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Research Note on Power-Series Expression of Mass 
Concentration Profile in Nonlinear Diffusion-Reaction Processes 

 
 

L. T. Villa, R. O. Grossi, G. Ryan 

 
 
Abstract – In this paper, a steady state one-dimensional diffusion-reaction process is 
considered. As a descriptive mathematical model for such processes, a high nonlinear boundary 
value problem (BVP) for a second order ordinary differential equation is associated. By using an 
opportune integral representation for the solution of such BVP, fundamentals aspects are 
provided  in order to support the existence and uniqueness of a power series expression as 
solution of the BVP. So that, a contribution has been reached, leading to provide information of 
practical significance regarding to the mass concentration profile of the key reactant component 
in the process. Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved. 
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I. Introduction 
Let us consider the following one dimensional 

nonlinear boundary value problem: 
 

 ( ) [ ]
2

2
2 0 1d u F u , x ,

dx
φ= − ∀ ∈  (1) 

 
 0    0u at x= =  (2) 
 

 0    1du at x
dx

= =  (3) 

 
The BVP (1) – (3) can be considered as a descriptive 

non-dimensional mathematical model for  a steady-state 
one-dimensional diffusion-reaction phenomena occurring 
inside of a catalytic porous slab particle supported on the 
bed of an heterogeneous chemical reactor. 

The unknown is the real function ( )u u x=  of the real 
spatial variable x (x = 0 in surface and x = 1 in center of 
the particle). u(x) denotes 1 U− , beeing U the non-
dimensional mass concentration profile of the key 

component in the process, that is, 
S

CU
C

= , where SC  is 

the corresponding surfacial concentration.  
The equation (1) comes from the corresponding mass 

balance in steady state for the key component, which is 
consumed in the chemical reaction. 

( )F u  is the kinetic law of the irreversible chemical 
reaction involved in the process, a nonlinear regular real 
function. φ  denotes the classical Thiele Modulus 
parameter. 

The equation (2) means SC C=  on surface, while (3) 
comes from symmetry considerations. 

For thermodinamical and physicochemical aspects, as 
well as the corresponding model formulation, see [1] and 
[2].  

In general, it is well known that the analytical solution 
of the BVP (1) - (3) is quite difficult to be obtained. Most 
of the available results deals with numerical treatment or 
with applications of some mathematical methods which 
leads to obtain successive approximations to the 
respective solution. For an overview we refer to [3], [4], 
[5], [6] and [7]. In particular, updates of pertinent 
literature can be seen in [3]. 

In [8], a power series expression was calculated as 
theoretical solution of the BVP (1) - (3). Its numerical 
results were compared with values of available literature, 
obtaining a very good agreement.  

In the present article, fundamentals are presented to 
support the existence and uniqueness of analytical 
formulae (given by the power serie expression reported 
in [8]), as solution of the mentioned BVP. Hence, this 
work esentially provides theoretical fundaments to the 
solution already reported there. 

II. Equivalent Integral Representation    
to BVP (1)-(3) 

Notice that on the solution ( )u u x= to the BVP (1)-
(3) it is required that: 

 

 [ ] ( ) [ ]2 0 1  0 1 0 1u C , , u x x ,∈ ≤ ≤ ∀ ∈  (4) 
 

Then, the following integral representation for the 
solution ( )u u x=  to such BVP is obtained: 

 

 ( ) ( )
12

0

x

t
u x F u z dz dtφ ⎡ ⎤= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫  (5) 
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In addition to the basic requirements consigned by (4), 
the following condition on the function F(u) in (1) is 
assumed: 

 
F is a continuously derivative function [ ]0 1u ,∀ ∈   (H0) 

 
So, for all functions u,v V∈ , with V  the normed 

vectorial space given as: 
 

 [ ]
[ ]

( )2

0 1
0 1

x ,
V w / w C , , w Max w x

∈

⎧ ⎫≡ ∈ =⎨ ⎬
⎩ ⎭

 (6) 

 
the following inequality holds: 

 

 ( ) ( )
2

2
W u W v L u v , u,v Vφ

− ≤ − ∀ ∈  (7) 

 
where W  denote an integral operator defined as: 

 

 ( ) ( )
12

0

x

t
W u F u z dz dtφ ⎡ ⎤= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫  (8) 

 
and L is a positive constant which represent the Lipschitz 
constant of the function F . In view of assumption (H0), 
L can be taken as given by: 
 

 
[ ]0 1u ,

dFL Max
du∈

=  (9) 

 
It can be seen that whenever the following restriction 

holds: 
 

 2
2L
φ

<  (10) 

 
W result to be a contractive operator. Consequently, 

the existence of a fixed point is assured for the integral 
application defined by: 

 
 ( ) ( )u x W u x= ⎡ ⎤⎣ ⎦  (11) 
 
with ( )W u  defined by (8). 

Naturally the fixed point of the application (11) will 
be also the solution of the BVP (1) - (3) under  analysis. 

So that, using the application (11), with F  a function 
with Lipschitz constant L  which verifies (10), an infinite 
sequence of real functions un = un(x), n = 1, 2, ... can be 
obtained, with the convergence property given as: 

 
 ( ) ( ) [ ]0 1nn

lim u x u x , x ,
→∞

= ∀ ∈  (12) 

 
where u  is solution of BVP (1) - (3).  

 

III. Analytical Formulation as Power – 
Series Expression for Solution             

of BVP (1)-(3) 
As case study, a diffusión–reaction phenomena for 

which the kinetic law ( )F F u=  is given as: 
 

 ( ) ( )1
1

m p cuF u u exp
du

+ ⎛ ⎞= − ⋅ ⎜ ⎟+⎝ ⎠
 (13) 

 
where the parameters m, p  are non-negative integer 
numbers which denote reaction order, is considered. 

The parameter c  is given by: 
 
 c dγ= ⋅  (14) 
 
with γ  being the Arrhenius group, that is  
 

 2 20
s

E ,
RT

γ γ= ≤ ≤  (15) 

 
E  is the activation energy, R  the universal gases 

constant and sT  the surfacial temperature of the catalytic 
particle.  

The parameter d  denotes the thermicity of the 
reaction, being 0d <  and 0d >  respectively for 
endothermic and exothermic chemical reaction. In what 
follows, the following general restrictions on the 
parameters are considered: 

 

 
0 1 2  1 1  0 1 4  

20 20
m, p , , ,...; d ; . ;

c
φ= − < < ≤ ≤

− ≤ ≤
 (16) 

 
The Table I below shows values of constant L  for the 

function F  given by (9), corresponding  to different sets 
of values for parameters, in the context of the general 
restriction (16).  

 
TABLE I 

VALUES OF CONSTANT L  FOR THE FUNCTION F  GIVEN BY (9) 
Case Parametric set L  

1º 0  0  0m , p , d= = < , c < 0 -c 

2º 
11  0  - 0
2

m , p , d= = ≤ < , c < 0 |c – 1| 

3º m=1,  p=0,  0 < | d | < 1 , c > 0 
1

cexp
d

⎡ ⎤
⎢ ⎥+⎣ ⎦

 

4º 2  0  0m , p , d= = < , c < 0 |c – 2| 

 
Inserting (13) in (1), the following particular BVP is 

obtained: 
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 ( )
2

2
2 1  0 1

1
m pd u cuu exp for x

dudx
φ + ⎛ ⎞= − − ⋅ < <⎜ ⎟+⎝ ⎠

 (17) 

 
 0  0u at x= =  (18) 
 

 0  1du at x
dx

= =  (19) 

 
Now, notice that in view of (13), assumption (H0) 

holds and consequently the integral representation given 
by (5) can be written as: 

 

 

( )

( ) ( ){ }
( )

2
2

0

2
0 0

2
0 0

2

2
x t

x t k
k

k

u x m x x

c m p u z dz dt

C u z dz dt

φ

φ

φ
∞

=

= − +

− − + +⎡ ⎤⎣ ⎦

⎧ ⎫⎡ ⎤⎪ ⎪− ⎨ ⎢ ⎥ ⎬
⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫

∑∫ ∫

 (20) 

 
where kC  denotes the corresponding Mac Laurin 
coefficients for the function F  given by (13). For 
example it results: 
 

 ( )( )2
2

1 1 2 2
2

c m p m p c cd cφ= + + − − + −⎡ ⎤⎣ ⎦  (21) 

 
Now, it is claimed that the integral representation (11) 

reveals the existence of an analytical formulae with a 
power-series structure for the solution u  of the BVP 
(17)-(19). In fact, let 0 0u ≡  be proposed as the zero 
order approximation in (11) (notice that 0u  verifies the 
boundary condition (18)). Then, approximations of first 
an second order 1u  and 2u  from (11) follow as: 

 

 ( )
2

2
1 0 2

u x m x xφ
= −  (22) 

 

 

( ) ( )
2

2 2 30
2 0

2
2 2

00 0
2

2 6

2

k
x t

k
k

m
u x m x x c m p x

C m z z dz dt

φ φ

φφ
∞

=

= − − − + +⎡ ⎤⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥− −⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎝ ⎠ ⎪⎣ ⎦⎩ ⎭
∑∫ ∫

 (23) 

 
and so on, the following successive approximations 

( ) ( ) ( )3 4 nu x ,u x ,...u x ,... . 
Already from (23) it is clear that the contractive 

integral application introduced by (11) lead to a 
convergent power-series to represent the function 

( )u u x=  solution of the BVP (17) - (19), that is: 
 

 ( ) ( ) ( ) 0 1nn
lim u x u x , x ,
→∞

= ∈  (24) 

with u  in (24) given as: 
 

 ( ) ( )
0

 0 1k

k
u D k x , x ,

∞

=

= ∈∑  (25) 

 
where kD  can be obtained following a systematic 
procedure reported in [8], where a power serie 
expression like (25) was assumed a priori as solution of a 
BVP like (17) – (19). 

In such paper, the following relation to obtain kD was 
provided: 

 

 ( ) ( )( )
2

2  0 1
1 2

k
k

U
D k , , ....

k k
φ

+ = − ∀ =
+ +

 (26) 

 
From (26) result: 
 

 ( )
2

02
2

D Uφ
= −  (27) 

 
kU  can be obtained from the following expression, 

reported also in [8]: 
 

 
0

k

k r k r
r

U G E −
=

= ∑  (28) 

 
being kG  and kE  given as: 
 

 ( )
0 0

  
k

k r k r k r r k
r r

G B C , E d A
∞

−
= =

= =∑ ∑  (29) 

 
such as it can be seen in [8], where also the procedure to 
obtain the coefficients r k rB C − , and rd , was reported. 
Then, applying the preceding relations result: 
 

 ( )
2

1 1 0 1 1 03  
6

D U , U G E G Eφ
= − = +  (30) 

 
 0 0 0 0 0 1 0 1  1  U G E , E , G , E m c= = = =  (31) 
 

 ( )1 0 1 0 0 U m c m p , G pm mm= − + = − −⎡ ⎤⎣ ⎦  (32) 
 
and consequently: 
 

 ( ) ( ) ( )
2 2

02  3
2 6

D , D m c m pφ φ
= − = − − +⎡ ⎤⎣ ⎦  (33) 

 
and so on ( )4D ,...   

In virtue of the boundary conditions (18) and (19), it 
is obtained: 
 ( ) ( ) 00 0 1D ,D m= =  (34) 



 
L. T. Villa, R. O. Grossi, G. Ryan 

Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved                                         International Review of Chemical Engineering, Vol. 3, N. 6 

647 

Then, inserting (33) and (34) in (25) it gives: 
 

 

( )

( )

2 2
2 3

0 0

4

2 6

k

k

u m x x m c m p x

D k x

φ φ

∞

=

= − − − + +⎡ ⎤⎣ ⎦

+∑
 (35) 

 
Notice that (23) and (35) contain exactly the same 

terms up to power 3x . 

IV. Numerical Results 
Below, the solution u  and its derivative for the BVP 

(17) – (19) are depicted for several sets of values of 
parameters, and illustrated also with the corresponding 
graphical representations. Such solution was obtained by 
applying a power-series expression provided in [8], 
where the first two cases (as well as many other) are 
depicted. All those cases show a very good agreement 
with values taken there for comparison purpose. 

Now another cases, where it can be observed that the 

power-series converges even with L > 2
2
φ

, are reported. 

Notice that such bound can be improved to 
2

2
1

2
L π

φ
< = 2

4 9348.
φ

=Upbound, using a result on 

uniqueness of solution reported in [9]. 
 

TABLE II 
CASE 1: m = 2  p = 0  c = -0.5 d = -0.1  φ  = 0.8 

L = |c-2|= 2.5 < 2
2
φ

= 3.125 

x u(x) u'(x) 
0 0 0.4479408496 

0.1 0.04170733854 0.3872792423 
0.2 0.07764882875 0.3324161207 
0.3 0.1083461628 0.2822277919 
0.4 0.134219448 0.2357963956 
0.5 0.1556051044 0.1923587122 
0.6 0.1727693178 0.1512677118 
0.7 0.1859181196 0.1119629901 
0.8 0.1952048386 0.07394741343 
0.9 0.2007354454 0.03676805679 
1 0.2025721451 2.997454930E-17

 

 
Fig. 1. Graphical representations of case 1 

TABLE III 
CASE 2: m = 2  p = 0 c = -0.5  d = -0.1 φ = 0.5 

L = |c-2| =  2.5 < 2
2
φ

=  8.0 

x u(x) u'(x) 
0 0 0.2104805726 

0.1 0.01981916034 0.1861056446 
0.2 0.03725867213 0.1628577125 
0.3 0.05242259825 0.1405672154 
0.4 0.06539893726 0.119081846 
0.5 0.07626118366 0.09826333792 
0.6 0.0850695915 0.07798472613 
0.7 0.09187218335 0.05812797563 
0.8 0.09670553667 0.03858189102 
0.9 0.09959537229 0.01924023572 
1 0.1005569627 -2.04477392E-15 

 

 
Fig. 2. Graphical representations of case 2 

 
 

TABLE IV 
CASE 3: m = 1  p = 0      c = -0.5      d = -0.1   φ  = 1.5 

L= |c-1|=1.5 > 2
2
φ

=0.888, BUT 1.5< 2
4 9348 2 1932. .
φ

=  

x u(x) u'(x) 
0 0 1.235876642 

0.1 0.112987671 1.029952587 
0.2 0.2070553249 0.8560579087 
0.3 0.2850186057 0.7068023688 
0.4 0.3490490071 0.5765839978 
0.5 0.4008238605 0.461048171 
0.6 0.4416315325 0.3567195127 
0.7 0.4724457195 0.2607438418 
0.8 0.4939777431 0.1707010626 
0.9 0.5067125148 0.08446079506 
1 0.5109297127 -1.47486E-19 

 

 
Fig. 3. Graphical representations of case 3 
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TABLE V 
CASE 4: m = 1    p = 0    c = 0.3   d = -0.5   φ  = 2.1 

L = exp
1

c
d

⎡ ⎤
⎢ ⎥+⎣ ⎦

= 1.822  > 2
2
φ

 =  0.4535, AND ALSO L > 2
4 9348.
φ

=  

Upbound = 1.119. 
(L = 1.628* Upbound, BUT SERIES CONVERGES) 

x u(x) u'(x) 
0 0 2.212167773 

0.1 0.2002682193 1.803854478 
0.2 0.3627674103 1.455469818 
0.3 0.493109809 1.159534116 
0.4 0.5961933536 0.9091815939 
0.5 0.6762466262 0.6978465464 
0.6 0.7368473877 0.5190524498 
0.7 0.7809255201 0.366309208 
0.8 0.8107601808 0.23309446 
0.9 0.8279783805 0.1129088705 
1 0.8335787224 -2.541810215E-16 

 

 
Fig. 4. Graphical representations of case 4 

 
TABLE VI 

CASE 5: m = 1    p = 0    c = 1.3   d = -0.5   φ  = 1.1 

L = exp
1

c
d

⎡ ⎤
⎢ ⎥+⎣ ⎦

= 13.46  > 2
2
φ

 =  1.6529, AND ALSO L > 2
4 9348.
φ

=  

Upbound = 4.0783. 
(L = 3.3* Upbound, BUT SERIES STILL CONVERGES!) 
x u(x) u'(x) 
0 0 1.405446642 

0.1 0.134407745 1.281821987 
0.2 0.2561820696 1.152737866 
0.3 0.3647708267 1.018134125 
0.4 0.4596372317 0.8783987717 
0.5 0.5403096225 0.7344514435 
0.6 0.6064334048 0.5876885935 
0.7 0.6578074139 0.4397203128 
0.8 0.6943840842 0.2919273788 
0.9 0.7162244186 0.1450630141 
1 0.7234499401 -5.939497064E-14 

 

 
Fig. 5. Graphical representations of case 5 

TABLE VII 
CASE 6: m = 1    p = 0    c = 1.3   d = -0.5   φ  = 1.4 

L = exp
1

c
d

⎡ ⎤
⎢ ⎥+⎣ ⎦

= 13.46  > 2
2
φ

 =  1.0204, AND ALSO 

L > 2
4 9348.
φ

=  Upbound = 2.5178. 

(L=5.346*Upbound. FINALLY, SERIES DOESN’T CONVERGE TO 
SOLUTION!). 

x u(x) u'(x) 
0 0 1.001999314 

0.1 0.09030370445 0.8031358411 
0.2 0.1604515787 0.5990185046 
0.3 0.2099655164 0.3906554582 
0.4 0.2384853358 0.1793792645 
0.5 0.2457954937 -0.0332702673 
0.6 0.2318398445 -0.2456634623 
0.7 0.1967252585 -0.4561871006 
0.8 0.1407144909 -0.6633582415 
0.9 0.0642051529 -0.8660033166 
1 -0.03230046165 -1.062783883 

 

 
Fig. 6. Graphical representations of case 6 

V. Conclusion 
The theoretical fundaments which demonstrate the 

existence and uniqueness of the solution of a typical 
nonlinear BVP have been presented. The solution was 
obtained by using the well-known power-series method. 
An opportune integral operator was introduced.  

It must be noted that a wide class of nonlinear kinetic 
laws can be considered, whenever they belong to the 
class of Lipschitzian functions with respect to the 
unknown function in the BVP under analysis. 

As it can be seen in some of illustrated cases, power-
series resulted to be convergent even when parameters 
were out of the calculated convergence zone. So, the 
problem deserves more studies about it. Surely, a greater 
convergence zone can be obtained by using another norm 
in the vectorial space V defined in (6). 
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