above for
each beam covariances should be functions of adimensional magnitudes derived, at least, from
these three quantities. Finally, the covariance along the off-plane axis is written

By(d) = L5/2
m

[∫ 1

0
g̃n(u,δ )

(
2
3
−u+

u3

3

)
du− p2

∫ 1

0
g̃n(u,δ )

(
u+

2
3

p

)
du

]
, (6)
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with p = P/L the fraction of inactive turbulence in the path of length L, Lm = κmL represents
the adimensional propagation distance, and

g̃n(u,δ ) = (2π)3/2
∫ ∞

0
[κmkΦn(κmk)]

⎡
⎣k3/2J3/2

(
kLm

√
u2 +δ 2

)

(u2 +δ 2)3/4

⎤
⎦dk (7)

where δ = d/L is the separation between beams relative to the propagation distance, the rela-
tive separation. Since Eq. (4) is functionally dependent of gn, we define instead covariance
difference

Δ(d) = By(d)−Bx(d) =

= δ 2L7/2
m

[∫ 1

0
h̃n(u,δ )

(
2
3
−u+

u3

3

)
du − p2

∫ 1

0
h̃n(u,δ )

(
u+

2
3

p

)
du

]
, (8)

with

h̃n(u,δ ) = (2π)3/2
∫ ∞

0
[κmkΦn(κmk)]

⎡
⎣k5/2J5/2

(
kLm

√
u2 +δ 2

)

(u2 +δ 2)5/4

⎤
⎦dk. (9)

Observe that the second term in Eq. (6) can be thought as a correcting term function of p; more-
over, when p is small its contribution to the covariance is depreciable. In this way the contribu-
tion of a partially filled path seems to have a lowering effect on the values of the covariances.
In order to organize the information in the best way possible we will leave the analysis of the
partially filled path to a future work.

3. Twin beam covariance behaviour for generalized spectra for filled paths

3.1. The non-Kolmogorov spectrum case

The non-Kolmogorov spectrum is obtained from a self-similar Lévy fractional Brownian
field [23]. Any spatial scale is absent, the inner-scale corresponding to dissipation effects is
zero, and the outer-scale is infinite as the bath has no boundaries. That is,

Φn(κ) =
sin(πH)Γ(2H +2)

4π2 C2
n

1
κ2H+3 , with 0 < H ≤ 1/3. (10)

This spectrum is the only one that gives an analytical solution to the filled path problem, for
any distance, as we will see. The range of variation of H is consistent with the normal variation
of 2H +3 near the ground. First we have,

gn(u,δ ) = HC2
n

L2H−2

(δ 2 +u2)1−H , and (11)

hn(u,δ ) = 2H(1−H)C2
n

L2H−4

(δ 2 +u2)2−H . (12)

Observe that an adimensional version for these functions is inexistent because there are no
characteristic scales, i.e.: the spectrum is self-similar. After integrating with the filter function
we arrive to the following

By(d) = HC2
nL2H+2

∫ 1

0

(
2/3−u+u3/3

)
(δ 2 +u2)1−H du

= HC2
nL2H+2δ 2H−2 [ 2

3 2F1
(
1−H, 1

2 ; 3
2 ;−δ−2)+

− 1
2 2F1

(
1−H,1;2;−δ−2)+ 1

12 2F1
(
1−H,2;3;−δ−2)] (13)
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and

Δ(d) = 2H(1−H)C2
nL2H+2δ 2

∫ 1

0

(
2/3−u+u3/3

)
(δ 2 +u2)2−H du

= 2H(1−H)C2
nL2H+2δ 2H−2 [ 2

3 2F1
(
2−H, 1

2 ; 3
2 ;−δ−2)+

− 1
2 2F1

(
2−H,1;2;−δ−2)+ 1

12 2F1
(
2−H,2;3;−δ−2)] . (14)

Both of these expressions diverge asymptotically as δ 2H−1 in zero since H < 1/2. This implies
an infinite correlation for both axis. On the other hand, the role of the propagation path is
merely being an amplifying factor. The most notorious characteristic is the presence of an
axis-cut, Fig. 2(b). It is independent on any scale of the turbulent propagation, but the degree of
development of the turbulence. An estimation for the cut can be made from fitting the numerical
solutions to Bx(δ ) = 0 for some Hurst exponents: it grows quadratically as H goes to 1/3
(Fig.2(d)),

δ0 = 1.945(±0.3735)H2 +0.3995(±0.1291)H +0.0009689(±0.0092). (15)
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Fig. 2. (a) The off-plane covariance, By, is depicted for different values of H. (b) The on-
plane covariance, Bx, is shown to cross the δ -axis at different points depending on the value
of the Hurst exponent. (c) The covariance difference, Δ, also diverges. (d) The axis cut for
the on-plane covariance as a function of the Hurt exponent.

3.2. The (non-K) Tatarskı̆ spectrum case

This is the simplest spectrum available considering the effects of the dissipative range. Under
the presence of intermittence, and other factors, the spectrum in the inertial range deviates from
the Obukhov-Kolmogorov −11/3 power exponent; thus, a straightforward extension is

Φn(κ) =
sin(πH)Γ(2H +2)

4π2 C2
n

exp
(−κ2/κ2

m

)
κ2H+3 , with 0 < H ≤ 1/3. (16)
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Evaluating Eqs. (7) and (9) with this spectrum produce analytical results:

g̃n(u,δ ) =
sin(πH)Γ(2H +2)Γ(1−H)

6πκ2H+2
m

C2
nL3/2

m 1F1

[
1−H,5/2,−L2

m

4

(
δ 2 +u2)] , and (17)

h̃n(u,δ ) =
sin(πH)Γ(2H +2)Γ(2−H)

30πκ2H+2
m

C2
nL5/2

m 1F1

[
2−H,7/2,−L2

m

4

(
δ 2 +u2)] . (18)

Consortini & O’Donnell [7] discuss this problem only for the OK theory, and their main
focus is large propagation paths; however, such situation is hardly found in a laboratory. More-
over, the approximation for the long-propagation path is made without specifying the scale with
respect to which the path is longer. For instance, it is suggested in [7] that it must be L � �0 for
the approximation to work—Lm � 1 for us. Comparing either Eq. (17) or (18) against the filter
function F reveals that it is the relative separation, δ , the moderator of whether we are entitled
to approximate the filter function or not for the range of Lm achievable under the Geometrical
Optics approximation. Effectively, the high ratio required for Consortini’s asymptotic approx-
imation is always achievable when tens of meters are compared against a few centimeters of
separation between the beams—small relative separations—, but in the laboratory such ratios
are usually not possible. Numerical comparison shows uniform convergence from our approach
to the asymptotic approximation from [7] given these conditions; nevertheless, observe that lo-
cal disagreements (such as maxima and roots) may extend further beyond the bounding error
between covariances.

First, as a comparison, let us inspect the behaviour of the beams covariances for the OK
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Fig. 3. (a) The normalized off-plane covariance, By, is depicted for different values of Lm.
(b) The normalized on-plane covariance, Bx, is shown to cross the δ -axis at the same point,
δ � 0.367, regardless of the value of Lm. (c) and (d) The normalized covariance difference,
Δ, approaches the origin as the adimensional propagation distance increases.
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Fig. 4. Fixed the adimensional distance Lm = 250: (a) the normalized off-plane covariance
for different Hurst exponents becomes rapidly decreasing with lower H; (b) the normalized
on-plane covariance axis cut is sensitive to H; (c) the shape of the normalized covariance
difference, and its maximum, changes with decreasing H.

theory, i.e., H = 1/3. Under the full-path condition, p = 0, numerical computation for the
on- and off-plane covariances, Eqs. (6) and (8), produces curves similar to those found in [7].
Nevertheless, an axis cut is proved to exists at δ ≈ 0.367 for the on-plane covariance, Fig. 3(b),
regardless of the value of the inner-scale or the propagation distance. Maximum values for the
covariance difference are observed, Fig. 3(d), to decrease its position with the increase in the
adimensional propagation distance.

Although, the shape of the covariance function is also modified by the value of the Hurst
power exponent, it preserves the same characteristics discussed for the OK model. The off-
plane covariance decays as the separation δ increases, and its decay gets sharper as H tends to
zero, Fig. 4(a). The on-plane covariance, as expected, decays and cuts the axis at some value
that is dependent on H. In opposition to our previous discussion, the degree of development of
the turbulence affects the position of the point where the δ -axis is cut—see Fig. 4(b). Again, the
Tatarskı̆ spectrum also presents an axis-cut, and a partially developed turbulence can show this
cut even for long-paths. The difference between off- and on-plane covariances also presents a
maximum whose position moves slightly (again) towards zero as H decreases, Fig. 4(c). Bear in
mind, that although in both cases—Lm growing or H decreasing—the position of the maximum
moves in the same direction, its value and the shape of the curve behave differently: compare
Figs. 3(c,d) and 4(c).

For each Hurst power exponent an almost linear relation exists between 2π/Lm (proportional
to the inner-scale when the propagation distance is fixed) and the position of the maximum
of Δ. In Fig. 5(top left) we observe this relation, and the occurrence of a departure for small
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Fig. 5. (top left) 2π/Lm versus the position of the maximum δ for the difference func-
tion; a linear fit is found for most of the range (see zoomed area). The fits giving
higher slopes belong to smaller Hurst exponents. (left bottom) Fits coefficients as func-
tions of H; p(H) =−1.4260(±0.2969)H3−0.4147(±0.1333)H2−1.2890(±0.0157)H+
1.8200(±0.0005) and b(H) = −0.010103(±0.004187)H3 + 0.000677(±0.001832)H2 −
0.000442(±0.000209)H − 0.000133(±0.000006). (right top) The roots for the on-plane
covariance Bx as a function of H. The points corresponds to a numerical evaluation of
the covariance’s crossing point, then a fit is performed using a quadratic polynomial;
δ0(Hi)+ δ1(Hi)(2π/Lm)+ δ2(Hi)(2π/Lm)

2. (right bottom) Origin ordinate δ0 as a func-
tion of H obtained from the right top fit, Eq (20).

displacements; we can synthesize it as

�0

2π
= p(H)d +b(H)L, for d < 1.5×10−3L, (19)

with p(H) and b(H) given in Fig. 5. The same is true for the on-plane covariance axis-cut, in
Fig. 5(right) we observe that these roots are almost unchanged by Lm—only the lowest values of
the Hurst exponent produce a root sensitive to the adimensional scale. That is, the inner-scales
(and propagation distance) hardly gives us an appreciable change; for propagation distances
many times the inner-scale this value is fixed to the origin ordinate fit, δ0(H). Thus,

δ0 = 1.962(±0.3840)H2 +0.3915(±0.1328)H +0.0018(±0.0095). (20)

This fit is almost identical to the obtained in the non-Kolmogorov spectrum case, Eq. (15); that
is, the inner-scale has little influence in the location of the axis-cut.
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3.3. The (non-K) von Kármán spectrum case

The generalized (non-Kolmogorov) von Kármán spectrum was introduced by Toselli et al. [14]:

Φn(κ) =
sin(πH)Γ(2H +2)

4π2 C2
n

exp
(−κ2/κ2

m

)
(
κ2

0 +κ2
)H+3/2

, with 0 < H ≤ 1/3, (21)

where κ0 = 2π/L0 reflects the effect of the outer-scale for low spatial wave-numbers. In this
case analytic representations for both g̃n(u,δ ) and f̃n(u,δ ) exists as series of Tricomi confluent
hypergeometric functions:

g̃n(u,δ ) =
sin(πH)Γ(2H +2)

π1/223κ2+2H
m

C2
nL3/2

m

∞

∑
n=0

(−1)n

n!22n U

[
3
2
+H,H −n;q2

]
L2n

m

(
δ 2 +u2)n

(22)

h̃n(u,δ ) =
sin(πH)Γ(2H +2)

π1/224κ2+2H
m

C2
nL5/2

m

∞

∑
n=0

(−1)n

n!22n U

[
3
2
+H,H −1−n;q2

]
L2n

m

(
δ 2 +u2)n

, (23)

both functions depending on a new adimensional variable q = κ0/κm, the scale ratio, besides
the other scaling variables defined in the last section. Nevertheless, these series are not uni-
formly convergent; thus, no analytical integral for the variances exists. However, numerical
integration to obtain g̃n and h̃n from Eqs. (7) and (9) with the von Kármán spectrum, Eq. (21),
is possible; moreover, the error can be maintained low enough to proceed with the second inte-
gration with the filter function.

The scale ratio manifestation produces some notable changes. Consider H = 1/3, suppose
we maintain the adimensional distance Lm constant and change the scale ratio; this is equiva-
lent to maintain the inner-scale constant while changing the outer-scale—Fig. 6 illustrates this
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Tatarskı̆

δ
Fig. 6. Fixed the adimensional distance Lm = 250, for varying scale ratios compared against
the modified Tatarskı̆ spectrum case: (a) the normalized off-plane covariance; (b) the nor-
malized on-plane covariance; (c) the normalized covariance difference.
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Fig. 7. m = 100: (a) normalized on-plane covariance,(b) normalized off-plane covariance,
and (c) normalized difference. m = 10: (d) normalized on-plane covariance, (e) normalized
off-plane covariance, (f) normalized difference. m = 0.1: (g) normalized on-plane covari-
ance, (h) normalized off-plane covariance, (i) normalized difference.

case. It is observed that high values of the scale ratio produces notable changes in all covari-
ances shapes, while low q values yields no significative change in their appearance. This is
understandable, since physically a fixed Lm can be seen as a fixed inner-scale, high values of
the scale ratio are due to outer-scale approaching to the inner-scale. In the limit, that leaves us
with no inertial range at all, and all the correlations should occur near the origin. Neverthe-
less, the effect of even slight changes in the outer-scale affects the axis cut as it is observed
in Fig. 6(b), and it is as pronounced as the one produced by the Hurst exponent, Fig. 4. In the
covariance difference the maximum is almost indistinguishable from the Tatarskı̆ spectrum for
relatively moderate q. Here we can observe that the outer-scale somehow affects the position of
the maximum but for low values of the scale-ratio this dependence vanishes.

Otherwise, by changing Lm (the inner-scale) and q accordingly it is possible to maintain
the outer-scale constant. We define m = L/L0, in Fig. 7 each row is set to a different value of
m. Since L would be fixed each row represents a higher value of L0. Redefining q = m/Lm,
we observe in the left column of Fig. 7 that the normalized on-plane covariance crosses the
horizontal axis further from the origin with higher values of the outer-scale, but along with
this the separation between covariances evaluated for different inner-scales coalesce in one
crossing point. In the middle column of Fig. 7 we observe the steep of the decrease in the off-
plane covariance reduces, being slower with the higher outer-scales. Finally, the position of the
maxima of the difference of these covariances change, but is not as noticeable as the properties
of each of these alone. Thus, the outer-scale has little influence in the position of the maximum.
Since it is the same for all rows in the graphic the maximum should be in the same position.
The reason for the deviation in the first row is that the outer-scale is very near the inner-scale.

In the generalized case, we observe—Fig. 8—that the steep of the decreasing of both the on-
and off-plane covariances is controlled by the Hurst exponent: with smaller values the slope
of descent is increased. This causes the axis-cut to move nearer to the origin, similar to the
phenomena we observe for smaller outer-scale but more noticeable. Decreasing values of H
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Fig. 8. Fixed the adimensional distance Lm = 250 and the scale ratio q = 0.01: (a) the
normalized off-plane covariance for different Hurst exponents becomes rapidly decreasing
with lower H; (b) the normalized on-plane covariance axis cut is sensitive to H; (c) the
shape of the normalized covariance difference, and its maximum, changes with decreasing
H.

pulls the covariance difference maximum towards the origin, while higher values of the outer-
scale (low m) do the opposite, compare Fig. 7 (rightmost column) with Fig. 8(c). The effect of
changing the Hurst exponent is the same as in the Tatarskı̆ case.
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Fig. 9. The plotted points represents the changes in the maximum location with respect to
the inverse of the adimensional scale, 2π/Lm, and the scale ratio, q, for different values of
H. The surface that fits these points follow Eq. (24) (extended figure in Media 1): p(H) =
7.645(±3.664)H2 + 1.907(±0.921)H + 3.470(±0.045), c(H) = −0.5989(±0.599)H2 −
0.3902(±0.376)H+0.6082(±0.029), and m(H) = 1.39(±1.000)H2+0.765(±0.361)H+
1.023(±0.026).

The position of the maximum for the covariance difference now depends on two scales: q and
Lm. This surface is dependent on H as shown in Fig. 9. We calculated the maximum position for
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some scale pairs (q,2π/Lm) for a set of Hurst exponents from 0 to 1/3 with step ΔH = 0.0333,
a reasonably good fit for these surfaces is given by

d = p(H)
�0

cosh

[
m(H)

(
�0
L0

)c(H)
] , (24)

where the fitting coefficients p(H),m(H) and c(H) can be modelled by quadratic polynomials,
see Fig. 9(b). Likewise, the axis-cut for the on-plane covariance is a function of q and Lm. It
is particularly sensitive to the values of the scale ratio; effectively, even the smallest departures
from q = 0 produces an axis-cut function strongly dependent on the adimensional propagation
distance, Fig. 10. This dependence recedes for larger adimensional scales when the scale-ratio
takes values above 0.1, becoming almost constant for Lm > 500. Moreover, with this departure
from small q-values the cuts for the different states of the turbulence coalesce to one surface. A
simple fit, as in Eq. (24), is impossible. The best approximations require far more coefficients
and complex functional relations. In any circumstance the axis cut is dependent of L, L0, �0,
and, of course, the Hurst exponent H. This implies that all the scales defining the cut are rele-
vant; particularly, for realistic scale ratios (q ≤ 0.1) a strong dependence on the inner-scale and
propagation distance is found.
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Fig. 10. The plotted points represents the changes in the axis-cut location with respect to
the inverse of the adimensional scale, 2π/Lm, and the scale ratio, q, for different values of
H. Interpolant surface fits are used to exemplify its behaviour, a true interpolant function
was not found (extended figure in Media 2).

4. Conclusions

Throughout this work we have given an exhaustive description for the GO approximation to the
propagation of thin-beams through varied non-Kolmogorov models for the turbulent refractive
index. Moreover, we have extended results obtained by pioneer works from Consortini et al. [7,
8] to any possible state of the turbulence. This is extremely important, since, as we discussed
previously, deviations are expected for the range of usability of an experimental technique based
in this theory—see again [12, 15–19].

We have confirmed the dependence of the wandering statistics of two parallels beams (on-
and off-axis covariances) on the inner- and outer-scales, and the degree of development of the
turbulence, H. In [8, 9] was shown that the characteristic scales of the optical turbulence could
be determined from the topological characteristics of the correlation curves: the position of the
maximum of Δ roughly determined the inner-scale, and the axis-cut in the on-plane covari-
ance estimated the outer-scale. Nevertheless, in the present work we have given a more precise
description of both characteristics; they are not only exclusive functions either of the inner-
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Fig. 11. Comparison between Consortini’s asymptotic approximation and our numerical
approach: (a) r.m.s. error for relative separation in 0 ≤ δ ≤ 0.02 (filled markers) and
0 ≤ δ ≤ 0.4 (hollow markers) in the Tatarskı̆ case (Media 3); (b) r.m.s. error for relative
separation in 0 ≤ δ ≤ 0.02 (filled markers) and 0 ≤ δ ≤ 0.45 (hollow markers) in the von
Kármán case (Media 4). The L2 norm is used as a measure of the uniform convergence
(r.m.s error) in both cases.

or outer-scales, but they both depend on the value of H. The maximum in the covariance dif-
ference responds strongly to �0; although some correction is due to the scale ratio (up to 10%)
larger deviations are entirely attributable to the degree of development of the optical turbulence.
On the other hand, the axis-cut observed in the on-plane covariance is strongly affected by both
ratios �0/L and q. The axis-cut alone is unable to provide an accurate estimate of the outer-scale
(incidentally it exists regardless of the existence of L0, Figs. 2 and 5), the inner-scale is nec-
essary for the determination of the outer-scale, for any state of the turbulence. Experimentally,
this restricts us from determining the scales independently from each other, at least not without
error. Innocenti & Consortini [31] encountered this problem while comparing the Hill-Andrews
spectrum with the von Kármán. Moreover, due to the dependence of these properties with H
the state of the turbulence should be asserted by other means before attempting to estimate the
scales.

Since the present approach provides exact numerical integration of the filter function, g̃n and
f̃n, it is particularly suitable for short-path distances found in the laboratory. Figure 11 exem-
plifies the asymptotic limit, for the Kolmogorov condition H = 1/3, to the long-path approxi-
mation obtained in [7]. The Tatarskı̆ model requires high values of the adimensional distance
(Lm ≥ 105) to achieve low r.m.s. error—particularly for the normalized on- and off-plane co-
variances. For instance, this induces the absence of an axis-cut in the asymptotic approximation,
see Fig. 11(a) (Media 3). On the other hand, the von Kármán model gives much better results:
values for Lm larger than 103 provides good agreement between the Consortini’s asymptotic
approximation and our approach, Fig. 11(b). Disagreements on low values of the adimensional
propagation are notable, this alters particularly the position of the axis-cut in the on-plane co-
variance, Fig. 11(b) (Media 4). On the contrary, the maxima of the covariance difference are
extremely stable: the asymptotic approximation provides a formula identical to Eq. (24)—its
coefficients are within the error margin of the ones given in our generalization for H = 1/3.

We have discussed the twin beams correlations under three different generalized spectra:
(self-similar) non-Kolmogorov, (non-K) Tatarskı̆ and (non-K) von Kármán. As it is well known,
the von Kármán spectrum is the more general of the three, it has both scales present, and
thus provides a more complete description of turbulent perturbations to the refractive index.
Nevertheless, real turbulence is known to present a characteristic bump in the spectrum [30],
as found in [31] the atmospheric spectrum provides a better representation of the experimental
data for long propagation path. In future works we aim to study it through non-Kolmogorov
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atmospheric spectrum, and elaborate comparisons with the results provided here.
Finally, we reserve a full analysis for the non-Kolmogorov spectrum on the effects of par-

tially filled paths to a future work. We can anticipate what seems to be a general rule in this case.
The fraction of static air p has a lowering effect on the covariances. The strength of the corre-
lation is diminished by the unfilled region, and this has an effect on the position of the axis-cut
but apparently has no influence on the position of the maximum. We have discussed this issue
in [32], where we have applied successfully the methods presented here to the determination
of inner- and outer-scales for turbulence generated in a small chamber of about 37 centimeters
partially filling a propagation path of 1.29 m (p = 0.71); these scales are reproduced indepen-
dently by other techniques. Further research should be done to establish the extent of its effect
in any turbulence condition.
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