1

2

Stimulus predictability moderates the withdrawal strategy in response to repetitive noxious stimulation in humans

3 4	<u>Fabricio A. Jure ¹</u> ; <u>Federico G. Arguissain ^{1,2}</u> ; José A. Biurrun Manresa ^{2,3} ; Thomas Graven-Nielsen ² ; Ole Kæseler Andersen ^{1,2*}
5	¹ Integrative Neuroscience, SMI®, Dept. of Health Science and Technology, Aalborg University, Denmark.
6	² Center for Neuroplasticity and Pain (CNAP), SMI®, Dept. of Health Science and Technology, Aalborg University, Denmark.
7 8 9	³ Centro de Investigaciones y Transferencia de Entre Ríos (CITER) CONICET-UNER, Entre Ríos, Argentina.
10	*Corresponding author:
11	Professor Ole Kæseler Andersen, dr. scient., Ph.D.
12	Phone: +45 9940 8816
13	E-mail: oka@hst.aau.dk
14	Address: Aalborg University, Faculty of Medicine, Dep. of Health Science and Technology, Fredrik
15	Bajers Vej 7, 9220 Aalborg Ø, Aalborg, Denmark
16	

17 **ABSTRACT**

18

19 Nociceptive withdrawal reflex (NWR) is a protective reaction to a noxious stimulus, resulting in withdrawal of 20 the affected area and thus preventing potential tissue damage. This involuntary reaction consists of neural 21 circuits, biomechanical strategies and muscle activity that ensure an optimal withdrawal. Studies of lower 22 limb NWR indicate that the amplitude of the NWR is highly modulated by extrinsic and intrinsic factors, such 23 as stimulation site, intensity, frequency, and supraspinal activity, among others. Whether the predictability of 24 the stimulus has an effect on the biomechanical strategies is still unclear. This study aimed to evaluate how 25 the predictability of impending noxious stimuli modulate the NWR reaction in the lower limb. NWR was 26 evoked on fifteen healthy participants by trains of electrical stimuli on the sole of the foot and was measured 27 in one distal (tibialis anterior) and one proximal (biceps femoris) muscle. The predictability was manipulated 28 by giving participants prior information about the onset of the stimulus trains and the number of delivered 29 stimuli per train. Results showed that the predictability of the incoming stimuli differentially modulates the 30 muscle activity involved in the NWR reaction. For the most unpredictable stimulus train, larger NWR at distal 31 muscles were evoked. Furthermore, the stereotyped temporal summation profile to repeated stimulation was 32 observed when the stimulus train was completely predictable, while it was disrupted in proximal muscles in 33 unpredictable conditions. It is inferred that the reflex response is shaped by descending control, which 34 dynamically tunes the activity of the muscles involved in the resulting reaction.

35 NEW & NOTEWORTHY

Innate defensive behaviors such as reflexes are found across all species, constituting preprogrammed responses to external threats that are not anticipated. Previous studies indicated that the excitability of the reflex arcs like spinal NWR pathways in humans are modulated by several cognitive factors. This study assesses how the predictability of a threat affects the biomechanical pattern of the withdrawal response, showing that distal and proximal muscles are differentially modulated by descending control.

41

Keywords nociceptive withdrawal reflex · descending modulation · defensive behavior · predictability ·
 temporal summation

45 **INTRODUCTION**

46 The nociceptive withdrawal reflex (NWR) is a spinal reflex in response to a noxious stimulus inducing an 47 involuntary defensive reaction to withdraw the limb and protecting it from potential physical damage (Sandrini 48 et al. 2005). The NWR in humans, is typically assessed by applying an electrical stimulus to either the sural 49 nerve or the skin under the sole of the foot and by measuring the surface electromyographic (EMG) 50 responses from leg muscles (Jensen et al. 2015). The NWR is of special interest in pain research and 51 increasingly used as an objective biomarker of spinal nociceptive excitability and as an indirect measure of 52 pharmacological and non-pharmacological modulation of spinal nociceptive transmission (Von Dincklage et 53 al. 2009; Biurrun Manresa et al. 2011b, 2013; Lim et al. 2011, 2012; Lichtner et al. 2017; Alvisi et al. 2018).

54 The polysynaptic nature of the NWR open for the influence of numerous modulatory sources. Substantial 55 evidence indicates that supraspinal centers control the spinal circuits via a dynamic descending modulation. 56 Descending modulation is exerted via a number of brainstem regions, being the midbrain periaqueductal 57 gray (PAG) and the rostral ventromedial medulla (RVM) the most extensively studied (for review, Heinricher 58 et al. 2009). These descending pathways likely provide the neural substrate by which psychological factors 59 can influence spinal neural circuits. In fact, different cognitive and emotional states have been shown to 60 modulate the NWR (Rhudy et al. 2005; Bjerre et al. 2011; Hubbard et al. 2011; Roy et al. 2011, 2012; Shew 61 et al. 2011; Arsenault et al. 2013; Bartolo et al. 2013). Particularly, the stress and anxiety associated with 62 unpredictable stimuli are typical modulatory factors that can facilitate the NWR (Willer et al. 1979; Hubbard et 63 al. 2011; Quelhas Martins et al. 2015). Moreover, subjects tend to display smaller NWR responses when 64 they are aware of the upcoming stimulus intensity (Quelhas Martins et al. 2015). Similarly, subjects 65 stimulated by temporally predictable stimuli display reflexes that are smaller (Liebermann and Defrin 2009) 66 and habituate faster (Dimitrijevic et al. 1972) than those elicited by temporally unpredictable stimulations. It is 67 however unknown whether the predictability of different stimulus characteristics can have interacting effects 68 on the modulation of the NWR. Secondly, it is unknown how stimulus predictability affects the temporal 69 summation of NWR responses to repetitive stimulation (Arendt-Nielsen et al. 1994; Serrao et al. 2004; Rhudy 70 et al. 2011), since these stimulation paradigms configure a complex interaction between temporal 71 predictability and stimulus intensity.

The present study aimed to investigate how stimulus predictability modulates the NWR in response to repetitive noxious stimulation in healthy volunteers. The predictability of the number of repeated stimuli

(resembling changes in intensity) in the train and the predictability of the stimulus train onset (resembling changes in timing) were manipulated during stimulation. It was hypothesized that participants would exhibit larger reflexes when the incoming stimuli were unpredictable both in intensity and time, compared to when they had prior knowledge about the stimulus parameters. Furthermore, it was hypothesized that unpredictable stimuli would disrupt the typical temporal summation of NWR responses that is generally associated to repetitive noxious stimuli.

81 **METHODS**

82 Subjects

The experiment was conducted on fifteen healthy subjects (eight males, mean age: 25 years, range 20-35 years). The study protocol was approved by the local ethics committee of Region Nordjylland (case number VN 2015-0038) and performed according with the Helsinki declaration. All subjects gave their written informed consent before participating in the study.

87 Electrical Stimulation

88 The NWR was elicited by transcutaneous electrical stimulation, delivered by a computer-controlled electrical 89 stimulator (Noxitest IES 230, Aalborg University, Denmark) through a self-adhesive surface electrode (type 90 700, 20 x 15 mm, Ambu A/S, Denmark), mounted on the arch of the foot. The anode electrode (50 x 90 mm, 91 Pals, Axelgaard Ltd., Fallbrook, California, USA) was placed on the dorsum of the foot to ensure that 92 nociceptors were activated at the arch of the foot (Frahm et al. 2013). Each stimulus consisted of a constant-93 current burst of five 1-ms pulses delivered at 200 Hz; the subjects perceived each burst as a single stimulus. 94 Stimulation was delivered as trains of three or four of these burst stimuli (see Fig. 1), with a constant inter-95 stimulus interval (ISI) of 1 s. The inter-train interval length was random, ranging from 10 to 15 s. Stimulation 96 intensity was set to 1.2 times the pain threshold (PTh) to a single stimulus to ensure the presence of 97 reflexes.

98 EMG recordings

Surface EMG was recorded using a single differential configuration with electrodes (type 720, Ambu A/S, Denmark) placed 2 cm apart over the belly of the tibialis anterior (TA) and biceps femoris (BF) muscles, along the main direction of the muscles fibers. The skin was lightly abraded before the placement of the electrodes in order to decrease the impedance. EMG signals were sampled at 2400 Hz, amplified (up to 20000 times), band-pass filtered (5-500 Hz), displayed and stored between 500 ms of pre-stimulus and 6000 ms after stimulation onset.

Reflex and pain thresholds to electrical stimulation

106 The NWR threshold (RTh) and the PTh to single stimulation were determined using a standardized staircase 107 procedure. The RTh was obtained by first administering an ascending staircase using steps of 2 mA until a 108 NWR was detected in the TA muscle. Afterwards, the intensity was decreased in steps of 1 mA until the 109 NWR was not elicited. The intensity was again increased in steps of 1 mA until a NWR was detected again. 110 Three ascending and three descending staircases were applied, and the RTh was defined as the average 111 intensity of the last three peaks and troughs. The NWR detection was performed in the TA and it was based 112 on the interval peak z-score criterion (Rhudy and France 2007). The interval peak z-score was calculated as 113 the difference between the peak amplitude in the NWR quantification interval (60 to 180 ms; post-stimulus 114 window) and the baseline mean amplitude (-200 to -80 ms; pre-stimulus window), divided by the standard 115 deviation of the baseline EMG amplitude. A NWR was considered as present if the interval peak z-score of 116 the EMG signal exceeded 12 (France et al. 2009).

The PTh was defined using the same staircase procedure, but the criterion to decrease/increase the stimulus intensity was the verbal report of the evoked sensation as being painful/non-painful. The PTh was also defined as the average stimulus intensity of the last three peaks and troughs.

120 Experimental procedure

Subjects received a verbal explanation of the experiment while being placed in supine position with back support in 120°, relative to the horizontal level, and with their knees flexed approximately 30°. They were familiarized with electrical stimulation by applying a single stimulus and then 3-4 stimulus trains. Subsequently, the RTh and PTh were determined. The experiment consisted of a single session divided into three stimulation blocks (Fig. 1). The order of the stimulation blocks was randomized across subjects and separated by 5-min breaks.

Block A: *Predictable stimulus onset, predictable number of given stimuli per train* (Error! Reference source **not found.**, PO-PN). In this block, 12 trains of stimuli were delivered, each train consisting of three stimuli (S1, S2 and S3). Each train was preceded by a single auditory stimulus, signaling the onset of a train. The auditory stimulus consisted of an 800 Hz tone (duration: 20 ms), delivered 1 s before the train onset through

a speaker placed close to the site of the electrical stimulation (i.e. the foot). Subjects were verbally informed
that the auditory stimulus cued an incoming train of three identical stimuli.

Block B: *Unpredictable stimulus onset, predictable number of repeated stimuli per train* (Error! Reference source not found., UO-PN). In this block, 12 trains of stimuli were delivered, each train consisting of three stimuli (S1, S2 and S3). Subjects were verbally informed that they would receive trains of three identical stimuli, but the onset of each train was unpredictable, i.e. no auditory cue.

Block C: *Unpredictable stimulus onset, unpredictable number of repeated stimuli per train* (Error! Reference source not found., UO-UN). In this block, 24 trains of three or four stimuli were delivered. The fourth stimulus was randomly present in 50% of the trials. The purpose of adding a fourth stimulus to the train was to reflect changes in stimulus intensity, since longer trains are usually reported as more intense and unpleasant (Arendt-Nielsen et al. 1994). Subjects were uncertain about the onset and the number of repeated stimuli of each train. For this experimental condition, only the 12 trials where a train of three stimuli was given were included in the analysis.

144 - FIGURE 1 -

145 **Data Analysis**

The NWR size was quantified by calculating the root-mean-square (RMS) amplitude in the 60 - 180 ms poststimulus window (Biurrun Manresa et al. 2011a). The RMS was calculated for each stimulus of the train (S1, S2 and S3), for each trial and for each muscle (TA and BF). In total, 3240 RMS values were obtained (3 stimuli × 12 trials × 3 conditions × 2 muscles × 15 subjects).

150 **Statistics**

To examine the effect of unpredictability on the NWR size, two generalized linear mixed models (RMS TA and RMS BF) were designed using SPSS 25.0 (SPSS Inc., Chicago, IL, USA). The models used a gamma distribution and a log link function, since data was non-normally distributed and right skewed. The fixed factors were *condition* (PO-PN, UO-PN and UO-UN), *stimulus number* (S1, S2 and S3) and their interaction. The models controlled for the within-subjects variation by including a random intercept and random slopes for the condition, stimulus number and trial number for each subject. A first-order autoregressive covariance

- 157 structures was used, in which all variances are equal and co-variances are highest for adjacent elements158 and decrease systematically with increasing distance.
- 159 The model parameters were estimated by maximum pseudo-likelihood, and the criterion for convergence
- 160 was that the absolute changes of the parameters estimates was less than $1 \cdot 10^{-6}$. The adjusted sequential
- 161 Sidak test was used for post hoc comparisons.
- 162 In line with current statistical trends (Wasserstein et al. 2019), no fixed threshold for statistical significance 163 was established. Instead, the results were analyzed in terms of the effect sizes and their experimental 164 relevance.

166 **RESULTS**

167 Thresholds to electrical stimulation

- 168 All subjects were able to complete the experiment. The mean RTh in the TA muscle was 5.8 mA (range 3.3 -
- 169 9.5 mA), whereas the mean PTh was 13.8 mA (range 8.0 24.5 mA). Subjects reported the stimulation at
- 170 PTh intensity as a sharp, pinpricking sensation localized at the arch of the foot.

171 Effects of stimulus predictability on the NWR size

A strong effect of the *condition* was found for the NWR size of the TA muscle ($F_{2, 1611} = 8.830$, $p \le 0.0005$, **Error! Reference source not found.**A). Post hoc analysis revealed that subjects presented a larger NWR size in the TA when the onset and the number of repeated stimuli of the train were unpredictable (UO-UN), compared to the other two blocks (Adj. Sidak, [UO-UN compared with UO-PN] $t_{1611} = 3.580$, p = 0.001 and [UO-UN compared with PO-PN] $t_{1611} = 3.744$, p = 0.001). Data suggest that the *stimulus number* ($F_{2,1611} =$ 2.839; p = 0.059) or the interaction between *condition* and *stimulus number* ($F_{4,1611} = 2.355$; p = 0.052) could indicate a small temporal summation effect at TA.

179 A strong effect of *condition* was found for the NWR size of the BF muscle (F_{2, 1611} = 6.241; *p* = 0.002, Error! 180 Reference source not found.B). Although the stimulus number by itself did not show a strong effect on the 181 size of the BF muscle ($F_{2,1611}$ = 1.112, p = 0.329), there was a clear interaction between *condition* and 182 stimulus number ($F_{4,1611}$ = 4.592; p = 0.001). Post hoc analysis of the interaction revealed that subjects 183 presented a larger NWR size in the BF muscle in response to S1 when the onset of the train was 184 unpredictable (Adj. Sidak, [UO-UN compared with PO-PN], $t_{1611} = 5.049$, p \leq 0.0005 and [UO-PN compared 185 with PO-PN] t₁₆₁₁ = 2.905, p = 0.01). Additionally, data suggests that, when the stimulation is predictable, 186 there is a temporal summation effect, where the NWR to S3 is larger than the S1 response at the BF muscle 187 (Adj. Sidak, [S3 compared with S1], $t_{1611} = 2.342$, p = 0.057).

188 - FIGURE 2 -

190 **DISCUSSION**

191 The aim of this study was to evaluate how different degrees of predictability of impending noxious stimuli 192 modulate the involuntary withdrawal reaction of the stimulated limb. For that purpose, healthy participants 193 received trains of electrical stimuli on the sole of the foot to elicit the NWR, which was measured in one distal 194 and one proximal muscle of the ipsilateral limb. In three different stimulation blocks, the predictability of the 195 stimuli was manipulated by giving the participants prior information about the onset of the stimulus trains and 196 the number of given stimuli in each train. When the trains of electrical stimuli were predictable both in time 197 and intensity, participants displayed stereotypical temporal summation profiles of the NWR during the course 198 of the stimulus train, with the last NWR response being larger than the first. This temporal summation effect 199 was disrupted when participants lacked information about the timing of the stimulus trains. Moreover, when 200 the trains of electrical stimuli were neither predictable in time nor in intensity, participants displayed larger 201 NWR in the distal muscle, compared to when the stimulus trains had some degree of predictability.

202 Dynamic descending control of spinal defensive behaviors

203 Reflexes are innate defensive behaviors that are found across all members of the species, and which mainly 204 constitute preprogrammed responses to external threats that are not anticipated in time (Ledoux and Daw 205 2018). Although they are considered more or less hardwired circuits, the excitability of the reflex arcs such as 206 the spinal NWR pathways are subject to strong descending modulation from supraspinal structures Studies 207 in spinalized animals (Schouenborg and Kalliomäki 1990; Schouenborg et al. 1992; Levinsson et al. 1999; 208 Carlson et al. 2005; Bence and Cleland 2019) and in spinal-cord injured human patients (Shahani and 209 Young 1971; Andersen et al. 2004; Hornby et al. 2006; Knikou 2007; Biurrun Manresa et al. 2014; Mackey et 210 al. 2016) provide substantial evidence that a lesion to the spinal cord leads to dysfunctional NWR responses 211 below injury, confirming that descending modulation is vital to maintain the integrity and functional 212 organization of spinal NWR pathways (Dietz 2010).

The descending modulation is dynamic and is mainly transmitted via the PAG in the midbrain and its projections to the RVM. The PAG is a relay area that connect several limbic forebrain regions with the RVM, such as the amygdala, the anterior cingulate cortex, the dorsomedial nucleus of the hypothalamus, and the medial prefrontal cortex (Chen and Heinricher 2019). In anticipation of a forthcoming threat, the neural

activity of these brain areas appears to be dependent on the degree of attention and predictability of the
aversive stimuli (Brown et al. 2008; Peng et al. 2019).

The descending control of spinal nociception pivots between facilitation and inhibition due to the activation of two classes of RVM neurons called ON and OFF cells respectively, which extend their projections to primary afferent terminals in the dorsal horn (Zhang et al. 2015). This top-down pathway provides a neural substrate by which exteroceptive stimuli and motivational states can modulate spinal transmission (Fields 2018).

223 The balance between inhibition and facilitation highly depends on the behavioral context (Heinricher et al. 224 2009). In particular, when a threat has an element of certainty, descending modulation may provide a 225 mechanism to inhibit the briskness of innate defensive behaviors. In the present study, the results showed 226 that when participants were certain about the incoming noxious stimuli, their overall NWR responses (i.e. the 227 net withdrawal response of the limb) were generally smaller than when they were uncertain about some of 228 the stimuli characteristics. This is in line with previous reports, which found larger NWRs in response to 229 unpredictable stimuli (Liebermann and Defrin 2009; Quelhas Martins et al. 2015). In contrast, NWR 230 responses tend to be smaller when either the timing (Dimitrijevic et al. 1972; Liebermann and Defrin 2009) or 231 the stimulus intensity (Quelhas Martins et al. 2015) are predictable. Nevertheless, predictable stimuli might 232 not always lead to smaller NWR responses. For instance, when blind-folded subjects receive an auditory cue 233 that indicates the arrival of an incoming stimulus and also the presence of a randomly approaching obstacle, 234 the synaptic transmission through NWR pathways can be facilitated (Michel et al. 2007). In the latter, the 235 certainty about the approaching obstacle given by the auditory cue could have led the participants to an 236 increased state of vigilance that enhanced their preparedness to avoid a threat in an uncertain environment. 237 Taken together, this suggests that the direction of descending modulation associated with stimulus 238 predictability likely depends on the behavioral circumstance in which the stimuli are received. Furthermore, 239 descending modulation triggered by stimulus predictability seems to have a strong modulatory effect on the 240 protective withdrawal associated with the NWR. Other processes that are known to modulate the NWR such 241 as systolic inhibition (Martins et al. 2009) or emotional modulation (Rhudy et al. 2006) are moderated when 242 stimuli are unpredictable. Altogether, the existing evidence suggests that stimulus predictability plays a 243 significant role in the dynamic descending modulation of the NWR pathways.

It might be hypothesized that unpredictable stimuli possibly produced an increased state of anxiety. It is well
described that the uncertainty of a potential future threat can lead anxious behaviors (Ploghaus et al. 2003).

246 The brain areas commonly reported to be involved in anxiety-related behaviors are functionally and 247 anatomically interconnected to midbrain and brainstem areas that mediate descending control (Grupe and 248 Nitschke 2013; Tovote et al. 2015). In fact, it has been previously shown that threatening situations with 249 impending, unpredictable painful stimuli enhance the NWR responses measured at the BF muscle (Willer et 250 al. 1979; Hubbard et al. 2011; Terry et al. 2016). Yet, other studies have reported unchanged NWR 251 thresholds in the BF in subjects that had increased levels of acute anxiety (French et al. 2005) or high 252 measures of anxiety sensitivity (Terry et al. 2012). A key difference between these disagreeing findings is the 253 presence / absence of an experimental method to induce anxiety. While the studies that reported a positive 254 association between anxiety and enhanced NWR responses used the anticipation of a very painful stimulus 255 as threat, those that did not find such association only evaluated the state-trait anxiety before and after NWR 256 threshold assessment. In the present study, the psychological state was meant to be modulated by the 257 predictability of repeated trains of painful stimuli. Hence, it could be speculated that there was an induced 258 level of increased anxiety across the experimental blocks. Another important aspect to consider is that 259 previous studies estimated NWR thresholds in the BF in response to sural nerve stimulation. This procedure 260 has a high failure rate of NWR threshold estimation and involves higher stimulation intensities with higher 261 pain ratings, in comparison to foot sole stimulation (Jensen et al. 2015). Noteworthy, previous studies 262 considered only one muscle to describe the psychophysiological modulations of the withdrawal reaction. It is 263 possible that, by considering only one muscle of the kinetic chain, these studies did not observe the 264 differential modulations that may arise across the group of muscles involved in the withdrawal pattern.

265 Effects of stimulus predictability on NWR temporal summation

266 Another fundamental result from this study was the observation that stimulus unpredictability disrupted the 267 temporal summation of NWR responses to repeated stimulation. The characterization of temporal summation 268 of the NWR has important clinical implications, since temporal summation has been extensively proposed as 269 a measurement of central sensitization (Terry et al. 2011). For instance, in chronic pain patients it was 270 proposed that upregulated central integrative pain mechanisms could be one of the mechanisms that may 271 result in facilitated temporal summation of pain (Arendt-Nielsen et al. 2010; Petersen et al. 2017). 272 Interestingly, the typical temporal summation profile described in the literature (Arendt-Nielsen et al. 1994; 273 Guirimand et al. 2000), where the NWR increases gradually in response to repetitive stimuli, was clearly 274 observed only when the stimulus train were predictable in both time and intensity. Contrary to the

established assumptions, subjects displayed larger NWR responses to the first stimulus of the train in theproximal muscle, when the stimulus onset was unpredictable.

277 The role of descending modulation on NWR temporal summation has been highlighted in studies that 278 reported enhanced wind-up in spinalized rodents, compared to spinally intact animals (Gozariu et al. 1997). 279 Similarly, SCI patients also display facilitated NWR temporal summation (Shahani and Young 1971; Hornby 280 et al. 2006). Previous psychophysical studies, however, provide conflicting results. On one hand, studies that 281 investigated the effects of pain catastrophizing (Rhudy et al. 2011) and distraction (Ruscheweyh et al. 2011) 282 reported effects on pain perception but not on temporal summation of the NWR. On the other hand, studies 283 that investigated the mechanisms behind conditioned pain modulation (CPM) reported a concomitant 284 inhibition of both pain perception and NWR responses (Serrao et al. 2004; Lautenbacher et al. 2008). In line 285 with this, reduced pain intensity and NWR size has also been reported for the last part of an extended 286 repetitive stimulus trains (5 seconds), suggesting triggering of descending inhibition (Gozariu et al. 1997; 287 Bajaj et al. 2005). In addition, a recent psychophysical study from Holden and co-workers (Holden et al. 288 2019) have showed that CPM affects only the first stimulus in the temporal summation of pain but not the 289 temporal summation per-se, which is in agreement with the findings of present study.

290 Towards a differential descending modulation of defensive responses

291 The results showed that the two investigated muscles responded differently to the different levels of stimulus 292 unpredictability. Subjects displayed larger NWR responses in BF, and no noticeable changes in the TA when 293 the stimulus onset was unpredictable but the stimulus intensity was predictable. On the other hand, subjects 294 displayed larger responses on both proximal and distal muscles when both the stimulus onset and the 295 stimulus intensity were unpredictable. Since the modular organization of the NWR considers each muscle or 296 a set of synergistic muscles as isolated components in isolated scenarios, the different behavior displayed by 297 the two muscles under the same experimental conditions in this study cannot be explained only by its 298 modular organization. The biomechanical pattern of the NWR is functionally determined by its contribution to 299 the optimal withdrawal (Schouenborg and Kalliomäki 1990; Andersen et al. 1999). However, there is no 300 evidence on what 'optimal' withdrawal means in more complex scenarios, for example those involving 301 different postures, during locomotion or different degrees of predictability. Particularly, as stated above, 302 different degrees of predictability might affect cortical regions possibly influencing the descending control 303 onto the spinal cord. Studies in animal preparations have indicated that the integration of exteroceptive,

304 proprioceptive and corticospinal projections possibly occurs in a nodal point at the laminae V and IV of the 305 spinal cord (Granmo et al. 2008; Schouenborg 2008; Tripodi et al. 2011; Levine et al. 2014), and from this 306 nodal point intermediate neurons projects neuronal connections onto the ventral area of the spinal cord 307 (Hilde et al. 2016). Findings from Levine and co-workers (2014) suggest that intermediate premotor neuronal 308 cells, coined motor synergy encoders, excite motor pools in the ventral horn, driving the activation of the 309 muscles involved in the withdrawal reaction to "optimally" disengage the affected area from the noxious 310 stimulus (see Osseward and Pfaff 2019 for a review). In this line of thought, distal and proximal muscles may 311 contribute differently to the optimal pattern. For instance, distal muscles could contribute to subtle 312 movements while proximal muscles ensure a robust withdrawal. Altogether, it could be speculated that there 313 is a differential descending control of the muscles involved in the NWR pattern that could take advantage of 314 its modular organization; this differential modulation across group of muscles would increase the efficacy of 315 the defensive responses to unpredictable threats.

To the authors' knowledge, this is the first study in which the influence of the stimulus predictability on the NWR is studied in two muscles simultaneously. Based on the present observations, it is likely that descending modulation acts differently across different muscles. This reinforces the view of the NWR as a complex pattern across several joints, rather than a stereotyped reaction of individual muscles. Hence, it is advisable that future studies consider the inclusion of several muscles when investigating the psychophysiological effects over the NWR.

322 Limitations and future perspectives

The present study has some limitations. First, the results were obtained from a healthy population, which may not translate to patients, for instance those with chronic pain. Second, the experimental protocol did not include an assessment of the current psychological state of the participants during the stimulation blocks, which could have helped to make better inferences about the effects of e.g. anxiety. Third, the stimulation intensities used in this study were all above the pain threshold. This could have led to a ceiling effect on the reflex sizes for some of the subjects.

The present study also has some implications. The modulatory effects of stimulus predictability can become problematic in clinical examinations of the NWR, where clinicians would like to control these psychological confounding factors to minimize their influence over spinal excitability. These effects pose a practical compromise since the predictability of the stimuli is a typical parameter that is manipulated to reduce the
 habituation of the NWR (Dimitrijevic et al. 1972).

334 Conclusions

335 The results of this study suggest that the predictability of different stimulus characteristics differentially 336 affects the muscles involved in the defensive withdrawal reaction. Moreover, stimulus predictability seems to 337 disrupt the stereotyped temporal summation profile in response to repeated stimulation. These observations 338 suggest that the specific response of spinal withdrawal reflexes are strongly influenced by the prior 339 information of an incoming threat, so that the dynamic descending control may increase the efficacy of the 340 defensive responses by differentially modulating the muscle activity involved in the reaction. Finally, these 341 findings have important methodological implications for futures studies in which the NWR is used as a 342 quantitative tool to assess the response of the nociceptive system.

344 **ACKNOWLEDGMENTS**

- 345 The Danish National Research Foundation (DNRF121) supports the Center for Neuroplasticity and Pain
- 346 (CNAP).

347 **DISCLOSURES**

348 The authors declare that they have no conflict of interest.

350 **REFERENCES**

- Alvisi E, Serrao M, Conte C, Alfonsi E, Tassorelli C, Prunetti P, Cristina S, Perrotta A, Pierelli F, Sandrini G. Botulinum
 toxin A modifies nociceptive withdrawal reflex in subacute stroke patients. *Brain Behav* 8: 1–10, 2018.
- Andersen OK, Finnerup NB, Spaich EG, Jensen TS, Arendt-Nielsen L. Expansion of nociceptive withdrawal reflex receptive fields in spinal cord injured humans. *Clin Neurophysiol* 115: 2798–2810, 2004.
- 355 Andersen OK, Sonnenborg FA, Arendt-Nielsen L. Modular organization of human leg withdrawal reflexes elicited by 356 electrical stimulation of the foot sole. *Muscle Nerve* 22: 1520–1530, 1999.
- Arendt-Nielsen L, Brennum J, Sindrup S, Bak P. Electrophysiological and psychophysical quantification of temporal
 summation in the human nociceptive system. *Eur J Appl Physiol Occup Physiol* 68: 266–273, 1994.
- Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, Graven-Nielsen T. Sensitization in
 patients with painful knee osteoarthritis. *Pain* 149: 573–581, 2010.
- Arsenault M, Piché M, Duncan GH, Rainville P. Self-regulation of acute experimental pain with and without
 biofeedback using spinal nociceptive responses. *Neuroscience* 231: 102–10, 2013.
- Bajaj P, Arendt-Nielsen L, Andersen OK. Facilitation and inhibition of withdrawal reflexes following repetitive
 stimulation: electro- and psychophysiological evidence for activation of noxious inhibitory controls in humans. *Eur J Pain* 9: 25–31, 2005.
- Bartolo M, Serrao M, Gamgebeli Z, Amtmann D, Perrotta A, Padua L, Pierelli F, Nappi G, Sandrini G. Modulation of
 the human nociceptive flexion reflex by pleasant and unpleasant odors. *Pain* 154: 2054–2059, 2013.
- 368 **Bence CM**, **Cleland CL**. The nociceptive withdrawal response of the tail in the spinalized rat employs a hybrid 369 categorical–continuous spatial mapping strategy. *Exp Brain Res* 237: 1551–1561, 2019.
- Biurrun Manresa JA, Finnerup NSB, Johannesen IL, Biering-Sørensen F, Jensen TS, Arendt-Nielsen L, Andersen OK.
 Central sensitization in spinal cord injured humans assessed by reflex receptive fields. *Clin Neurophysiol* 125: 352–62,
 2014.
- **Biurrun Manresa JA**, Jensen MB, Andersen OK. Introducing the reflex probability maps in the quantification of nociceptive withdrawal reflex receptive fields in humans. *J Electromyogr Kinesiol* 21: 67–76, 2011a.
- Biurrun Manresa JA, Neziri AY, Curatolo M, Arendt-Nielsen L, Andersen OK. Test-retest reliability of the nociceptive
 withdrawal reflex and electrical pain thresholds after single and repeated stimulation in patients with chronic low back
 pain. *Eur J Appl Physiol* 111: 83–92, 2011b.
- 378 **Biurrun Manresa JA, Neziri AY, Curatolo M, Arendt-Nielsen L, Andersen OK**. Reflex receptive fields are enlarged in 379 patients with musculoskeletal low back and neck pain. *Pain* 154: 1318–1324, 2013.
- Bjerre L, Andersen AT, Hagelskjaer MT, Ge N, Mørch CD, Andersen OK. Dynamic tuning of human withdrawal reflex
 receptive fields during cognitive attention and distraction tasks. *Eur J Pain* 15: 816–821, 2011.
- Brown CA, Seymour B, Boyle Y, El-Deredy W, Jones AKP. Modulation of pain ratings by expectation and uncertainty:
 Behavioral characteristics and anticipatory neural correlates. *Pain* 135: 240–250, 2008.
- Carlson JD, Selden NR, Heinricher MM. Nocifensive reflex-related on- and off-cells in the pedunculopontine tegmental
 nucleus, cuneiform nucleus, and lateral dorsal tegmental nucleus. *Brain Res* 1063: 187–194, 2005.
- 386 Chen QL, Heinricher MM. Descending Control Mechanisms and Chronic Pain. *Curr Rheumatol Rep* 21: 1–7, 2019.
- 387 **Dietz V**. Behavior of spinal neurons deprived of supraspinal input. *Nat Rev Neurol* 6: 167–174, 2010.
- 388 **Dimitrijevic MR, Faganel J, Gregoric M, Nathan PW, Trontelj JK**. Habituation: effects of regular and stochastic 389 stimulation. *J Neurol Neurosurg Psychiatry* 35: 234–242, 1972.
- 390 Von Dincklage F, Send K, Hackbarth M, Rehberg B, Baars JH. Comparison of the nociceptive flexion reflex threshold
- and the bispectral index as monitors of movement responses to noxious stimuli under propofol mono-anaesthesia. Br
 J Anaesth 102: 244–250, 2009.
- **Fields HL**. How expectations influence pain. *Pain* 159: S3–S10, 2018.

- 394 **Frahm KS, Mørch C, Grill WM, Lubock NB, Hennings K, Andersen OK**. Activation of peripheral nerve fibers by electrical stimulation in the sole of the foot. *BMCNeurosci* 14:116. do: 114–116, 2013.
- France CR, Rhudy JL, McGlone S. Using normalized EMG to define the nociceptive flexion reflex (NFR) threshold:
 Further evaluation of standardized NFR scoring criteria. *Pain* 145: 211–218, 2009.
- French DJ, France CR, France JL, Arnott LF. The influence of acute anxiety on assessment of nociceptive flexion reflex
 thresholds in healthy young adults. *Pain* 114: 358–363, 2005.
- 400 **Gozariu M**, **Bragard D**, **Willer J**, **Le Bars D**. Temporal Summation of C-Fiber Afferent Inputs: Competition Between 401 Facilitatory and Inhibitory Effects on C-Fiber Reflex in the Rat. *J Neurophysiol* 78: 3165–3179, 1997.
- 402 **Granmo M**, **Petersson P**, **Schouenborg J**. Action-based body maps in the spinal cord emerge from a transitory floating 403 organization. *J Neurosci* 28: 5494–5503, 2008.
- 404 **Grillon C, Baas JMP, Cornwell B, Johnson L**. Context Conditioning and Behavioral Avoidance in a Virtual Reality 405 Environment : Effect of Predictability. (2006). doi: 10.1016/j.biopsych.2006.03.072.
- 406 **Grupe DW**, **Nitschke JB**. Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological 407 perspective. *Nat Rev Neurosci* 14: 488–501, 2013.
- 408 **Guirimand F, Dupont X, Brasseur L, Chauvin M, Bouhassira D**. The Effects of Ketamine on the Temporal Summation 409 (Wind-Up) of the RIII Nociceptive Flexion Reflex and Pain in Humans. *Anesth Analg* 90: 408, 2000.
- 410 **Heinricher MM**, **Tavares I**, **Leith JL**, **Lumb BM**. Descending control of nociception: Specificity, recruitment and 411 plasticity. *Brain Res Rev* 60: 214–225, 2009.
- 412 Hilde KL, Levine AJ, Hinckley CA, Hayashi M, Montgomery JM, Gullo M, Driscoll SP, Grosschedl R, Kohwi Y, Kohwi-
- 413 **Shigematsu T, Pfaff SL**. Satb2 Is Required for the Development of a Spinal Exteroceptive Microcircuit that Modulates 414 Limb Position. *Neuron* 91: 763–776, 2016.
- Holden S, Petersen KK, Arendt-Nielsen L, Graven-Nielsen T. Conditioning pain modulation reduces pain only during
 the first stimulation of the temporal summation of pain paradigm in healthy participants. *Eur J Pain (United Kingdom)*:
 1390–1396, 2019.
- Hornby TG, Rymer WZ, Benz EN, Schmit BD. Windup of Flexion Reflexes in Chronic Human Spinal Cord Injury: A
 Marker for Neuronal Plateau Potentials? *J Neurophysiol* 89: 416–426, 2006.
- Hubbard CS, Ornitz E, Gaspar JX, Smith S, Amin J, Labus JS, Kilpatrick LA, Rhudy JL, Mayer EA, Naliboff BD.
 Modulation of nociceptive and acoustic startle responses to an unpredictable threat in men and women. *Pain* 152:
 1632–1640, 2011.
- Jensen MB, Biurrun Manresa JA, Andersen OK. Reliable estimation of nociceptive withdrawal reflex thresholds. J
 Neurosci Methods 253: 110–115, 2015.
- Knikou M. Plantar cutaneous input modulates differently spinal reflexes in subjects with intact and injured spinal cord.
 Spinal Cord 45: 69–77, 2007.
- Lautenbacher S, Kunz M, Burkhardt S. The effects of DNIC-type inhibition on temporal summation compared to single
 pulse processing: Does sex matter? *Pain* 140: 429–435, 2008.
- Ledoux J, Daw ND. Surviving threats: Neural circuit and computational implications of a new taxonomy of defensive
 behaviour. *Nat Rev Neurosci* 19: 269–282, 2018.
- Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL. Identification of a cellular node for
 motor control pathways. *Nat Neurosci* 17: 586–593, 2014.
- Levinsson A, Luo X-L, Holmberg H, Schouenborg J. Developmental Tuning in a Spinal Nociceptive System: Effects of
 Neonatal Spinalization. J Neurosci 19: 10397–10403, 1999.
- Lichtner G, Rehberg B, Jakuscheit A, Weth J, Jurth C, von Dincklage F. Intraoperative monitoring of analgesia using
 nociceptive reflexes correlates with delayed extubation and immediate postoperative pain. *Eur J Anaesthesiol* 34:
 297–305, 2017.
- Liebermann DG, Defrin R. Characteristics of the nociceptive withdrawal response elicited under aware and unaware
 conditions. *J Electromyogr Kinesiol* 19: e114–e122, 2009.
- 440 Lim ECW, Sterling M, Pedler A, Coombes BK, Vicenzino B. Evidence of spinal cord hyperexcitability as measured with

- nociceptive flexion reflex (NFR) threshold in chronic lateral epicondylalgia with or without a positive neurodynamic
 test. *J Pain* 13: 676–684, 2012.
- Lim ECW, Sterling M, Stone A, Vicenzino B. Central hyperexcitability as measured with nociceptive flexor reflex threshold in chronic musculoskeletal pain: a systematic review. *Pain* 152: 1811–20, 2011.
- 445 **Mackey AS, Uttaro D, McDonough MP, Krivis LI, Knikou M**. Convergence of flexor reflex and corticospinal inputs on 446 tibialis anterior network in humans. *Clin Neurophysiol* 127: 706–715, 2016.
- 447 **Martins AQ, Ring C, McIntyre D, Edwards L, Martin U**. Effects of unpredictable stimulation on pain and nociception 448 across the cardiac cycle. *Pain* 147: 84–90, 2009.
- 449 **Michel J, Van Hedel HJA**, **Dietz V**. Facilitation of spinal reflexes assists performing but not learning an obstacle-450 avoidance locomotor task. *Eur J Neurosci* 26: 1299–1306, 2007.
- 451 Osseward PJ, Pfaff SL. Cell type and circuit modules in the spinal cord. *Curr Opin Neurobiol* 56: 175–184, 2019.
- 452 Peng W, Huang X, Liu Y, Cui F. Predictability modulates the anticipation and perception of pain in both self and others.
 453 Soc Cogn Affect Neurosci 14: 747–757, 2019.
- 454 Petersen KK, Arendt-Nielsen L, Finocchietti S, Hirata RP, Simonsen O, Laursen MB, Graven-Nielsen T. Age
- Interactions on Pain Sensitization in Patients with Severe Knee Osteoarthritis and Controls. *Clin J Pain* 33: 1081–1087,
 2017.
- 457 Ploghaus A, Becerra L, Borras C, Borsook D. Neural circuitry underlying pain modulation: Expectation, hypnosis,
 458 placebo. *Trends Cogn Sci* 7: 197–200, 2003.
- 459 Quelhas Martins A, Mcintyre D, Ring C. Aversive event unpredictability causes stress-induced hypoalgesia.
 460 Psychophysiology 52: 1066–1070, 2015.
- 461 **Rhudy JL**, **France CR**. Defining the nociceptive flexion reflex (NFR) threshold in human participants: A comparison of different scoring criteria. *Pain* 128: 244–253, 2007.
- 463 **Rhudy JL**, **Martin SL**, **Terry EL**, **France CR**, **Bartley EJ**, **DelVentura JL**, **Kerr KL**. Pain catastrophizing is related to 464 temporal summation of pain but not temporal summation of the nociceptive flexion reflex. *Pain* 152: 794–801, 2011.
- Rhudy JL, Williams AE, McCabe KM, Nguyên MAT V, Rambo P. Affective modulation of nociception at spinal and
 supraspinal levels. *Psychophysiology* 42: 579–587, 2005.
- 467 Rhudy JL, Williams AE, McCabe KM, Rambo PL, Russell JL. Emotional modulation of spinal nociception and pain: The
 468 impact of predictable noxious stimulation. *Pain* 126: 221–233, 2006.
- 469 Roy M, Lebuis a, Hugueville L, Peretz I, Rainville P. Spinal modulation of nociception by music. *Eur J Pain* 16: 870–7,
 470 2012.
- 471 Roy M, Lebuis A, Peretz I, Rainville P. The modulation of pain by attention and emotion: a dissociation of perceptual
 472 and spinal nociceptive processes. *Eur J Pain* 15: 641.e1–10, 2011.
- 473 Ruscheweyh R, Kreusch A, Albers C, Sommer J, Marziniak M. The effect of distraction strategies on pain perception
 474 and the nociceptive flexor reflex (RIII reflex). *Pain* 152: 2662–2671, 2011.
- 475 **Sandrini G, Serrao M, Rossi P, Romaniello A, Cruccu G, Willer JC**. The lower limb flexion reflex in humans. *Prog* 476 *Neurobiol* 77: 353–395, 2005.
- 477 Schouenborg J. Action-based sensory encoding in spinal sensorimotor circuits. Brain Res Rev 57: 111–117, 2008.
- 478 Schouenborg J, Holmberg H, Weng HR. Functional organization of the nociceptive withdrawal reflexes II. Changes of
 479 excitability and receptive fields after spinalization in the rat. *Exp Brain Res* 90: 469–478, 1992.
- Schouenborg J, Kalliomäki J. Functional organization of the nociceptive withdrawal reflexes. I. Activation of hindlimb
 muscles in the rat. *Exp Brain Res* 83: 67–78, 1990.
- 482 **Serrao M, Rossi P, Sandrini G, Parisi L, Amabile GA, Nappi G, Pierelli F.** Effects of diffuse noxious inhibitory controls 483 on temporal summation of the RIII reflex in humans. *Pain* 112: 353–360, 2004.
- 484 Shahani BT, Young RR. Human flexor reflexes. J Neurol Neurosurg Psychiatry 34: 616–627, 1971.
- Shew WL, Yang H, Yu S, Roy R, Plenz D. Information capacity and transmission are maximized in balanced cortical
 networks with neuronal avalanches. *J Neurosci* 31: 55–63, 2011.

- 487 Terry EL, France CR, Bartley EJ, DelVentura JL, Kerr KL, Vincent AL, Rhudy JL. Standardizing procedures to study 488 sensitization of human spinal nociceptive processes: Comparing parameters for temporal summation of the 489 nociceptive flexion reflex (TS-NFR). *Int J Psychophysiol* 81: 263–274, 2011.
- Terry EL, Kerr KL, DelVentura JL, Rhudy JL. Anxiety Sensitivity Does Not Enhance Pain Signaling at the Spinal Level. *Clin* J Pain 28: 505–510, 2012.
- 492 **Terry EL, Thompson KA, Rhudy JL**. Does pain catastrophizing contribute to threat-evoked amplification of pain and 493 spinal nociception? *Pain* 157: 456–465, 2016.
- 494 **Tovote P, Fadok JP, Lüthi A**. Neuronal circuits for fear and anxiety. *Nat Rev Neurosci* 16: 317–31, 2015.
- Tripodi M, Stepien AE, Arber S. Motor antagonism exposed by spatial segregation and timing of neurogenesis. *Nature* 479: 61–66, 2011.
- 497 Wasserstein RL, Schirm AL, Lazar NA. Moving to a World Beyond " p < 0.05." Am Stat 73: 1–19, 2019.
- Willer JC, Boureau F, Albe-Fessard D. Supraspinal influences on nociceptive flexion reflex and pain sensation in man.
 Brain Res 179: 61–68, 1979.
- 500 **Zhang Y, Zhao S, Rodriguez E, Takatoh J, Han BX, Zhou X, Wang F.** Identifying local and descending inputs for primary 501 sensory neurons. *J Clin Invest* 125: 3782–3794, 2015.
- 502
- 503
- 504

505 **FIGURE CAPTIONS**

Fig. 1. Experimental design. Each stimulation block corresponded to a different experimental condition. The order of
 blocks was randomized across subjects. Details are explained in the text.

- 509 Fig. 2. Averaged root-mean squared nociceptive withdrawal reflex (NWR) responses to the three stimuli of the train, for
- 510 the three different experimental conditions. The NWR responses were measured at the tibialis anterior muscle (A) and
- 511 biceps femoris muscle (B). (PO-PN: predictable stimulus onset, predictable number of given stimuli per train; UO-PN:
- 512 unpredictable stimulus onset, predictable number of repeated stimuli per train; UO-UN: unpredictable stimulus onset,
- 513 *unpredictable number of repeated stimuli per train).* Error bars represent 95% confidence intervals.

