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ABSTRACT 

 
The immunodominant epitope α-D-Galp-(1→3)-β-D-Galp-(1→4)-D-GlcNAc, 

expressed in the mucins of the infective trypomastigote stage of Trypanosoma cruzi has 

been proposed for multiple clinical applications, from serodiagnosis of protozoan caused 

diseases to xenotransplantation or cancer vaccinology. It was previously shown that the 

analogue trisaccharide, with glucose in the reducing end instead of GlcNAc, was as 

efficient as the natural trisaccharide for recognition of chagasic antibodies. Here we 

describe the synthesis of α-D-Galp-(1→3)-β-D-Galp-(1→4)-D-Glcp functionalized as the 

6-aminohexyl glycoside and its conjugation to BSA using the squarate method. The 

conjugate of 6-aminohexyl α-D-Galp-(1→3)-β-D-Galp was also prepared. Both 

neoglycoconjugates were recognized by serum samples of Trypanosoma cruzi-infected 

individuals and thus, are promising tools for the improvement of Chagas disease diagnostic 

applications. 

 

 

Keywords: Trypanosoma cruzi, anti α-Gal, neoglycoconjugate, squarate conjugation 

method  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1. Introduction 

 

American trypanosomiasis, or Chagas disease, is a life-threatening infection caused 

by the protozoan parasite Trypanosoma cruzi, for which no vaccines or appropriate 

treatments are available. Current estimations indicate that ~6 million people are already 

infected and that ~100 million individuals are at risk of infection [1]. In endemic areas of 

Latin America, the parasite is primarily transmitted to humans through the bite of infected, 

blood-sucking triatomine bugs. Individuals may also be infected through blood transfusion, 

organ transplantation, congenital contamination or by the ingestion of tainted food and 

fluids [1]. 

The diagnosis of Chagas disease is challenging because it is often asymptomatic in its 

acute phase and evolves into a chronic stage in which it may present diverse clinical forms 

[1]. In addition, and due to the very low or null parasitemia during the chronic phase, the 

detection of parasites in blood samples by direct examination and/or by parasite-

amplification methods such as hemoculture or xenodiagnoses is difficult and time-

consuming. Several molecular methods, although highly specific, present suboptimal 

sensitivity and require technological expertise and expensive laboratory equipment 

(reviewed in [2]). Therefore, detection of anti-T. cruzi antibodies remains the most effective 

method for demonstrating direct exposure to the parasite. At present, the most widely used 

serologic methods are indirect hemagglutination assay (IHA), indirect immuno-

fluorescence assay (IIF), and enzyme-linked immunosorbent assay (ELISA). Synthetic 

peptides spanning linear B-cell epitopes identified in parasite antigens may be used to 

increase serodiagnostic assay specificity [3][4][5]. 

The serodiagnostic potential of carbohydrate-rich molecules found on the surface of 

T. cruzi parasites has also been explored. In particular, the α-galactosyl-containing 

glycotopes that decorate the glycosylphosphatidylinositol (GPI)-anchored mucins 

(henceforth tGPI-mucins) of the bloodstream trypomastigote forms [6]. Since tGPI-mucins 

are expressed at staggering levels (i.e. ~106 molecules per parasite), and each may undergo 

multiple glycosylations, their attached α-galactosyl-containing glycotopes attached to them 

end up forming a quite dense and immunogenic ‘surface coat’ [7][8][9][10]. Structural data 

indicated that approximately 10% of the tGPI-mucins’ oligosaccharides consist of the linear 
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trisaccharide  α-D-Galp(1→3)-β-D-Galp(1→4)-D-GlcNAc (1) known as "α-Gal” [11]. In 

the remaining tGPI-mucins glycans, this core trisaccharide is branched with β-D-Galp 

residues, in as-yet undefined structures [12]. Once on the parasite surface, terminal β-D-

Galp units may be linked to sialic acid residues by means of the trans-sialidase reaction, 

thus leading to the formation of sialoglycomarkers crucial for parasite protection and 

virulence [8][9][10][11][12][13][14][15].  

The α-Gal evolutionary distribution is unique, being abundantly expressed across the 

whole branch of mammals except for Old World monkeys, apes and humans [11]. Instead, 

these species produce large amounts of so-called anti α-Gal antibodies in response to cross-

reactive glycotopes present in commensal enterobacteria [11]. Interestingly, the α-Gal 

glycotope is only weakly recognized by anti α-Gal antibodies from healthy individuals, 

whereas this structure and particularly the disaccharide α-D-Galp-(1→3)-β-D-Galp (2), 

elicit a strong humoral response in patients infected with T. cruzi [12][16]. Therefore, 

purified tGPI-mucins and/or synthetic neoglycoconjugates bearing glycotopes 1 and/or 2 

were proven valuable tools for the improvement of serodiagnostic and therapy methods in 

Chagas disease [6][12][16] [17][18][19][20][21][22][23], and Leishmania and Plasmodium 

infections [11][24][25][26][27]. 

In addition to their diagnostic potential, antibodies to the αGal glycotope were proven 

to trigger the lysis of bloodstream trypomastigotes hence raising the possibility that they are 

involved in controlling parasitemia during T. cruzi infection [9]. Indeed, vaccination of 

α1,3GalT knockout mice with α-Gal-containing neoglycoconjugates was shown to protect 

against lethal challenge with T. cruzi parasites, chiefly by inducing a strong, cytolytic anti 

α-Gal antibody-mediated humoral response [28]. Again, quite similar results were obtained 

with Leishmania and Plasmodium parasites in α1,3GalT knockout mouse models 

[29][30][31] indicating that the αGal glycotope constitutes an appealing candidate for the 

development of a prophylactic vaccine to block main protozoan infections. In broader 

terms, artificial modulation of the αGal glycotope content was explored as a general 

strategy to increase/decrease the immunogenicity of xenotransplants and viral and/or cancer 

vaccines [11][32][33]. 

In accordance to the numerous clinical applications of αGal, a multiplicity of 

chemical and genetic engineering synthesis methods have been developed [6][11]. 
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The purpose of our current project is develop and execute an efficient synthesis of an 

α-Gal glycotope and conjugate it to polypeptide carriers, to obtain diagnosis tools for 

Chagas disease.  It was previously shown that the trisaccharide α-D-Galp(1→3)-β-D-

Galp(1→4)-β-D-Glcp (3), with glucose in the reducing end instead of GlcNAc was as 

effective for recognition of chagasic antibodies as the natural trisaccharide 1 [16]. Thus, β-

(1→4) glycosylation of D-GlcNAc derivatives being a difficult task [34], we decided to 

prepare trisaccharide 3 functionalized as the 6-aminohexyl glycoside 4 and conjugate it to 

BSA using the squaric acid chemistry [35], to afford 4-BSA (Figure 1). The “squarate 

method” was previously used for the preparation of many glycoconjugates, including 

experimental vaccines [36]. A BSA conjugate of 3 was previously obtained by a 

conjugation chemistry which used the sugar glycoside with a thiol reactive linker and 

maleimide activated BSA [16]. The squarate method has the advantage of using a sugar 

derivative with a terminal amino group, which is more stable than the thiol group, and it 

does not require use of a derivatized peptide. 

 

Figure 1. Target trisaccharide and neoglycoconjugate 

 

 

2. Results and Discussion 

 

2.1 Synthesis of 6-aminohexyl α-D-Galp-(1→3)-β-D-Galp-(1→4)-β-D-Glcp (4) 

 

The synthesis of different derivatives of trisaccharide 3 has been previously 

accomplished. Wang et al. developed a downstream stepwise strategy [37]. Stocker and col. 

[38] and Almeida and col. [16] based their strategies on lactose glycosyl acceptors, lactose 

being an economical and easily available disaccharide, which already contains the β-D-
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Galp-(1→4)-β-D-Glcp motif. This fact greatly simplifies the total synthesis. In our case, we 

also used lactose as starting material for the synthesis of 4. We planned that after a 

sequence of reactions leading to a selectively protect lactose, a glycosyl acceptor with the 

free OH-3' would be accessed, which could be then glycosylated with a α-D-Galp donor. 

Subsequently, a spacer carrying a reactive amino group would be introduced [39]. 

Therefore, the retrosynthetic analysis of target molecule 4 indicated that it could be 

obtained from precursors 6 [40] and 7 (Figure 2). 

 

 

Figure 2. Target trisaccharide 4 and synthetic precursors 6 and 7. 

 

By treatment of lactose with Ac2O/NaOAc, avoiding the use of pyridine or other 

solvents, per-O-acetylated lactose was obtained [41]. By glycosidation with thiocresol 

promoted by BF3.Et2O, followed by Zemplén deacetylation, we obtained 8 [42] (Scheme 1) 

with the anomeric S-tolyl function which could be later activated for further glycosylation 

with 6-aminohexanol. The differentiation of lactose OH-3' was performed by selective 

dibutyltinoxide-promoted alkylation with 4-methoxybenzyl chloride (PMBCl) [43] to yield 

compound 9 [44].  This strategy was also applied by Almeida et al. [16]. The pronounced 

downfield shift exhibited by C-3' (80.7 ppm) after 4-methoxybenzylation of 8, compared 

with lactose (72.6 ppm) [45], confirmed the site of substitution in compound 9. 

By O-benzoylation of 9, followed by oxidative O-demethoxybenzylation, glycosyl 

acceptor 8 was obtained with 37 % yield, from lactose. 
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Scheme 1. Synthesis of the lactosyl acceptor 7. Reagents and conditions: (a) Ac2O/NaOAc; 

(b) TolSH, BF3.OEt2, CH2Cl2; (c) NaOMe/MeOH, rt; (d) Bu2SnO, toluene, reflux; (e) 

NBu4I, PMBCl, toluene, reflux; (f) BzCl, pyridine, rt; (g) DDQ, CH2Cl2-H2O, rt. 

 

With derivative 7 in hand, the next step was to glycosylate it with donor 6  [40]. 

Thus, by treatment of a solution of these compounds with TMSOTf in Et2O at −55 ºC, the 

α-linked S-Tol trisaccharide 5 was obtained, as confirmed by the chemical shift of C-1’’ 

(94.6 ppm) and the J1’’,2’’  value (3.4 Hz) observed in the 13C and 1H NMR spectra, 

respectively (Scheme 2). 

 

 

Scheme 2. Synthesis of 4. Reagents and conditions: (a) TMSOTf, Et2O, 4Å MS, −55 ºC; (b) 

6-Benzyloxycarbonylamino-1-hexanol, NIS, HOTf, CH2Cl2, 4 Å MS, rt; (c) NaOMe, 

MeOH, rt; (d) 10 % Pd/C, H2, 50 psi, 5% formic acid, MeOH. 
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The installation of the spacer was performed by activation of 5 with NIS/HOTf and 

reaction with 6-benzyloxycarbonylamino-1-hexanol, affording trisaccharide 11 in 74 % 

yield (Scheme 2). The 13C NMR spectrum of 11 showed in the anomeric region signals at δ 

101.18 and 101.12 corresponding to C-1’ and C-1, respectively, confirming the β-O-

glycosidic character of the newly formed bond, and a signal at 94.7 ppm corresponding to 

C-1’’. 

Deprotection of 11 was done by consecutive O-deacylation with sodium methoxide 

and catalytic hydrogenolysis over 10% palladium on charcoal, in methanol containing 5% 

of formic acid. Free trisaccharide 4 was obtained in 93 % yield for two steps (Scheme 2). In 

the anomeric region of the 1H NMR spectrum doublets at δ 5.15 (J1’’,2’’ 3.9 Hz, H-1’’), 4.53 

(J1’,2’ 7.8 Hz, H-1’) and 4.49 (J1,2 8.0 Hz, H-1) were observed, and the 13C NMR spectrum 

showed anomeric signals at 102.8 (C-1’), 101.9 (C-1) and 95.4 (C-1’’) ppm. The structure 

of 4 was further confirmed by the m/z observed in the HR ESI mass spectrum, 

corresponding to the calculated exact mass of the molecule. 

 

2.2 Conjugation of 6-aminohexyl α-D-Galp-(1→3)-β-D-Galp-(1→4)-β-D-Glcp (4) to BSA 

 As part of our project, we planned the conjugation of several oligosaccharides both to 

BSA and to some peptides specifically chosen on the basis of their antigenic activity 

against α-Gal antibodies [46][47]. We intended to optimize a conjugation protocol for 

trisaccharide 4 to BSA, to establish an easy procedure to monitor the reaction and extend 

the conditions to the conjugation with other peptides. Several methods have been described 

for the conjugation of oligosaccharides to peptides and proteins [48][49][50][51]. However, 

many of them use oxidative or reducing conditions that can modify the structure of the 

oligosaccharide to be conjugated. On the other hand, monitoring the progress of the 

conjugation reaction is usually difficult. We decided to use here the "squarate method" [52] 

that has the advantage that it is not necessary to derivatize the polypeptide. 
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Scheme 3. Conjugation of trisaccharide 4 to BSA. Regents and conditions: (a) 3,4-

dimethoxy-3-cyclobutene-1,2-dione, KH2PO4-NaOH buffer (pH 7), rt; (b) BSA, borax -0.1 

M KH2PO4 buffer (pH 9), rt. 

 

Linker-equipped trisaccharide 4 was submitted to conjugation by the squarate method 

using conditions (hapten/peptide ratio, hapten and buffer concentrations, etc) optimized by 

Kovac and coworkers [53][54]. Dimethyl squarate was used as reagent, since it was 

described as the most convenient for conjugation [55]. Treatment of 4 with two equiv of 

dimethyl squarate at pH 7 afforded monomethyl monoamide squarate 4-sq (Scheme 3). 

Complete conversion was confirmed by TLC analysis (see Experimental). Purification of 4-

sq from the buffer salts, the excess of dimethyl squarate and the monomethyl squarate 

formed as by product was performed by filtration through graphitized carbon SPE column. 

In the NMR spectra of 4-sq some of the signals were split, as it is usually observed for 

squarate derivatives due to the double bond nature of the vinilogous C-N linkage [35]. 

Thus, in the 1H NMR spectrum the signal corresponding to the OCH3 group was observed 

as two singlets integrating for three hydrogens at 4.38 and 4.36 ppm. The splitting was also 

observed in the signal for the CH2NH hydrogens of the linker, which as result of the 

substitution by the squarate were shifted downfield, from 3.00 ppm (triplet) in 4 to 3.48 and 

3.62 ppm (two triplets) in 4-sq. Diagnostic signals were also observed in the 13C NMR 

spectrum: split signals corresponding to the OCH3 group at 60.8 and 60.9 ppm and to the 

cyclobutene at 172-188 ppm. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Subsequently, 4-sq was treated at pH 9 with BSA, in a 50:1 ratio, to afford the 

glycoconjugate. Also at this stage TLC was useful to monitor the reaction (see 

experimental). The conjugation mixture was subjected to dialysis which allowed the 

separation of the excess of 4-sq and the salts. Lyophilization then afforded the 

neoglycoconjugate 4-BSA, whose MALDI spectrum showed high glycosylation and 

absence of the unconjugated BSA (Figure 3). 

Figure 3. MALDI-TOF-MS spectra of free BSA and conjugates 2-BSA, 4-BSA and 12-

BSA. 

The synthesis and conjugation to BSA of the 6-aminohexyl glycosides of  α-D-Galp-

(1→3)-β-D-Galp (2) and  β-D-Galp (12) was performed in a similar way, affording 

glycoconjugates 2-BSA and 12-BSA (Figure 4, synthesis not shown). Aliquots of the 

conjugation mixtures were taken at different times, and analyzed by SDS-PAGE under 

denaturing conditions, followed by Coomasie Brilliant blue staining (Fig 5A). Results 

allowed to conclude that after 24 h the reaction was complete, since no unconjugated BSA 

was observed (Fig 5A).  
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Figure 4. Conjugates 2-BSA and 12-BSA prepared by the squarate method. 

 

 

 

Figure 5. SDS-PAGE (10 %) under denaturing conditions of the neoglycoconjugates. A) 

Samples containing ~1 µg of 12-BSA, 2-BSA or 4-BSA collected at either 24 or 48 h of the 

conjugation reaction. The gel was stained with Coomassie Brilliant blue. BSA was used as 

control. B) and C) Samples containing ~1 µg of 12-BSA, 2-BSA or 4-BSA collected at 48 

h of the conjugation reaction. The gel was stained with Schiff reagent (B), followed by 

Coomassie Brilliant blue (C). BSA and bovine submaxillary mucin (BSM) were used as 

negative and positive controls for Schiff reagent staining, respectively. Molecular markers 

(in kDa) are indicated. 

 

The neoglycoconjugates were characterized by MALDI-TOF-MS (Figure 3). The 

apparent molecular mass observed for these neoglycoconjugates (~80 kDa for 12-BSA, and 

~85 kDa for both 2-BSA and 4-BSA, Figure 5A) in the SDS-PAGE, strongly correlate with 

MALDI-TOF-MS data. The sugar load of the conjugates was estimated on the basis of the 

shift in the molecular mass of the BSA (Table 1). This allowed us to calculate the 

carbohydrate content per protein molecule, and to estimate that 35, 38 and 29 units of 12, 2 
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and 4, respectively, were attached to BSA. Accordingly, 12-BSA, 2-BSA and 4-BSA but 

not BSA yielded a coloured band upon periodate-Schiff staining for carbohydrate (Figure 

5B). Gels were next stained with Coomasie Brilliant blue to reveal total proteins (Fig 5C). 

Densitometric analyses indicated an apparent lower carbohydrate/protein ratio of 4-BSA 

(0.321) as compared to 12-BSA (0.884) and 2-BSA (0.972), hence further supporting its 

reduced content (on molar basis) of attached carbohydrates. BSA contains 59 units of 

lysine per molecule [56]. The degree of glycosylation achieved (Table 1) although not 

complete, was similar to that obtained by other authors [53].  

 

Table 1. Sugar load of the neoglycoconjugates 2-BSA, 4-BSA and 12-BSA 

  Molecular  weight (Da) Glycotope /BSA  Conjugation  

Calculated Experimental ratio efficiency (%) 

BSA 66500 66410   
12 389.1686    
2 551.2214    
4 713.2742    

12-BSA  78880 34.8 70 
2-BSA  86342 38.3 77 
4-BSA  86356 29.3 59 

 

 

The immunological validation of the synthesized neoglycoconjugates was performed 

using an ELISA format and a panel of human serum samples. As shown in Fig 6A, 2-BSA 

and 4-BSA were recognized in a dose-dependent manner by anti α-Gal antibodies affinity-

purified from Chagas positive sera but not by antibodies purified from Chagas negative 

sera. Conversely, and in accordance with previous results [16], 12-BSA was not recognized 

by anti α-Gal antibodies purified from Chagas positive sera (Figure 6A).  

We next assessed the recognition of the neoglycoconjugates by chronic Chagasic 

sera. In this case, an additional conjugate, from BSA coupled to a synthetic peptide 

spanning an immunodominant sequence from T. cruzi Antigen 2 (BSA-TcAg2) was 

included in the analysis for comparison purposes. Paired comparisons between signals 

obtained for Chagas disease positive and negative sera indicated that 4-BSA, 2-BSA and 

BSA-TcAg2, but neither 12-BSA nor BSA, display statistically significant differences in 

their recognition by either population and, hence display positive predictive value for 
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Chagas disease serodiagnosis (Figure 6B). 4-BSA and 2-BSA yielded highly variable and 

dispersed (i.e. not normally distributed) reactivity profiles, with few positive sera 

displaying high signals and most of them exhibiting moderate or negative signals (Figure 

6B). Most interestingly, 4-BSA and 2-BSA displayed quite similar reactivity towards 

individual serum samples (Figure 6C), strongly suggesting they are exposing similar 

glycotope(s) on their attached carbohydrates. In this context, it is worth noting that 

previous glycoarray-based data [16] mapped the binding of anti-α-Gal antibodies from 

Chagasic patients mainly to the disaccharide α-D-Galp-(1→3)-β-D-Galp (2), which is 

conserved between 4-BSA and 2-BSA. 

To further address this issue, we performed competitive ELISA assays. Plates were 

coated with 4-BSA and assayed with 3 chronic Chagasic sera (selected on the basis of their 

reactivity to this molecule as shown in Fig 6B). For competition studies, and before being 

added to the plate, serum samples were incubated for 30 min with 10 µg of compound 12, 

2 or 4 diluted in PBS (phosphate buffered saline). As shown in Fig 6D, pre-incubation with 

compounds 2 or 4 yielded inhibition of 4-BSA recognition by Chagasic sera whereas pre-

incubation with compound 12 or PBS had a negligible effect on this phenomenon. 

Moreover, competition with compound 4 did not yield an improved inhibition as compared 

to compound 2, strongly suggesting that 2 is the main target of anti-α-Gal antibodies 

elicited during T. cruzi infection. Neither compound 2 nor compound 4 were able to inhibit 

BSA-TcAg2 recognition by the same set of Chagas positive sera, further supporting the 

specificity of competition results (Figure 6D).  

Taken together, these results indicate i) that anti α-Gal obtained from Chagas 

positive sera recognize neoglycoconjugates 2-BSA and 4-BSA; ii) that this recognition can 

be explained by or ascribed to their attached carbohydrates; and iii) that, as previously 

proposed [16], the disaccharide 2 bears the main glycotope recognized by anti-α-Gal 

antibodies elicited during T. cruzi infections. Most importantly, our data support 2-BSA 

and 4-BSA neoglycoconjugates as suitable reagents to improve Chagas disease diagnostic 

applications, a major need in this field of research.  
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Figure 6. Immunological validation of neoglycoconjugates. A) Reactivity of anti α-Gal 

antibodies purified from Chagas positive sera (circles) or antibodies purified from Chagas 

negative sera (squares) against 4-BSA (red), 2-BSA (green) and 12-BSA (blue) 

neoglycoconjugates. Each point was tested in duplicate and mean  ± SD OD450nm values are 

plotted against antibody concentration. Significant differences between the indicated 

populations' medians were evaluated by the ANOVA and Tukey post-test, and the p values 

are informed. Non-significant differences are denoted as ns. B) Dot plot analysis of 

reactivity values (expressed as the % of reactivity of a control Chagas negative serum 

assayed in parallel) using unconjugated BSA, 12-BSA, 2-BSA, 4-BSA and BSA-TcAg2. 

The ELISA plates were coated with the indicated antigen and incubated with 19 serum 

samples from chronic Chagas-positive individuals (+) or 6 Chagas negative individuals (-). 

The median and SD for each group are indicated by box and whiskers. Significant 

differences between the indicated populations' medians were evaluated by the Mann-

Whitney test, and the p values are informed. Non-significant differences are denoted as ns. 

C) Reactivity (expressed as the % of reactivity of a control Chagas negative serum assayed 
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in parallel) of 6 selected serum samples from Chagas-positive individuals towards 12-BSA 

(blue), 4-BSA (red), 2-BSA (green), BSA-TcAg2 (purple) or BSA (orange). Each point 

was tested in duplicate and mean ± SD OD450nm values were indicated. D) Reactivity 

values (expressed as the % of reactivity of PBS-added sera) towards 4-BSA or BSA-

TcAg2 of 3 Chagasic serum samples treated with 10 µg of the indicated glycan before 

being added to the plate. Each serum sample is indicated by a different color. 

 

 

3. Conclusions 

 

The synthesis of trisaccharide 4 was achieved using a synthetic path somewhat 

different from those reported for similar glycosides. Conjugation to BSA of 4 and the 6-

aminohexyl α-D-Galp-(1→3)-β-D-Galp was performed by the squarate method which 

allowed the direct derivatization of the lysines amino groups by the carbohydrate moieties. 

The synthesized neoglycoconjugates were successfully characterized both structurally and 

functionally. They were specifically recognized by serum samples of T. cruzi-infected 

patients, indicating they constitute suitable, and much needed tools for improve diagnostic 

of Chagas disease.  

 

 

4. Experimental 

 

4.1 General Methods 

The solvents used were distilled, dried and stored according to standard procedures. 

Analytical thin layer chromatography (TLC) was performed on Silica Gel 60 F254 (Merck) 

aluminium supported plates (layer thickness 0.2 mm). Visualization of the spots was 

effected by exposure to UV light, charring with 5% (v/v) sulfuric acid in EtOH containing 

0.5% p-anisaldehyde, or with 0.25% ninhydrin in acetone with traces of pyridine. Column 

chromatography was carried out with Silica Gel 60 (230–400 mesh, Merck) and for reverse 

phase with RP18/ graphitized carbon Strata™ catridges (500 mg/6ml) from Phenomenex. 

Optical rotations were measured with a Perkin-Elmer 343 digital polarimeter. Nuclear 
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magnetic resonance (NMR) spectra were recorded with a Bruker AMX 500 instrument. 

Chemical shifts (δ) are reported in ppm, relative to chloroform (δ 7.27 for 1H and δ 77.16 

for 13C). Assignments of 1H and 13C NMR spectra were assisted by 2D 1H COSY and 

HSQC experiments. High resolution mass spectra (HRMS) were obtained by Electrospray 

Ionization (ESI) and Q-TOF detection. UV-MALDI-TOF analysis of the conjugates was 

performed using a 4800 Plus Maldi TOF-TOF AB-Sciex spectrometer equipped with a 

NdYAG laser. 

 

4.2 Synthesis 

4.2.1 4-Methylphenyl 3-O-(4-methoxybenzyl)-β-D-galactopyranosyl-1-thio-β-D-

glucopyranoside (9)  

To a suspension of 4-methylphenyl 1-thio-β-lactoside (8, 1.5 g, 3.34 mmol) [42] in 

dry toluene (80 mL), Bu2SnO (1.72 g, 2 equiv) was added and the mixture was stirred 

under reflux using a Dean-Stark trap to remove the formed water. After 4 h complete 

dissolution of the starting material was observed. The solution was brought to room 

temperature and after addition of NBu4I (0.14 g, 0.45 equiv) and 4-methoxybenzyl chloride 

(0.13 mL, 4.0 mmol, 1,2 equiv) the mixture was refluxed overnight using a conventional 

reflux condenser. Then, TLC analysis showed the formation of a product of Rf 0.33 (9:1 

CH2Cl2-MeOH) and some unreacted 8 (Rf 0.08). The mixture was filtrated, the filtrate was 

concentrated under reduce pressure and column chromatography (9:1 CH2Cl2-MeOH). 

afforded compound 9 as a syrup (0.80 g; 43 %), [α]D –14 (c 1; MeOH). 1H NMR (500 

MHz, DMSO-d6): δ 7.38-6.87 (m, 8H, aromatic), 4.60 (d, 1H, J 11.9 Hz, OCH2aAr), 4.58 

(d, 1H, J 10.1 Hz, H-1), 4.46 (d, 1H, J 11.7 Hz, OCH2bAr), 4.25 (d, 1H, J 7.8 Hz, H-1´), 

3.88 (d, 1H, J 3.4 Hz, H-4´), 3.74-3.53 (m, 4H, H-6a, H-6b, H-6´a, H-6´b), 3.73 (s, 3H, 

CH3O), 3.43-3.30 (m, 4H, H-3, H-4, H-5 and H-5´), 3.23 (dd, 1H, J 9.6, 3.1 Hz, H-3´), 3.08 

(td, 1H, J 8.8, 6.0 Hz, H-2´), 2.27 (s, 3H, CH3Ar) ppm. 13C NMR (126 MHz, DMSO-d6): δ 

158.7, 136.5, 131.1, 130.9, 130.3, 129.6, 129.4, 113.6 (aromatics), 103.7(C-1´), 87.1(C-1), 

80.8 (C-3’), 80.1, 78.8, 76.4, 75.5 (C-3, C-4, C-5 and C-5´), 72.2 (C-2), 70.0 (CH2OAr), 

69.7 (C-2´), 64.7 (C-4´), 60.5, 60.4 (C-6 and C-6´), 55.2 (CH3O), 20.7 (CH3Ar). ESIMS: 

m/z calcd for C27H36O11SNa [M+Na]+  591.1875. Found: 591.1882. 
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4.2.2 4-Methylphenyl 2,4,6-tri-O-benzoyl-3-O-(4-methoxybenzyl)-β-D-galactopyranosyl-

(1→4)-2,3,6-tri-O-benzoyl-1-thio-β-D-glucopyranoside (10) 

To a solution of 9 (0.75 g, 1.31 mmol) in anhydrous pyridine (9 mL) stirred at 0 °C, 

BzCl was added (3 ml, 4.8 equiv), and the stirring was continued overnight at room 

temperature. TLC analysis showed complete conversion of the starting material to a faster 

moving product (Rf 0.72, 1:1 hexane-AcOEt). The excess BzCl was quenched by addition 

of water (1 mL) and after 0.5 h of stirring the solution was diluted with CH2Cl2 (100 mL) 

and washed successively with water (100 mL), saturated NaHCO3 (ss) and water (100 mL), 

and dried (Na2SO4). The solution was concentrated under reduced pressure and co-

evaporated several times with toluene. Crude product (10, 1.39 g, 89 %) was used for the 

following reaction without further purification. A fraction of the crude product was purified 

by column chromatography (3:1 hexane-AcOEt), [α]D +13 (c 1, CHCl3). 
1H NMR (500 

MHz, CDCl3): δ 8.13-6.51 (m, 38 H, arom.), 5.74 (t, 1H, J 9.3 Hz, H-3), 5.61 (d, 1H, J 3.3 

Hz, H-4’), 5.41 (dd, 1H, J 9.7, 7.7 Hz, H-2’), 5.38 (dd, 1H, J 9.7 Hz, H-2), 4.82 (d, 1H, J 

10.0 Hz, H-1), 4.61 (d, 1H, J 8.0 Hz, H-1’), 4.56 (dd, 1H, J 11.9, 1.9 Hz, H-6a), 4.52 (d, 

1H, J 12.5 Hz, OCH2aPh), 4.41 (dd, 1H, J 11.9, 5.4 Hz, H-6b), 4.29 (d, 1H, J 12.5 Hz, 

OCH2bPh), 4.04 (t, 1H, J  9.5 Hz, H-4), 3.82 (ddd, 1H, J 9.9, 5.3, 2.0 Hz, H-5), 3.71 (dd, 

1H, J 11.2, 5.8 Hz, H-6’a), 3.68 (m, 1H, H-5’), 3.67 (s, 3H, CH3O), 3.59 (dd, 1H, J 10.0, 

3.3 Hz, H-3’), 3.51 (dd, 1H, J 10.8, 6.5 Hz, H-6’b), 2.23 (s, 3H, CH3Ar) ppm. 13C NMR 

(126 MHz, CDCl3): δ 165.8, 165.7, 165.5, 165.4, 165.2, 164.7 (COBz), 159.1, 138.3, 133.7, 

133.6, 133.3, 133.25, 133.20, 133.1, 133.0, 130.2, 130.1, 129.9, 129.8, 129.79, 129.71, 

129.6, 129.5, 129.4, 129.3, 129.2, 129.1, 129.0, 128.6, 128.4, 128.1, 127.8, 113.6 

(aromatics), 101.1 (C-1’), 86.0 (C-1), 77.2 (C-5), 76.0 (C-4), 75.7 (C-3’), 74.1 (C-3), 71.4 

(C-5’), 71.3 (C-2’), 70.4 (OCH2Ph), 70.3 (C-2), 66.0 (C-4’), 62.7 (C-6), 61.5 (C-6’), 55.1 

(CH3O), 21.1 (CH3Ar) ppm. ESIMS: m/z calcd for C69H60O16SNa [M+Na]+ 1215.3448. 

Found: 1215.3402. 

 

4.2.3 4-Methylphenyl 2,3,6-tri-O-benzoyl-β-D-galactopyranosyl-(1→3)-2,3,6-tri-O-benzoyl 

-1-thio-β-D-glucopyranoside (7) 

To a solution of 10 (1.64 g, 1.37 mmol) in CH2Cl2-H2O (22:1, 23 mL) DDQ (0.77 g, 

3.4 mmol) was added and the solution was stirred in dark during 16 h. TLC analysis 
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showed the presence of a product with Rf 0.41 (2:1 hexane-EtOAc) and remaining starting 

material (Rf 0.58). After adding 0.02 g more of DDQ the reaction was completed in 2 h. 

The solution was diluted with CH2Cl2 (100 mL) and the organic phase was washed 

successively with saturated NaHCO3 (ss) (2 x 50 ml), water (100 mL), dried (Na2SO4) and 

concentrated under reduced pressure. The residue was purified by column chromatography 

(3:1 hexane-EtOAc) to afford 7 as an amorphous solid (1.05 g, 72 %), [α]D +27 (c 1, 

CHCl3). 
1H NMR (500 MHz, CDCl3): δ 8.11- 6.91 (m, 34 H, H-arom.), 5.72 (t, 1H, J 9.4 

Hz, H-3), 5.49 (d, 1H, J 3.4 Hz, H-4’), 5.41 (t, 1H, J 9.8 Hz, H-2), 5.29 (dd, 1H, J 10.0, 7.8 

Hz, H-2’), 4.83 (d, 1H, J 10.0 Hz, H-1), 4.72 (d, 1H, J 7.9 Hz, H-1’), 4.70 (d, 1H, J 1.9, 

12.0 Hz, , H-6a), 4.57 (dd, 1H, J 12.0, 5.2 Hz, H-6b), 4.11 (t, 1H, J 9.6 Hz, H-4), 3.95 (dd, 

1H, J 10.0, 3.5 Hz, H-3’), 3.88 (ddd, 1H, J 10.0, 5.1, 1.9 Hz, H-5), 3.77-3.65 (m, 2H, H-

5’and H-6’a), 3.52-3.43 (m, 1H, H-6’b), 2.25 (s, 3H, CH3Ar) ppm. 13C NMR (126 MHz, 

CDCl3): δ 166.5, 165.9, 165.8, 165.6, 165.5, 165.1 (CO), 138.4, 133.8, 133.5, 133.4, 133.3, 

133.0, 130.15, 130.1, 129.9, 129.62, 129.56, 128.8, 128.62, 128.57, 128.5, 128.45, 128.37, 

128.1, 127.7 (aromatics), 100.6 (C-1`), 86.1 (C-1), 77.1 (C-5), 75.9 (C-4), 74.0 (C-3), 73.7 

(C-2’), 71.9 (C-3’), 71.5 (C-5’), 70.2 (C-2), 70.0 (C-4’), 62.8 (C-6), 61.3 (C-6’), 21.2 

(CH3Ar) ppm. ESIMS: m/z calcd for C61H52O16SNa [M+Na]+ 1095.2874. Found: 

1095.2871. 

 

4.2.4 4-Methylphenyl 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl-(1→3)-2,4,6-tri-O-

benzoyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzoyl-1-thio-β-D-glucopyranoside (5) 

To a stirred suspension of trichloroacetimidate 6 (0.45 g, 0.65 mmol) [40] in 

anhydrous Et2O (10 mL) containing 4 Å activated MS under argon atmosphere cooled at 

−55 ºC, a solution of disaccharide acceptor 7 (0.56 g, 0.52 mmol) in anhydrous Et2O (7 

mL)  and TMSOTf (38 µL, 0.21 mmol) were added and the stirring was continued for 18 h. 

The reaction was quenched with Et3N, filtered and concentrated under reduced pressure. 

The residue was purified by column chromatography (7:2 hexane-EtOAc). Fractiond of Rf  

0.29 gave compound 5 (0.68 g, 65 %) as a foamy solid, [α]D +27 (c 1, CHCl3). 
1H NMR 

(500 MHz, CDCl3): δ 8.05-6.88 (m, 54 H, H-arom.), 5.75 (t, 1H, J 9.3 Hz, H-3), 5.61 (d, 

1H, J 3.3 Hz, H-4’), 5.58 (dd, 1H, J 10.1, 7.9 Hz, H-2’), 5.39 (t, 1H, J 9.7 Hz, H-2), 5.06 

(d, 1H, J 3.4 Hz, H-1’’), 4.83 (d, 1H, J 9.9 Hz, H-1), 4.65 (d, 1H, J 11.5 Hz, OCH2Ph), 4.60 
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(d, 2H, J 8.4 Hz, H-1’ and H-6a), 4.46 (dd, 1H, J 11.9, 5.2 Hz, H-6b ), 4.41 (dd, 2H, J 12.0, 

4.4 Hz, OCH2Ph), 4.36 - 4.33 (m, 2H, OCH2Ph), 4.23 (d, 3H, J 11.7 Hz, OCH2Ph), 4.04 (t, 

1H, J 9.5 Hz, H-4), 3.98 (dd, 1H, J 10.1, 3.3 Hz, H-3’), 3.85 (dd, 1H, J 10.3, 5.0 Hz, H-5), 

3.80 (dd, 1H, J 10.1, 3.4 Hz, H-2’’), 3.74- 3.68 (m, 2H, H-5’’ and H-6’a), 3.59 (t, 1H, J 6.5 

Hz, H-5’), 3.44 (dd, 1H, J 10.1, 2.8 Hz, H-3’’), 3.38 (dd, 1H, J 11.3, 6.9 Hz, H-6’b), 3.22 

(dd, 1H, J 9.2, 6.5 Hz, H-6’’a), 3.19 (d, 1H, J 2.9 Hz, H-4’’), 3.11 (dd, 1H, J 9.3, 6.1 Hz, 

H-6’’b), 2.23 (s, 3H, CH3Ar) ppm. 13C NMR (126 MHz, CDCl3): δ 165.7, 165.6, 165.5, 

165.4, 165.1, 164.4 (CO), 138.7, 138.4, 138.3, 138.2, 133.7, 133.29, 133.22, 133.18, 132.8, 

130.1, 129.8, 129.7, 129.63, 129.57, 129.5, 129.3, 129.1, 128.9, 128.6, 128.5, 128.41, 

128.38, 128.35, 128.31, 128.2, 128.1, 128.05, 128.02, 128.0, 127.9, 127.8, 128.7, 127.67, 

127.60, 127.4, 127.3, 127.2, 127.1, 127.0 (aromatics), 101.2 (C-1’), 94.6 (C-1’’), 85.9 (C-

1), 78.5 (C-3’’), 77.2 (C-5), 76.0 (C-4), 75.1 (C-2’’), 74.8 (C-4’’), 74.4 (OCH2Ph), 74.1 (C-

3), 73.2 (OCH2Ph), 73.1 (OCH2Ph), 73.0 (C-3’), 72.3 (OCH2Ph), 71.6 (C-5’), 71.1 (C-2’), 

70.2 (C-2), 69.8 (C-5’’), 68.8 (C-6’’), 65.7 (C-4’), 62.6 (C-6), 61.3 (C-6’), 21.1 (CH3Ar) 

ppm. ESIMS: m/z calcd for C95H86O21SNa [M+Na]+ 1617.5280. Found: 1617.5201. 

 

4.2.5  6-Benzyloxycarbonylaminohexyl 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl-

(1→3)-2,4,6-tri-O-benzoyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzoyl-β-D-

glucopyranoside (11) 

 Thioglycoside 5 (0.26 g, 0.16 mmol), 6-benzyloxycarbonylamino-1-hexanol (0.058 g, 

0.23 mmol, 1.4 equiv) and NIS (0.04 g, 0.18 mmol, 1.1 equiv) were dissolved in anhydrous 

CH2Cl2 (5 mL) containing 4 Å activated molecular sieves. The solution was cooled at −10 

ºC and then TfOH (2 µL, 0.02 mmol) was added. After 12 h of stirring at rt the mixture was 

filtered and diluted with CH2Cl2 (100 mL), extracted with NaHCO3 (ss) and Na2S2O4 (50 

mL, 10 % v/v), washed with water (2 x 25 mL), dried (Na2SO4) and concentrated under 

reduced pressure. The crude product was purified by column chromatography (15:2 

toluene-EtOAc) to give 11 (0.21 g, 74%) as white foam, [α]D +32 (c 1, CHCl3). 
1H NMR 

(500 MHz, CDCl3): δ 8.07-6.94 (55 H, H-arom.), 5.76 (t, 1H, J 9.5 Hz, H-3), 5.61 (d, 1H, J 

2.8 Hz, H-4’), 5.59 (dd, 1H, J 8.0, 10 Hz, H-2’), 5.42 (dd, 1H, J 9.9, 7.9 Hz, H-2), 5.07 (s, 

2H, CH2Cbz), 5.05 (d, 1H, J 3.4 Hz, H-1’’), 4.66-4.62 (m, 3H, H-1, H-1’ and OCH2Ph), 

4.58-4.54 (m, 2H, H-6a and NHCbz), 4.45 (dd, 1H, J 12.1, 4.7 Hz, H-6b), 4.41 (dd, 2H, J 
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11.9, 4.9 Hz, OCH2Ph), 4.34 (d, 2H, J 11.7 Hz, OCH2Ph), 4.22 (dd, 3H, J 11.7, 6.2 Hz, 

OCH2Ph), 4.14 (t, 1H, J 9.5 Hz, H-4), 3.96 (dd, 1H, J 10.1, 3.3 Hz, H-3’), 3.82-3.70 (m, 

5H, H-2’’, H-5, H-5’’, H-6’a and OCH2a), 3.59 (t, 1H, J 6.5 Hz, H-5’), 3.44 (d, 1H, J 2.8, 

10 Hz, H-3’’), 3.43-3.39 (m, 2H, OCH2b and H-6’b), 3.19 (m, 2H, H-6’’a and H-4’’), 3.11 

(dd, 1H, J 9.3, 6.2 Hz, H-6’’b), 2.98 (q, 2H, J 6.6 Hz, CH2N), 1.53 (m, 2H, CH2), 1.20-1.07 

(m, 2 CH2) ppm. 13C NMR (126 MHz, CDCl3): δ 165.8, 165.6, 165.5, 165.4, 165.1, 164.5 

(CO), 138.8, 138.5, 138.2, 133.4, 133.23, 133.20, 130.1, 129.8, 129.7, 129.6, 129.5, 129.4, 

128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 127.3, 127.0 (aromatics), 

101.2 (C-1’), 101.1 (C-1), 94.7 (C-1’’), 78.6 (C-3’’), 76.0 (C-4), 75.1 (C-2’’), 74.9 (C-4’’), 

74.4 (OCH2Ph), 73.3, 73.1, 73.0 (C-5, C-3’ and 2 OCH2Ph), 72.8 (C-3), 72.3 (OCH2Ph), 

71.7 (C-2), 71.6 (C-5’), 71.1 (C-2’), 70.0 (CH2O), 69.8 (C-5’’), 68.7 (C-6’’), 66.5 

(CH2Cbz), 65.8 (C-4’), 62.5 (C-6), 61.4 (C-6’), 40.8 (CH2N), 29.6, 29.1, 26.1 and 25.4 (4 

CH2) ppm. ESIMS: m/z calcd for C102H99O24NaN [M+H]+ 1722.6635. Found: 1722.6646. 

 

4.2.6   6-Aminohexyl α-D-galactopyranosyl-(1→3)-β-D-galactopyranosyl-(1→4)-β-D-

glucopyranoside (4) 

Trisaccharide 11 (0.17 g, 0.1 mmol) was dissolved in CH2Cl2 (1 mL) and treated with 

a cooled solution of 0.1 M NaOMe in MeOH (8 mL). After 3 h of stirring at rt TLC showed 

total conversion of 11 (Rf 0.46, 9:0.3 CH2Cl2-MeOH) into a compound of Rf 0.15. The 

solution was concentrated under reduced pressure in order to evaporate the CH2Cl2 and 

then deionized by elution with MeOH trough a column loaded with Amberlite IR-120 plus 

resin (200 mesh, H+ form). The eluate was concentrated under reduced pressure and 

coevaporated several times with water to afford a white solid (0.10 g, 93%). [α]D +28 (c 1, 

CHCl3); 
1H NMR (500 MHz, D2O): anomeric signals δ 4.86 (m, 2H, H-1’ and CH2Ph), 

4.32 (d, 1H, J1’’,2’’ = 7.7 Hz, H-1”), 4.17 (d, 1H, J1,2 = 7.8 Hz, H-1); 13C NMR (126 MHz, 

D2O): anomeric region δ (ppm) 103.9 (C-1”), 103.1 (C-1), 96.0 (C-1’).  

The solid was dissolved in methanol (9.5 mL) containing 5% of formic acid and 10 % 

Pd/C (20 mg). The mixture was hydrogenated at 55 psi until all the starting material was 

converted into a lower running component (Rf 0.23, 3:2:0.1 CH2Cl2-MeOH-NH4OH) (48 h). 

After filtration, the solution was concentrated under reduced pressure, redissolved in water 

and purified on a RP-18 column (2 g) eluting with a step gradient from 0 % → 100 % of 
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MeOH. Fractions of Rf 0.23 were concentrated under reduced pressure, to afford 4 (0.48 g, 

98 %). [α]D +29 (c 0.5, CH3OH); 1H NMR (500 MHz, D2O): δ 5.15 (d, 1H, J 3.9 Hz, H-

1’’), 4.52 (d, 1H, J 7.8 Hz, H-1’), 4.49 (d, 1H, J 8.0 Hz, H-1), 4.21-4.18 (d, 2H, H-5’’ and 

H-4’), 4.03- 3.90 (m, 4H, H-4’’, H-6a, H-3’’ and OCH2a), 3.87 (dd, 1H, J 10.4, 3.8 Hz, H-

2’’), 3.83-3.57 (m, 12H, H-6b, H-6’a, H-6’b, H-6’’a, H-6’’b, H-5, H-5’, H-4, H-3, H-3’, H-

2’ and OCH2b), 3.31 (td, 1H, J 8.0, 2.4 Hz, H-2), 3.00 (t, 2H, J 7.6 Hz, NCH2), 1.66 (dp, 

4H, 2 CH2), 1.41 (p, 4H, 2 CH2) ppm. 13C NMR (126 MHz, D2O): δ 102.8 (C-1’), 102.0(C-

1), 95.4 (C-1’’), 78.7, 77.2, 75.0, 74.7, 74.5, 69.6 (C-4, C-3’, C-5, C-3, C-2’ and C-5’), 

72.80 (C-2), 70.8 (C-5’’), 70.4 (CH2), 69.3 (C-3’’), 69.1 (C-4’’), 68.2 (C-2’’), 64.8 (C-4’), 

61.0, 60.9, 60.2 (C-6, C-6’ and C-6’’), 39.4 (CH2N), 28.4, 26.6, 25.2, 24.5 (CH2) ppm. 

ESIMS calcd for C24H46NO16 [M+H] 604.2816; found: 604.2803. 

 

4.2.7 1-[6-Aminohexyl α-D-galactopyranosyl-(1→3)-β-D-galactopyranosyl-(1→4)-1-

thio-β-D-glucopyranosyl]-2-methoxycyclobutene-3,4-dione (4-sq) 

To a solution of 4 (0.025 g, 0.046 mmol) in 0.1 M KH2PO4-NaOH buffer (pH 7, 

3.57 ml) 3,4-dimethoxy-3-cyclobutene-1,2-dione (13 mg, 0.09 mmol) was added and the 

solution was stirred at room temperature. The pH was maintained at 7 by addition of small 

amounts of Et3N (10 µL). TLC examination after 24 h of reaction showed total conversion 

of 4 (Rf 0.23, 3:2:0.1 CH2Cl2-MeOH-NH4OH) into a faster moving compound (Rf 0.43). 

The solution was concentrated under reduced pressure and purified by passing through a 

graphitized carbon SPE column (500 mg). The column was eluted with water (10 mL) 

followed by a step gradient from 0 to 40 % of CH3CN in water. By concentration of 

fractions eluted with 40 % CH3CN compound 4-sq was obtained (15 mg, 46 %) as a 

syrup. 1H NMR (500 MHz, D2O): δ 5.15 (d, 1H, J 3.9 Hz, H-1’’), 4.53 (d, 1H, J 7.8 Hz, 

H-1’), 4.48 (d, 1H, J 8.0 Hz, H-1), 4.38-4.36 (m, 3H, CH3O-squaratea and CH3O-

Ssquarateb), 4.23-4.18 (m, 2H, H-5’’ and H-4’), 4.03-3.89 (m, 4H, H-4’’, H-6a, H-3’’ and 

OCH2a), 3.87 (dd, 1H, J 10.4, 3.8 Hz, H-2’’), 3.83-3.57 (m, 7H, H-6’a, H-6b, H-6’b, H-

6’’a, H-6’’b, H-4, H-3’, H-5, H-2’, H-3, H-5’ and OCH2b, NHCH2-squaratea), 3.48 (t, 1H, 

J 6.8 Hz, NHCH2-squarateb), 3.33-3.28 (m, 1H, H-2), 1.64 (d, 4H, J 6.9 Hz, 2 CH2), 1.41-

1.36 (m, 4H, 2 CH2) ppm. 13C NMR (126 MHz, D2O): δ 189.2, 183.2, 183.0, 177.6, 

177.1, 172.9 (cyclobutene), 102.8 (C-1’), 102.0 (C-1), 95.4 (C-1’’), 78.6, 77.2, 75.0, 74.7, 
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74.5, 69.6 (C-2’, C-3, C-3’, C-4, C-5 and C-5’), 72.8 (C-2), 70.8 (C-5’’), 70.5 (OCH2), 

69.3 (C-3’’), 69.1 (C-4’’), 68.2 (C-2’’), 64.8 (C-4’), 61.0, 60.9, 60.8, 60.7, 60.2 (C-6, C-

6’, C-6’’, CH3Oa and CH3Ob), 44.5, 44.3 (CH2N), 29.7, 29.4, 28.5 x 2, 25.2, 25.1, 24.6, 

24.5 ppm (4 CH2, duplicated signals [35]) ppm. 

 

4.2.8 1-[6-Aminohexyl α-D-galactopyranosyl-(1→3)-β-D-galactopyranosyl-(1→4)-1-

thio-β-D-glucopyranosyl]-2-[BSA]-methoxycyclobutene-3,4-dione (4-BSA) 

 A solution of 12 (7 mg, 0.0098 mmol) and BSA (0.013 g, 1.96x10-4 mmol) in a 

molar ratio 50:1, in 0.05 M borax -0.1 M KH2PO4 buffer (pH 9, 0.98 ml) was stirred at 

room temperature. The pH was maintained at 9 by addition of small amounts of Et3N (10 

µL were necessary). By TLC the gradual conversion of 12 (Rf 0,43 CH2Cl2-MeOH-

NH4OH 3:2:0.1) into components of Rf 0 was observed. The solution dialyzed against 

deionized water using a MWCO 12000-14000 membrane and the retained solution was 

lyophilized to afford conjugate 4-BSA (13.4 mg, 79 %) as an amorphous white powder.  

 

4.3  MALDI-TOF MS 

The MALDI-TOF spectra were recorded in positive ion mode. Each sample was 

dissolved in 2 % acetic acid and 2 % acetonitrile aqueous solution, to give a final 300 µM 

sample solution. Pre-loading mix was prepared by adding 5 µL of sample solution to 5 µL 

of matrix solution (sinapinic acid 10 mg/mL in 7:3 acetonitrile-water containing 0.1 % 

TFA). The mixture (1 µL) was applied to the MALDI-plate spot and allowed to air dry. 

Once dried, 1000 adquisitions shots were fired per spot and the accumulated final spectra 

were saved. 

 

4.4  SDS-PAGE 

Aliquots containing ~1 µg of protein taken at the indicated conjugation times were 

analyzed by SDS-PAGE (10 % gels). Commercial bovine submaxillary mucin (BSM, 

Sigma) was used as positive control. The gels were stained with Coomassie brilliant blue 

or subjected to the periodate-Schiff staining technique [57] and, following image 

acquisition, counterstained with Coomassie brilliant blue. Densitometric analyses were 

carried out with ImageJ 1.45s Software (NIH, USA).  
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4.5  Immunological assays 

4.5.1  Serum samples 

Serum samples from T. cruzi-infected subjects have been described [4][46][56] and 

were obtained from the Laboratorio de Enfermedad de Chagas, Hospital de Niños "Dr. 

Ricardo Gutierrez". All procedures were approved by the research and teaching committee 

and the bioethics committee of this institution, and followed the Declaration of Helsinki 

Principles. Written informed consent was obtained from all individuals (or from their legal 

representatives), and all samples were decoded and de-identified before they were provided 

for research purposes. Chagasic patients were coursing the chronic stage of the disease 

without cardiac or gastrointestinal compromise. Serum samples were analyzed for T. cruzi-

specific antibodies with the following commercially available kits: ELISA using total 

parasite homogenate (Wiener lab, Argentina) and indirect hemmaglutination assay (IHA, 

Polychaco, Argentina). Serum samples from healthy individuals that gave negative results 

in the aforementioned tests were obtained from different blood banks: Fundación 

Hemocentro Buenos Aires (Buenos Aires, Argentina), Hospital de Enfermedades 

Infecciosas ‘Dr. Francisco Javier Muñiz’ (Buenos Aires, Argentina), Hospital Italiano de 

Buenos Aires (Buenos Aires, Argentina) and Hospital Municipal ‘Dr. Diego E. Thompson’ 

(San Martín, Buenos Aires, Argentina). Anti-α-Gal antibodies were obtained by affinity 

chromatography of serum samples from chronic Chagasic patients on silica particles linked 

to trisaccharide 1 as described [58], whereas antibodies from Chagas-negative individuals 

were obtained by protein-A affinity chromatography [4].  

 

4.5.2 Enzyme-linked immunosorbent assay (ELISA)  

ELISA tests were performed using flat-bottomed 96-well Nunc-Immuno plates 

(Nunc, Roskilde, Denmark), as described previously [59]. Briefly, BSA-based 

glycoconjugates were dissolved in carbonate buffer (pH 9.6) as a coating buffer at 10 

µg/ml and incubated overnight at 4°C. The plates were blocked for 1 h with PBS 

supplemented with 4% skim milk  and 0.05% Tween 20 (blocking buffer) at 37°C. Serum 

samples were prepared in blocking buffer (at 1:500 dilution) were then added to the plate. 

Anti α-Gal or control immunoglobulins were also appropriately diluted in blocking buffer 
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before being added to the plate. Following incubation for 1 h at 37°C and washings with 

PBS/T, peroxidase-conjugated goat IgG to human IgG (Sigma) diluted 1:5,000 in 4% skim 

milk in PBS/T was added to the plates and incubated at 37°C for 1 h. The plates were 

washed and incubated with 100 µl of freshly prepared citrate-phosphate buffer (pH 4.2) 

containing 0.2% hydrogen peroxide and 0.5 mM 3,3’,5,5’-tetramethylbenzidine (Sigma). 

The reaction was stopped with 50 µl of 2 M sulfuric acid, and the absorbance at 450 nm 

was read. Each sample was assayed in triplicate, unless otherwise indicated. T. cruzi 

Antigen 2 (TcAg2) was identified by means of early immunological screenings [60], and 

its immunodominant sequences mapped by high-density peptide microarrays [47]. A 

TcAg2-derived peptide (sequence: NH2-KKKQKTAPFGQAAAGDKPSPFGQAC) was 

custom synthesized (GenScript) and coupled through its C-terminal cysteine residue to 

maleimide-activated BSA (Sigma) as described [61]. ELISA plates coated with 100 µl of a 

solution containing 5 µg/ml of this conjugate were prepared and evaluated as described 

above. 

For competitive ELISA, the serum samples were diluted up to 10 µl in PBS 

containing 10 µg of the indicated synthetic carbohydrate. After 30 min of incubation at 

room temperature, the serum-carbohydrate mixtures were diluted up to 1:500 in 4 % skim 

milk PBS/T buffer, added to 4-BSA or BSA-TcAg2 coated plates, and processed by 

ELISA, as described above. Absorbance at 450 nm in the control wells in which the serum 

samples were incubated for 30 min with 10 µl of PBS without carbohydrate was taken as 

100% reactivity [59].  
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� Trisaccharide  α-D-Galp(1→3)-β-D-Galp(1→4)-D-GlcNAc is a main component of 
Trypanosoma cruzi trypomastigote mucins with immunological properties. 

� The analogue α-D-Galp(1→3)-β-D-Galp(1→4)-β-D-Glcp derivatized as the 6-aminohexyl 
glycoside was synthesized. This trisaccharide and the analogue glycoside of α-D-Galp(1-

3)-β-D-Galp, were conjugated to BSA by the squarate method. 

� ELISA assays revealed that these neoglycocojugates were recognized by sera from 
chagasic patients, indicating its potential as diagnostic tools. 


