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ABSTRACT
We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects
accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity’s moving front. Scaling arguments are used
to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and
fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck
collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the
food industry, and the fabrication of nanopore based biosensors.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126475., s

I. INTRODUCTION

The evolution of small holes nucleated in a thin liquid sheet is
critical to the integrity of bubble films and therefore important to
environmental processes, such as mist formation from bursting sea
bubbles, and technological processes in the food and chemical indus-
tries associated with the stability of foams and cleaning microbub-
bles (Laporte et al., 2016; Drenckhan and Saint-Jalmes, 2015), the
stability of the falling film in curtain coating processes (Miyamoto
and Katagiri, 1997; Mohammad Karim et al., 2018), and in liquid-
sheet-based spray formation techniques (Villermaux, 2007; Altieri
et al., 2014). Recently, the dynamics of small holes has also become
relevant to nanotechnologies such as the fabrication of nanopore-
based biosensors for rapid protein and genetic studies (Storm et al.,
2003; 2005). The evolution of a hole nucleated in a liquid sheet is
highly dependent on the initial size of the hole. Small holes (in rela-
tion to the sheet thickness) contract, driven by capillary forces, even-
tually restoring the integrity of the liquid phase (Taylor and Michael,
1973). Conversely, large holes expand to minimize the free energy,

ultimately fragmenting the liquid sheet (Bremond and Villermaux,
2006; Lhuissier and Villermaux, 2013).

The dynamics of both large and small holes are currently well
understood for holes nucleated in Newtonian liquid sheets. The
dynamics of large Newtonian holes have been studied in the pioneer-
ing works of Taylor (1959) and Culick (1960). These studies demon-
strated that a large hole expanding in a low-viscosity liquid sheet
eventually attains a constant terminal velocity, which is currently
known as the Taylor-Culick velocity. More recently, Savva and Bush
(2009) extended these studies to holes expanding in a highly viscous
liquid sheet. They found that a viscous hole expanding under the
influence of capillarity also attains a terminal Taylor-Culick velocity
after an initial transient behavior. Similarly, the dynamics of small
Newtonian holes have also been studied considering both the inertial
and viscous regimes. Small contracting holes in the inertial regime
have been found to collapse at a velocity that increases as the hole
contracts, following an inverse power law relationship with hole
size (Lu et al., 2015). Conversely, holes contracting in the viscous
regime have been found to collapse with a constant terminal velocity
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(Storm et al., 2003; Wu et al., 2006; and Asghar et al., 2011), which
results from the equilibrium of viscous and surface tension forces
(Lu et al., 2015). However, the dynamics of non-Newtonian liquid
holes is much less understood due to the added rheological com-
plexity of a varying viscosity with the flow near the cavity. Motivated
by the ubiquity of complex fluids in natural and industrial pro-
cesses, the dynamics of holes in non-Newtonian liquid sheets have
been studied for the case of large expanding holes (Dalnoki-Veress
et al., 1999; Roth et al., 2005; and Deyrail et al., 2007). However, a
clear understanding of the dynamics of small contracting holes in
non-Newtonian liquid sheets is still lacking.

Here, as a first step toward the analysis of non-Newtonian con-
tracting holes, we study the evolution of a small hole in a highly
viscous, shear-thinning liquid sheet. We use scaling arguments
supported by high-fidelity simulations to study how the shear-
dependent viscosity modifies the contraction dynamics, assuming
that the shear-thinning properties of the sheet can be described by
a Carreau-Yasuda constitutive equation. The results from the sim-
ulations demonstrate that shear-thinning effects accelerate the hole
collapse due to a progressive decrease in the viscosity near the hole’s
leading front where the hoop stress keeps increasing as the hole con-
tracts. In addition, scaling arguments enable us to develop a power
law to describe the evolution of the hole radius in terms of the
shear-thinning properties.

II. PROBLEM DESCRIPTION
In this work, the dynamics of hole contraction is studied by fol-

lowing the evolution of a small toroidal hole with an initial radius r̂0
in a shear-thinning liquid sheet of density ρ, surface tension σ, and
large zero-shear viscosity μ̂0 [Fig. 1(a)]. The model is made dimen-
sionless using the unperturbed sheet thickness ĥ as a length scale, the
capillary time μ̂0ĥ/σ as a time scale, and the capillary stress σ/ĥ as a
stress scale.

The contraction of the viscous toroidal hole is analyzed by
solving the dimensionless continuity,

∇ ⋅ v = 0, (1)

and Stokes equations,

∇ ⋅ T = 0, (2)

FIG. 1. (a) Definition sketch for studying the dynamics of a small axisymmetric
cavity in a fluid sheet of density ρ, zero-shear viscosity μ0, and surface tension
σ. The thickness of the fluid sheet is ĥ. (b) An example of the mesh used in the
simulations for half of the cavity cross-sectional area.

for liquid velocity v and pressure p, where T is the dimensionless
Cauchy stress tensor

T = −pI + 2 μD, (3)

where I is the identity tensor, D is the rate of strain tensor, and
μ is a dimensionless viscosity to be defined shortly. Inertia forces
are considered negligible in relation to viscous and surface ten-

sion forces (i.e., the Ohnesorge number Oh ≡ μ̂0/

√

2ρσĥ ≫ 1),
and the surrounding gas is considered dynamically passive. Note
that an alternative characteristic viscosity based on the terminal
viscous-capillary velocity of the pore could also be adopted, as pro-
posed by Thompson and Soares (2016). The shear-dependent prop-
erties of the liquid sheet are assumed to be well described by a
Carreau-Yasuda constitutive equation (Barnes et al., 1989),

μ =M + (1 −M)(1 + Λ2γ̇2
)
(n−1)/2, (4)

where Λ is the dimensionless Carreau time constant and the vis-
cosity μ (in units of μ̂0) varies between a dimensionless zero-shear
plateau viscosity μ = 1 at low strain rates γ̇ ≪ Λ−1 and a dimen-
sionless infinite-shear plateau viscosity μ = M at high strain rates
γ̇ ≫ Λ−1M−1/(1−n). Between these limits, the viscosity decreases as
the strain rate γ̇ increases following a power-law with flow index n.
As our work focuses on the influence of the flow index in the dynam-
ics, the system is considered to have small infinite-shear viscosity
M = 10−3 and moderate dimensionless time constant Λ = 10.

The gas-liquid free interface is a material surface; therefore,
mass conservation is ensured by imposing the kinematic boundary
condition

(v − ẋ) ⋅ n = 0, (5)

where ẋ is the velocity of the interface and n the unit normal vector
to the interface. Neglecting the dynamical effect of the outer gas, the
balance of stresses at the interface is imposed through the traction
boundary condition

n ⋅ T = κ n, (6)

where κ = −∇s ⋅n is the curvature of the interface and ∇s ≡ ∇

− n(n ⋅ ∇) is the surface gradient operator. Computations start with
a quiescent fluid and a cavity of small initial radius r0. No penetra-
tion and vanishing tangential stress conditions are imposed along
the plane of symmetry at z = 0.

The full set of axisymmetric Navier-Stokes system of equations
(1) and (2) and associated boundary conditions (5) and (6) are solved
simultaneously in the liquid phase for the velocity, pressure, and
location of the free surface using the finite element method with
an adaptive mesh and implicit time integration. To account for the
movement of the free surface, the spatial derivatives were discretized
using the arbitrary Lagrangian-Eulerian method of spines developed
by Kistler and Scriven (1983), as extended by Xue et al. (2008) to
include inelastic non-Newtonian effects. The time derivatives were
discretized using a second-order trapezoidal difference method with
an Adam-Bashforth predictor (Gresho et al., 1980) smoothing the
first few transient solutions using a backward difference method as
proposed by Kistler and Scriven (1983). The second-order Adam-
Bashforth predictor was used with a trapezoidal rule to control
time truncation errors, and the time steps for the time integra-
tion were adaptively chosen using a first-order continuation method
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(Corvalan and Saita, 1991). The domain was tessellated in a struc-
tured mesh of quadrilateral Taylor-Hood elements (Taylor and
Hood, 1973), with velocity components being approximated by
biquadratic shape functions and pressure by bilinear shape func-
tions. Studies with meshes at various resolutions were carried out
and meshes of O(104

) degrees of freedom were selected for the
simulations depending on flow index. A mesh independence study
was carried out until the scaling laws reported in the results remain
essentially unchanged. The elements were nonuniformly spaced
with higher concentration near the tip of the hole in the radial direc-
tion, and in the vicinity of the free surface in the axial direction, as
exemplified in Fig. 1(b).

III. RESULTS AND DISCUSSION
Here, we summarize our main results on the contraction of a

small axisymmetric cavity or hole inside a generalized Newtonian
liquid. We focus on the influence of shear-thinning on the hole
dynamics, as characterized by the flow index n. As our focus is on
the effect of the shear-dependent viscosity, it is instructive to start
the discussion with the dynamics of purely Newtonian holes (n = 1)
as the baseline.

A. Axisymmetric cavity in Newtonian fluids
We first consider the results from the work of Savva and Bush

(2009) for an expanding Newtonian hole. The dynamics of expand-
ing Newtonian holes was characterized independently by Taylor
(1959) and Culick (1960) for inertial fluids, and more recently, Savva
and Bush (2009) developed a theoretical and numerical lubrica-
tion model including the influence of the fluid viscosity. Figure 2
shows the results from the work of Savva and Bush (2009) for an
expanding hole with large initial size r0 = 50 (in units of the unper-
turbed sheet thickness) in a moderately viscous fluid sheet with
Oh = 10. This figure confirms that as the hole expands driven by
capillary forces, the hole velocity grows rapidly but then slows down
and approaches the terminal Taylor-Culick velocity û ≡ (2σ/(ρĥ))1/2

expected on the basis of momentum conservation. In addition,
this figure shows excellent agreement between the results from the

FIG. 2. (a) Meniscus velocity and (b) interfacial shape at t = 5 for an opening
Newtonian cavity. The dimensional velocity of expansion v̂m grows exponentially
as time increases and eventually attains the Taylor-Culick velocity û. The solid
lines correspond to predictions from the full Navier-Stokes simulations (n = 1) and
the circles are results from the work of Savva and Bush (2009) for Oh = 10 and
large initial hole radius r0 = 50.

lubrication approximation (symbols) and the solution of the full
Navier-Stokes system (solid line) for both the hole velocity [Fig. 2(a)]
and a typical interfacial shape [Fig. 2(b)].

Similarly, the speed of contracting Newtonian holes also
become constant at later times provided that the viscosity of the liq-
uid sheet is sufficiently large. A constant velocity of contraction has
been observed in highly viscous holes during experiments motivated
by the fabrication of nanopore based sensors for DNA sequenc-
ing (Storm et al., 2003; 2005; and Wu et al., 2006) and during the
collapse of the cavity formed during bubble pinch-off (Thoroddsen
et al., 2007; Burton et al., 2005). Figure 3 shows simulations results
for a Newtonian contracting hole with small initial size r0 = 0.2 in a
purely viscous fluid sheet (blue line). This figure confirms that after
an initial transient, the contracting hole attains a terminal viscous-
capillary velocity ŵ = σ/(2μ̂0) (or w = 1/2 in dimensionless terms),
which emerges from the eventual equilibrium of viscous and surface
tension forces (Lu et al., 2015; Burton et al., 2005).

B. Shear-thinning effects
The terminal viscous-capillary velocity ŵ = σ/(2μ̂0) for viscous

contracting holes is a function of the fluid viscosity and therefore
likely to be influenced by potential shear-thinning effects. In addi-
tion, shear-thinning effects are expected to become important in
collapsing cavities because viscous stresses grow rapidly near the
cavity’s leading front as the minimum hole radius rm → 0 (Lu et al.,
2015; Bolanos-Jiménez et al., 2009).

To gain preliminary insight into the influence of shear-thinning
on the hole dynamics, Fig. 3 compares the dynamics of the viscous
Newtonian hole to that of the corresponding shear-thinning hole
with a small Carreau flow index n = 0.7. The results show that the
behavior of the shear-thinning hole (solid black line) is markedly
different from that of the Newtonian one (blue line). Critically, the
advancing front of the shear-thinning cavity no longer shows a con-
stant terminal velocity. Instead, the velocity of contraction vm grows

FIG. 3. Velocity of contraction vm as a function of the hole radius rm for a New-
tonian hole with n = 1 (blue line) and for a shear-thinning hole with n = 0.7 (black
continuous line). Simulations start with r0 = 0.2.
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following a power-law relationship with the hole size

vm ∼ rαm, (7)

with α ≈ −3/7 (dashed line), indicating that shear thinning is a criti-
cal feature modulating the contraction rate of non-Newtonian holes
(Jiang et al., 2017).

Despite its important influence on the dynamics, we observe
that shear-thinning is localized in a neighborhood of the cavity’s
leading front. We calculate the local viscosity in the liquid sheet
to identify how the shear-thinning effect contributes to the flow
dynamics. Figure 4 illustrates in detail the evolution of the cross-
sectional viscosity field for the shear-thinning hole of Fig. 3. The
results show that the overall shear-thinning influence extends a
radial distance of the order of the film thickness and that the dom-
inant shear-thinning effect is highly localized in a small neigh-
borhood of the hole tip. Thus, shear-thinning accelerates the hole
collapse due to the progressive decrease in the shear-dependent
viscosity in the vicinity of the tip of the pore.

C. Velocity scaling
A simple scaling argument leads to a relationship that supports

the value of the power-law exponent estimated in Fig. 3 and predicts
the exponent α for other values of the Carreau flow index in the high
Oh limit.

As shown in Fig. 4, the scaling analysis is based on the interfa-
cial force balance in the vicinity of the hole tip r ≈ rm. As the cavity
approaches collapse, the tip curvature becomes dominated by the
radial curvature, and thus, the interfacial force balance in the vicinity

FIG. 4. The effect of shear thinning on the apparent viscosity field. Cross-sectional
viscosity fields are shown for three hole radii rm = 0.13, 0.09, and 0.02 for a
Carreau fluid with n = 0.7.

of the tip is well approximated by [Eqs. (3) and (6)]

1
rm
≈ −p + 2 μ

∂vr
∂r

, (8)

since the tip curvature κ→ 1/rm as rm → 0.
In addition, as the hole approaches collapse the flow field near

the tip becomes essentially one dimensional (radial), and therefore,
the strain rate is largely determined by the strain rate in the radial
direction γ̇ ≈ ∂vr/∂r ∼ vm/rm. Consequently, the apparent viscosity
near the tip of the hole scales as [Eq. (4)]

μ ∼ (Λvm/rm)
n−1, (9)

provided that the infinite-shear viscosity is sufficiently low. In the
high Oh limit, the momentum balance in the one-dimensional flow
near the tip balances fluid pressure and viscous stress

− p ∼ μ
∂vr
∂r
∼ Λn−1

(vm/rm)
n, (10)

where we use Eq. (9) to estimate the shear-dependent viscosity.
The scalings described above are exemplified quantitatively in

Fig. 5. This figure shows both the fluid viscosity μm [Fig. 5(a)] and
the pressure pm [Fig. 5(b)] evaluated at the tip of the hole (r = rm) as
a function of vm/rm for the shear-thinning hole of Fig. 3. The results
show that the evolution is in general nonlinear and, as the hole col-
lapses and vm/rm increases, the tip viscosity and pressure eventually
attain the scaling of Eqs. (9) and (10), respectively. The substitution
of these scalings into the stress balance at the tip of the hole [Eq. (8)]
yields

vm ∼ r(n−1)/n
m , (11)

where the scaling exponent α = (n − 1)/n is in excellent agreement
with the value α ≈ −3/7 found in Fig. 3 for the liquid sheet with
n = 0.7.

Broadening the analysis, we now use the full numerical sim-
ulations to examine the degree to which the scaling predicted by
Eq. (11) is able to describe the closing dynamics for different

FIG. 5. (a) Apparent viscosity μm and (b) magnitude of the pressure pm at the tip
of the hole, for a Carreau fluid with n = 0.7. Simulations start with r0 = 0.2.
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FIG. 6. The effect of shear thinning on contraction velocity. (a) Pore velocity vm

as a function of the hole radius for five values of the Carreau flow index n = 0.6,
0.7, 0.8, 0.9, and 1 (from top to bottom). At later times (rm → 0), the simulations
agree well with the scaling vm ∼ r

(n−1)/n
m (dashed lines). (b) Local rate of change

α∗(rm) = rm/vm(dvm/drm) calculated from the simulations in (a). At later times, the
simulations are consistent with a terminal rate α∗(rm) = (n − 1)/n.

n values. To this end, we show in Fig. 6(a) the velocity of collapse
vm for five Carreau indices ranging from n = 0.6 to n = 1. Near
the singularity, the solutions of the full governing equations (con-
tinuous lines) are in good agreement with the exponent α= (n− 1)/n
estimated from scaling analysis (dashed lines) for the different Car-
reau indices. Moreover, the simulations in Fig. 6(a) can be used
to calculate the instantaneous rate of the change of the velocity,
defined as α∗(rm) ≡ d(log vm)/d(log rm). The results summarized
in Fig. 6(b) show that the instantaneous logarithmic rate α∗(rm)
tends to α = (n − 1)/n as rm → 0, further confirming the scaling
of Eq. (11).

IV. CONCLUSION
In conclusion, we show that the micropores nucleated in shear-

thinning liquid sheets contract at a faster speed than the correspond-
ing Newtonian holes due to the localized decrease in the apparent
viscosity in the vicinity of the hole front. Scaling arguments show
that the shear thinning effect is reflected in a power-law relation-
ship vm ∼ r(n−1)/n

m between the rate of contraction vm and the hole
radius rm for purely viscous liquids. The results from the scaling
arguments are supported and fully characterized using high-fidelity
simulations.

This work provides a promising starting point for investiga-
tions into the collapse of micropores that incorporate the full non-
Newtonian physics of the system into the studies of hole collapse.
This analysis can be extended in many ways by addressing the
role of the fluid’s elasticity, as has been done for opening holes
(Dusterhoft and Penno, 2011; Deka et al., 2019), for example. More-
over, our analysis has been limited to purely viscous fluids and
should be extended to address the influence of the Ohnesorge num-
ber. In this regard, it is instructive to estimate how the local Reynolds
number Rem ≡ ρv̂m r̂m/μ̂m scales with the radius of the orifice.
According to Eqs. (9) and (11), the local Reynolds varies with the
hole radius as

Rem ∼
1

Oh2 r3−2/n
m , (12)

which shows that Rem decreases during collapse for n > 2/3 and
increases for n < 2/3. The latter case suggests that for real fluids with
finite values of Oh, the effect of inertia would become relevant at
some point during collapse, regardless of Oh.
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