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ABSTRACT

We assess the partition function and ionization degree of magnetized hydrogen atoms at thermodynamic equilibrium for a wide range
of field intensities, B≈ 105–1012 G. Evaluations include fitting formulae for an arbitrary number of binding energies, the coupling
between the internal atomic structure and the center-of-mass motion across the magnetic field, and the formation of the so-called
decentered states (bound states with the electron shifted from the Coulomb well). Non-ideal gas effects are treated within the occupa-
tional probability method. We also present general mathematical expressions for the bound state correspondence between the limits of
zero-field and high-field. This let us evaluate the atomic partition function in a continuous way from the Zeeman perturbative regime
to very strong fields. Results are shown for conditions found in atmospheres of magnetic white dwarf (MWD) stars, with temperatures
T ≈ 5000–80 000 K and densities ρ≈ 10−12–10−3 g cm3. Our evaluations show a marked reduction of the gas ionization due to the mag-
netic field in the atmospheres of strong MWDs. We also found that decentered states could be present in the atmospheres of currently
known hot MWDs, giving a significant contribution to the partition function in the strongest magnetized atmospheres.
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1. Introduction

The strongest magnetic fields are found in stellar objects, includ-
ing magnetic white dwarf (MWD) stars with field strengths in a
broad range B≈ 103–109 G, the lower value likely being a result
of detection method limits (Ferrario et al. 2015); neutron stars
108–1013 G (Konar 2017); and magnetars, i.e., highly magne-
tized neutron stars, 1014–1015 G (Harding & Lai 2006; Kaspi &
Beloborodov 2017). In comparison, sunspots usually have B <∼
103 G; Ap- or Bp-type main-sequence stars have 103–104 G; and
the strongest stable magnetic fields generated in terrestrial exper-
iments reach about 105 G (Crow et al. 1995), although higher
fields (≈107 G) can be produced in magnetic-flux compressions
with very short lifetimes τ <∼ 10−7 s (Herlach 1999; Gotchev et al.
2009). Among the mentioned magnetic systems, only magnetars
have fields above the critical value Bc = 4.414× 1013 G where
the cyclotron energy exceeds the electron rest energy and particle
motions become relativistic (Bc is defined by setting ~ωe = mec2,
where ωe = eB/mec is the cyclotron frequency and conventional
notation is used).

Most compact stars have hydrogen in the outer layers, mainly
because the element segregation in their strong gravitational
fields. The structure of atoms is considerably modified in mag-
netized compact stars beyond the Zeeman-type perturbative
approach. These changes have consequences on the internal par-
tition function, energy level populations, ionization equilibrium,
and radiative cross-sections, which through the radiative trans-
port give form to the thermal radiation emerging from the stellar
surface. The study of atoms in high magnetic field is, therefore,
essential for interpretation of emergent spectra from atmospheres
and radiating surfaces of compact stars (Külebi et al. 2009;
Potekhin 2014). It also has considerable interest for solid state
physics (Elliott & Loudon 1960; Orton 2004; Bartnik et al. 2010)
and fundamental physics (Friedrich & Wintgen 1989).

The effects of magnetic fields over the atomic structure
are usually measured with the parameter β= B/B0, where B0 ≈
4.70103× 109 G is set by equating the Bohr radius (aB = ~2/
mec2) to the characteristic magnetic length aM =

√
2~c/eB (the

mean value of the cyclotron radius in the lowest Landau state).
Thus, β� 1 includes the regime of weak magnetic fields, β≈ 1
the regime where Coulomb and magnetic forces in the atom have
comparable strengths, and β� 1 the domain of the magnetic
field on particle dynamics transverse to the field direction.

The properties of hydrogen atoms in an external magnetic
field have been the subject of investigations over many decades
(Garstang 1977; Johnson et al. 1983; Lai 2001; Thirumalai &
Heyl 2014). It has already been recognized in studies of exci-
tons (electron–hole pairs) in semiconductors (Elliott & Loudon
1960; Hasegawa & Howard 1961) that, for very strong fields
(β� 1), the energy eigenfunctions can be approximated by the
product of a Landau orbital (an energy eigenstate corresponding
to a free-electron in the field B) and a function depending on
the coordinate parallel to the field. This is known as the adi-
abatic approximation, introduced by Schiff & Snyder (1939),
which becomes exact in the limit β → ∞, where the behavior
of the (non-relativistic) atomic states is reproduced by analytical
results based on the one-dimensional hydrogen atom (Loudon
1959, 2016; Haines & Roberts 1969).

Motivated by the discovery of pulsars (β>∼ 1) and magnetic
white dwarfs (β <∼ 1), energy evaluations were obtained with
variational techniques using trial wavefunctions (Cohen et al.
1970; Smith et al. 1972), followed by more detailed numerical
calculations at β� 1 using the adiabatic approximation (e.g.,
Canuto & Kelly 1972). Corrections to previous results were pro-
gressively obtained to reach a comprehensive account of the
first low-energy levels from appropriate wavefunction expan-
sions in terms of spherical harmonics (β <∼ 1) or Landau states
(β>∼ 1) (Roesner et al. 1984). More recently, some authors (e.g.,
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Kravchenko et al. 1996) found very accurate non-relativistic
solutions for a few H states in constant fields of arbitrary
strength. Currently, high-precision values are known for a large
number of energy states over the whole range of magnetic field
strengths using a wavefunction expansion in terms of B-splines
(Schimeczek & Wunner 2014).

The above-cited studies assume an infinite nuclear mass and
neglect the motion of the atoms. However, astrophysical fluid
models require taking finite temperatures and hence the thermal
motion of particles into account. Pavlov-Verevkin & Zhilinskii
(1980) found simple energy scaling rules to account for the
effects of finite proton mass for atoms at rest, but considerations
of the particle movement effects are more complex. Motion per-
pendicular to a magnetic field breaks the axial symmetry that
characterizes an atom at rest and makes this problem fully three-
dimensional. Gor’kov & Dzyaloshinskii (1968) showed that the
motion of an atom across a magnetic field affects its internal
energies. They found a conserved quantity, the so-called pseudo-
momentum K introduced by Johnson & Lippmann (1949) for
single charges, which makes the separation of the center-of-mass
(CM) motion from the relative electron-proton motion possible.
At large enough values of the pseudo-momentum transverse to
the magnetic field (k⊥), or equivalently when a large electric
field crosses the magnetic field, the wave function of the relative
motion is shifted from the Coulomb center to a magnetic well
(Burkova et al. 1976). These states are called decentered states
and are characterized by a large dipole moment as a result of
the corresponding separation between the electron and proton.
Ipatova et al. (1984) showed that the change in the dependence
of the atom energy on the pseudo-momentum from centered (the
wave function concentrated near the Coulomb well) to decen-
tered states is rather abrupt and occurs when k⊥ reaches a certain
critical value Kc. Perturbative calculations of this dependence
at k⊥�Kc were implemented by Vincke & Baye (1988) and
Pavlov & Meszaros (1993). Non-perturbative results have been
given in different works (Vincke et al. 1992; Lai & Salpeter
1995; Potekhin 1998; Lozovik & Volkov 2004; Potekhin et al.
2014).

The ionization equilibrium of hydrogen in strong magnetic
fields was first discussed by Gnedin et al. (1974). Khersonskii
(1987a,b) improved on a previous study by taking into account
quantization of protons and finite nuclear mass in the atomic
internal states. The influence of the pseudo-momentum on the
atomic partition function was considered by Ventura et al.
(1992), but did not provide quantitative results. Pavlov &
Meszaros (1993) included changes of the internal atomic struc-
ture caused by the thermal motion of the atoms across the mag-
netic field, using perturbative evaluations at β>∼ 1. Approximate
evaluations of the hydrogen ionization equilibrium including
pseudo-momentum effects were considered at Lai & Salpeter
(1995) for superstrong fields (β� 1), and improved results were
then given by Potekhin and coworkers (e.g., Potekhin et al. 1999,
2014); these results also focused on the very intense magnetic
fields of neutron star atmospheres (B>∼ 1010 G).

The aim of the present paper is to evaluate the ionization
equilibrium of magnetized hydrogen atoms in the region of inter-
mediate values of magnetic field (mainly B≈ 105–1010 G), which
have remained unexplored so far. For this purpose, we write fit-
ting formulae for the energies of bound states in the transition
between field-free and high-field regimes using accurate numeri-
cal data for atoms at rest, combined with analytical results of CM
effects due to thermal particle motions. On the other hand, we
develop mathematical relations to express the correspondence
between states in the field-free and strong-field regimes. Our

study is focused on conditions found in the atmospheres of mag-
netic white dwarf stars with megagauss fields (B≈ 106–109 G),
for which zero-field occupation numbers of atoms and ions are
currently used (Euchner et al. 2002; Aznar Cuadrado et al. 2004;
Külebi et al. 2009).

The paper is organized as follows. Section 2 shows the quan-
tum problem of a hydrogen atom in an uniform magnetic field.
Section 3 is devoted to establishing simple rules for the rela-
tionships between atomic states in the weak and strong field
limits. Section 4 reviews the binding energies of atoms in a mag-
netic field on different regimes including the treatement of finite
nuclear mass and moving particle effects. Section 5 summarizes
the chemical potentials, partition function, and ionization equi-
librium equations. Results and their analysis are shown in Sect. 6.
Concluding remarks are given in Sect. 7.

2. Hydrogen atoms in a magnetic field

The Hamiltonian of the hydrogen atom in a magnetic field
omitting relativistic effects is

H =
π2

p

2mp
+

π2
e

2me
+ V(r) (1)

with

πi = pi − qi

c
A, (2)

where qi, mi, ri, pi, and πi are respectively the charge (qe =
−e, qp = e), mass, position, canonical momentum, and kinetic
momentum of the electron (i = e) or proton (i = p); A is the poten-
tial vector of the field and V(r) = − e2/r the Coulomb potential
with r the magnitude of r = re − rp.

For homogeneous magnetic fields B, the motion integral
of the atom related with the translational invariance of the
Hamiltonian is given by the pseudo-momentum operator K
(Gor’kov & Dzyaloshinskii 1968; Avron et al. 1978; Herold et al.
1981; Johnson et al. 1983)

K = πe + πp − b× r
2

, (3)

with b = eB/c and the gauge

A(r) =
B× r

2
. (4)

Here K is used to separate the relative motion of the electron and
proton from the mass center motion (Gor’kov & Dzyaloshinskii
1968). The eigenenergy equation of the atom in relative
coordinates can be written in the form (Herold et al. 1981)[
π2

2µ
+

(k + b× r)2

2M
+ V(r)

]
φ(r) = Eφ(r), (5)

with φ(r) the eigenfunction of Hamiltonian and

π = p +
γ(b× r)

2
, (6)

k being an eigenvalue of the pseudo-momentum operator K, p
the one-particle canonical momentum (p= − i~∇r in the relative
coordinate space), M the total mass, µ the reduced mass, and γ
a relative mass difference,

M = mp + me, µ =
memp

M
, γ =

mp − me

M
. (7)

A180, page 2 of 14



M. Vera Rueda and R. D. Rohrmann: Hydrogen ionization equilibrium in magnetic fields

Equation (5) has been largely studied for atoms at rest (k = 0),
where the Hamiltonian of the relative motion of electron and
proton takes the form

Hrel =
p2

2µ
+
γb × L

2µ
+

(b× r)2

8µ
+ V(r), (8)

L = r×p being the relative angular momentum operator.
Hereafter, we adopt the z-axis of the Cartesian and cylindri-

cal coordinates oriented in the B direction.

States in the zero- and strong-field limits. A brief review
of atomic states in the limits β → 0,∞ is required to spec-
ify the correspondence between them. When the magnetic field
is switch off, Eq. (8) reduces to the Hamiltonian of the usual
Coulomb problem. Bound states are typically represented by
eigenstates φn,l,m common to the Hamiltonian, L2, and Lz oper-
ators, which have eigenvalues −EH/n2, ~2l(l + 1), and ~m,
respectively, depending on the principal (n = 1, 2, . . . ), orbital
(l = 0, 1, . . . , n − 1), and magnetic (m = − l, . . . , l − 1, l) quantum
numbers, where EH = 13.605693 eV is the ionization energy of
the field-free atom.

At very intense field values (β� 1) Coulomb interaction has
a negligible effect on the (electron and proton) relative motion
transverse to the magnetic field. Eigenfunctions of Hrel can then
be factorized in the product (Schiff & Snyder 1939) as

Φ = Φ⊥(r⊥, ϕ) Φ‖(z), (9)

with separated dependence on cylindrical coordinates (r⊥, ϕ, z),
while the eigenenergies are expressed as a sum:

E = E⊥ + E‖. (10)

Due to the presence of the magnetic field L2 is no longer a con-
served quantity, but the Hamiltonian still commutes with Lz, and
m thus remains a good quantum number. The transversal part
of the eigenfunction is given by the usual Landau function Φ⊥N,m
labeled m and the Landau number N, while the longitudinal com-
ponent Φ

‖
ν of the wavefunction is determined by an effective

potential parallel to the field, with ν the longitudinal quantum
number which takes non-negative integer values for negative val-
ues of E‖ (in this case, ν gives the number of nodes of Φ

‖
ν) and is

continuous otherwise.
With the zero-point and spin terms subtracted, the transverse

contribution to the eigenenergy in Eq. (10) can be written as

E⊥ = ~ωeN + ~ωp(N − m), (11)

with

ωi =
eB
mic

, (12)

and

N = nr +
|m| + m

2
, (13)

nr (= 0, 1, 2, . . . ) being the radial quantum number which enu-
merates the nodes of Φ⊥N,m along the coordinate r⊥. Because
nr ≥ 0 and m ≤ N (= 0, 1, 2, . . . ), E⊥ is positive or zero.

Binding values of the longitudinal energy (E‖ < 0) exist for
m ≤ 0 and were calculated with the one-dimensional hydro-
gen atom approach (Loudon 1959; Haines & Roberts 1969).
Its solutions are composed by tightly bound states (ν= 0) and

hydrogen-like states (ν= 1, 2, 3 . . . ). The longitudinal energies of
tightly bound states can be approximated by (Ruderman 1974)

E‖ν=0 = −0.32EH ln2
(

2β
2|m| + 1

)
, (14)

while those of hydrogen-like states converge to a Rydberg series

E‖ν>0 = −EH

[
Int

(
ν + 1

2

)
+ δνm

]−2

, (15)

with Int(x) the integer part of x, and δνm a quantum defect
parameter which takes negative values and vanishes in β → ∞
(Friedrich & Wintgen 1989), e.g., δν= 1,m = − 4

(
2|m|+1

2β

)1/2
.

Solutions (14) and (15) correspond to a fixed Coulomb poten-
tial (i.e., infinitely massive proton). If finite nuclear-mass effects
are ignored, the only bound states below the first Landau level
(N = 0) are those with m ≤ 0 (nr = 0). States over the first Lan-
dau level, which determines the edge of the continuum energy,
are metastable (m < N, nr > 0) or truly bound (m = N, nr = 0)
depending on the existence or not of lower states with the same
magnetic quantum number (Simola & Virtamo 1978). When the
finite proton mass is taking into account only states with N = 0
and m = 0 remain below the continuum edge at β → ∞ (see
Eq. (25)).

3. Bound state correspondence

At very weak magnetic fields (β� 1) the atomic states are
well described by the Coulomb quantum numbers {n, l,m}. The
Zeeman quadratic effect removes the l degeneracy of low-lying
states in β <∼ 10−3, while n remains a good quantum number.
Inter-n mixing starts to appear at highly excited states for very
low fields and reaches the lowest states at β ≈ 1. In the n mix-
ing regime, the energy level pattern is characterized by many
close anti-crossings (Ruder et al. 1994; Schimeczek & Wunner
2014). This complex structure disappears for strong magnetic
fields (β� 1) where a new ordered structure arises formed by
Rydberg-like levels plus tightly bound states. There the set of
quantum numbers {N, ν,m} becomes appropriate to describe the
atomic states. Two quantities are conserved over the whole range
of magnetic fields, the z-parity (πz) of the energy eigenfunctions
and the z-component of the orbital angular momentum (quantum
number m). Consequently, πz and m remain as good quantum
numbers in arbitrary field intensity. As is well-known, the longi-
tudinal parity is πz = (−1)l−m for free-field states and πz = (−1)ν
for bound states in the strong field regime.

The correspondence between energy states at low and high
fields was clarified by Simola & Virtamo (1978) using the non-
crossing rule of states. With this rule, which applies to states
with exactly the same symmetries on the Hamiltonian opera-
tor, bound states in both limits (β → 0,∞) corresponding to the
same πz and m are connected on the order of growing energy.
Nevertheless, there are (N, ν,m) states that remain at β→ 0 as a
linear combination of two or more (n, l,m) states with the same
n and m but different l, one of these states usually being the
dominant one. In practice, for degenerate (n,m, πz) multiplets we
can adopt the state with highest l which has the lowest energy at
β� 1 (Ruder et al. 1994). Adopting this convention, it is possible
to establish a complete one-to-one correspondence between the
field-free states and strong-field states.

Following the previous convention, we found simple rela-
tionships connecting the sets of quantum numbers of bound
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Table 1. Longitudinal quantum number ν of high-field states connected to zero-field states (n, l,m) for levels 1 ≤ n ≤ 5 and n = 20.

n l |m|= 0 1 2 3 4 n l |m|= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 0 218
1 0 0 20 1 199 198

20 2 216 179 178
2 0 2 20 3 197 196 161 160
2 1 1 0 20 4 214 177 176 143 142

20 5 195 194 159 158 127 126
3 0 6 20 6 212 175 174 141 140 111 110
3 1 3 2 20 7 193 192 157 156 125 124 97 96
3 2 4 1 0 20 8 210 173 172 139 138 109 108 83 82

20 9 191 190 155 154 123 122 95 94 71 70
4 0 10 20 10 208 171 170 137 136 107 106 81 80 59 58
4 1 7 6 20 11 189 188 153 152 121 120 93 92 69 68 49 48
4 2 8 3 2 20 12 206 169 168 135 134 105 104 79 78 57 56 39 38
4 3 5 4 1 0 20 13 187 186 151 150 119 118 91 90 67 66 47 46 31 30

20 14 204 167 166 133 132 103 102 77 76 55 54 37 36 23 22
5 0 16 20 15 185 184 149 148 117 116 89 88 65 64 45 44 29 28 17 16
5 1 11 10 20 16 202 165 164 131 130 101 100 75 74 53 52 35 34 21 20 11 10
5 2 14 7 6 20 17 183 182 147 146 115 114 87 86 63 62 43 42 27 26 15 14 7 6
5 3 9 8 3 2 20 18 200 163 162 129 128 99 98 73 72 51 50 33 32 19 18 9 8 3 2
5 4 12 5 4 1 0 20 19 181 180 145 144 113 112 85 84 61 60 41 40 25 24 13 12 5 4 1 0

states in field-free and high-intensity field regimes. In particu-
lar, we can express ν in terms of Coulomb quantum numbers in a
straightforward way. For states with positive parity πz = + 1, i.e.,
even (l + m) and even ν,

ν =


1
2

[
(n − |m| + 1)2 − 4

]
− l + |m|, odd (n + m),

1
2

[
(n − |m| + 1)2 − 5

]
− l + |m|, even (n + m).

(16)

For states with negative parity πz = − 1, i.e., odd (l + m) and
odd ν,

ν =


1
2

[
(n − |m|)2 − 1

]
− l + |m|, odd (n + m),

1
2

(n − |m|)2 − l + |m|, even (n + m).
(17)

The correlation between bound states is closed with the relation

N =

{
0, (m ≤ 0),
m, (m > 0). (18)

Equations (16)–(18) give a complete correspondence between
(n, l,m) and (N, ν,m) bound states. This quantitative scheme gen-
eralizes examples shown in Ruder et al. (1994). Table 1 lists the
sublevel correspondence to high field for a few low n and a highly
excited state (n = 20) in the zero-field limit.

When the field is switched off, the energy of a bound state
(N, ν,m) converges to a Bohr level. In agreement with relation-
ships (16) and (17), the main quantum number n is given by

n =


Int

[
1 +

2ν

1 +
√

2ν + 1

]
+ |m|, (even ν),

Int
[
2 +

2ν − 2

1 +
√

2ν − 1

]
+ |m|, (odd ν).

(19)

This last state correlation takes into account the superposition
of degenerate angular momentum states (l) inside a (n,m, πz)

multiplet, and therefore it is independent of the adopted conven-
tion of one-to-one correspondence.

The state correspondence ansatz given here provides a suit-
able scheme for evaluating the atomic partition function over the
whole range of magnetic fields. Specifically, this lets us freely
move through both representations ({n, l,m} and {N, ν,m}).

4. Bound state energies

The second term in the square brackets of Eq. (5) couples trans-
lational and internal energies of the H atom through the tranverse
component (k⊥) of the pseudo-momentum:

k = k⊥ + kz. (20)

It is worth noting that kz = pz, which follows from Eqs. (2)–(4).
Different approximations are used for low and high k⊥ values.

4.1. Centered states

For small k⊥, the coupled term in the Hamiltonian can be treated
as a perturbation, and the eigenenergies at second order are
written as (Vincke & Baye 1988; Pavlov & Meszaros 1993)

E = E +
k2
⊥

2M⊥
+

k2
z

2M
, (21)

where E is the energy of the rest atom, i.e., a solution of Eq. (8),
and M⊥ an effective mass given by

M⊥ =
M

1 − α, (22)

with

α ≈ ~ωH

(
1 − m

Eν,m−1 − Eν,m + ~ωp
− m
Eν,m+1 − Eν,m − ~ωp

)
. (23)

Velocity effects on the energy spectrum become of significant
importance for large enough fields, particularly in the regime
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β� 1 where Eq. (23) is derived using a basis of states {N, ν,m}.
At very low field intensities (β <∼ 1), a perturbative method based
on states {n, l,m} would be more appropriate; however, the cur-
rent expression for α is well behaved in this regime (where its
effects are significantly reduced), and so we use this approach
over the whole range of β. The application of the perturbation
method demands energy corrections lower than the spacing of
adjacent unperturbed levels (e.g., ∆E= |Eν,m −Eν,m+1| in large β).
Consequently, this gives an upper limit to the magnitude of the
transverse pseudo-momentum (Pavlov & Meszaros 1993)

k⊥ �
√

2M∆E
α

. (24)

States for which the approximation given by Eq. (21) is valid are
often called centered states (even when they could be weakly
decentered states) because the electron wavefunction remains
on average centered around the Coulomb well. In present work,
anisotropy mass (M⊥) has been calculated with Eqs. (22) and
(23) using energy data of Schimeczek & Wunner (2014). Some
fits are given in Appendix A.6.

Solutions to Eq. (8) are usually found in the approximation
of infinite nuclear mass (µ→ me, γ → 1), here denoted E∞. The
eigenvalues E for finite mass may be then evaluated from the
scaling relations (Pavlov-Verevkin & Zhilinskii 1980)

E =
µ

me
E∞

(me

µ

)2

β

 − (
me

µ

)2

~ωp(m + ms), (25)

with ms = ± 1/2 the spin quantum number of the electron. We
note that Eq. (25) includes a scaling relation for the field intensity
where E∞ is evaluated. For the present case (electron and proton
pairs) µ≈me and only the second term on the right-hand side of
Eq. (25) is truly significant in occupation number calculations.

In the present work we adopt the energies E∞ calculated
by Schimeczek & Wunner (2014) which comprise spin-down
levels (ms =−1/2) emerging from zero-field states with princi-
pal quantum numbers n ≤ 15 and magnetic quantum numbers
−4 ≤ m ≤ 0. The energy values of states with ms = +1/2 and
m > 0 are respectively obtained by adding 4β and 4mβ to val-
ues E∞(m < 0,ms =−1/2) measured in Rydberg units. Results
from Schimeczek & Wunner (2014) let us find the scaling rela-
tions for the energy dependence on m and ν and the approximate
energy curves for arbitrary bound states (see Appendix A). For
instance, Figs. 1 and 2 show E∞ curves at ν= 0 and ν= 1 com-
ing from the first twenty Bohr levels. These fits are valid for any
B with relative errors lower than 1% and converge to the right
limits at zero-field and very strong fields. Typical well-known
energy expressions for strong fields (Eqs. (14)–(15)) show strong
departures at β <∼ 50 for the ground state and at much larger β
for excited states. In particular, they cannot be used in the regime
of magnetic white dwarfs (−6.6 <∼ log β <∼ −0.6).

The accuracy of our energy fits varies for different levels
and different field strengths. The mean relative error (σE) for the
ground state does not exceed 0.4% in the range −4 ≤ log β ≤ 3
and falls below 0.1% in the MWD region. Other tightly bound
states (ν= 0, −4 ≤ m ≤ −1) have relative errors of a few tenths
of a percent in the MWD domain. General expression for ν ≥ 4
provides energies with σE typically between 2 and 4%, except
peaks (≈7%) in a few hydrogen-like states (e.g., ν= 4, 8, 12).

A partial energy spectrum of the atom at rest taking into
account finite nuclear mass is appreciated in Fig. 3. This shows
the dependence with the field intensity of the states arising from
the first four Bohr levels, and a comparison of our results from

Fig. 1. Energies of tightly bound states (ν= 0) of atoms at rest and infi-
nite nuclear mass, as a function of the magnetic field. Shown are the
numerical results from Schimeczek & Wunner (2014) for the lowest five
states (0 ≥ m ≥ −5) with spin-down (dashed lines); our fits and extrapo-
lations up to m = − 19 (solid lines); and the asymptotic approximations
given by Eq. (14) for m = 0,−1 (dotted lines).

Fig. 2. As in Fig. 1, but for hydrogen-like states at ν= 1. The dotted line
corresponds to predictions of Eq. (15) for m = 0.

analytical expressions with Schimeczek & Wunner (2014) eval-
uations for spin-down states. The ionization energy of the atom,
represented by the negative value of the solid curve labeled
(ν,m) = (0, 0), increases monotonically with the field strength.
As a consequence of the positive energy coupling with the field,
spin-up states and those with positive magnetic quantum num-
ber increase their energies and move toward the continuum at
relatively low field intensities, 0.01 < β < 1. A second state
migration toward the continuum occurs at high fields (β > 10,
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Fig. 3. Energies of magnetized atoms at rest coming from Bohr levels
n = 1, 2, 3, and 4, as a function of the field intensity. Finite nuclear mass
effects are included. Lines represent fits used in this work for spin-down
(solid) and spin-up (dotted) states. Symbols correspond to spin-down
values calculated by Schimeczek & Wunner (2014). Some (ν,m) states
are indicated on the plot.

for the states showed in Fig. 3), due to finite nuclear-mass correc-
tions affecting states with m < 0 (second term on the right-hand
side of Eq. (25)). Only states with m = 0 remain bound for any
field strength.

4.2. Decentered states

At very high pseudo-momentum of the atom motion across the
field, the electron probability density is markedly shifted apart
from the Coulomb center and approaches to the so-called rela-
tive guiding center (separation between the electron and proton
guiding centers)

rc =
c

eB2 B×k, (26)

with magnitude

rc =
k⊥a2

B

2~β
(27)

(rc = k⊥/2β in atomic units). In this case, the atomic state
becomes decentered and the dependence of the energy levels on
k⊥ cannot be interpreted in terms of a mass anisotropy.

The transition between weakly to strongly decentered states
have been studied in the regime of strong magnetic fields β>∼ 1
(Vincke et al. 1992; Potekhin 1994), where some useful ana-
lytical expressions have been given (Potekhin 1998; Potekhin
et al. 2014). These expressions are adopted in the present work
with minor changes to be extrapolated to low field intensity (for
which we demand the condition E → E at k → 0). With ener-
gies measured in Rydberg units and rc in Bohr radii, the energy
of decentered states is approximated by

E =
4me

mp
mβ +

2

χ0 −
√

r2
c + (2ν + 1)r3/2

c + χ1

+
k2

z

2M
, (28)

with

χ0 =


0, (ν = 0),

2
E∞ , (otherwise),

(29)

and

χ1 =



rc

5 − 3m
+

4
E2∞

, (ν= 0),[
ν2 + 20.5ν log(1+β/150)

]
rc, (even ν > 0),(

ν2 − 1
)

rc, (odd ν).

(30)

Equations (28)–(30) contain the expected asymptotic value of
the energy for large transverse pseudo-momentum,

E =
4me

mp
mβ − 4β

k⊥
+

k2
z

2M
, (k⊥ → ∞), (31)

where the first term on the right-hand side is a CM correction
to the total energy, and the second term represents the Coulomb
energy (−e2/rc) with the electron located on the magnetic well
(i.e., to distance rc from the proton). On the other hand, Eq. (28)
converges to the expected result corresponding to low transverse
motions

E =
4me

mp
mβ + E∞ +

k2
z

2M
≈ E +

k2
z

2M
, (k⊥ → 0). (32)

In practice, following Potekhin et al. (2014), the transition region
k⊥ ≈Kc between centered and decentered states is identified by
the intersection of curves given by Eqs. (21) and (28).

Figure 4 shows with solid lines the energies of some (ν,m)
states (the most tightly bound ones and a few others) as a
function of the transverse pseudo-momentum and for a strong
field (β= 500). For low transverse motions, values grow quadrat-
ically with k⊥ according to the perturbative method (Eq. (21)).
Because effective masses M⊥ are higher than M, the curves
remain below the values obtained when the CM effects are
ignored (dotted lines). At k⊥ larger than some critical value Kc
(≈163, 111 and 80 au for the lowest states with ν= 0 and m = 0,
−1, −2, respectively), states become decentered and the ener-
gies grow more slowly, according to Eq. (28). The asymptotic
value reached by each state at high transverse motions depends
exclusively on m. States with m < 0 rise above the ionization
threshold at sufficiently high tranverse motions. In particular, the
state (2,−1) is completely embedded in the continuous spectrum
on the whole k⊥ domain due to CM effects. In the right extreme
of the figure, the curves converge to the approximation given
by Eq. (31) (dot-dashed lines), where the electron is expected to
be located around the magnetic well to a distance rc from the
proton.

It was suggested that general properties about the formation
of decentered states remain valid at all field intensities (Vincke
et al. 1992; Baye et al. 1992). Figure 5 explores the results on the
low magnetic field domain, with the application of the present
calculations to the case β= 0.1. Two main observations of Vincke
et al. (1992) about the extrapolated properties of decentered
states at low fields can been seen in this figure. First, centered
states show low sensitivity to the coupling between internal and
global motions. In this branch of the spectrum, the energy values
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Fig. 4. Particle movement effects on bound state energies. Solid lines
represent energies (without kinetic contribution from motion along the
field) of magnetized atoms for a few states (ν,m) as a function of the
transverse pseudo-momentum, at β= 500 (B = 2.35× 1012 G). Results
without finite-velocity effects are indicated by dotted lines. Approxima-
tions based on Eqs. (21), (28), and (31) are displayed as short-dashed,
long-dashed [only for (0, 0), (1, 0) and (2,−1) states], and dot-dashed
lines, respectively.

Fig. 5. As in Fig. 4, but for β= 0.1 (B = 4.70× 108 G). Long-dashed
lines are not shown since they coincide with the dotted lines.

(solid lines) are very similar to standard calculations without CM
corrections (dotted lines) because M⊥ ≈M. Second, decentered
states become weakly bound, and quickly converge to a unique
curve coincident with the approximation Eq. (31); i.e., when k⊥
exceeds a critical value, states become abruptly decentered with
the electron around the magnetic well.

5. Ionization equilibrium

The condition for the ionization equilibrium of a gas of magne-
tized atomic hydrogen (H↔ H+ + e−) can be written in the usual
form based on the chemical potentials µi of the involved species,

µH = µp + µe. (33)

The chemical potential expressions adopted in the present work
for electrons, protons, and atoms are given below.

Electrons: the energy of a free electron in the field is com-
posed by the Landau levels (including spin-field coupling with
giromagnetic ratio ge = 2) plus the kinetic contribution from the
motion parallel to the field,

E = ~ωe j +
p2

z

2me
, j = 0, 1, 2, . . . . (34)

The spin degeneracy is one (σz =−1) for the ground Landau
level, and two (σz =±1) for excited levels. These energies have a
multiplicity of one in j = 0 and two otherwise. From Fermi statis-
tics it follows that the electron density in the gas is (Potekhin
et al. 1999)

ne =
~ωe√
πkBTλ3

e

I−1/2

(
µe

kBT

)
+ 2

∞∑
j=1

I−1/2

(
µe

kBT
− ~ωe j

kBT

) , (35)

with kB the Boltzmann constant, T the gas temperature, µe
the electron chemical potential, λe = ~

√
2π/(kBTme) the elec-

tron thermal wavelength, and Is(x) the Fermi integral of order s.
In the classical limit (low density or high temperature, so that
−βµe� 1, I−1/2(x) ≈ √πex), Eq. (35) reduces to the form given
by Gnedin et al. (1974). In this case the electron chemical
potential is given by

µe

kBT
= ln

(
neλ

3
e

2

)
+ ln

[(
2kBT
~ωe

)
tanh

(
~ωe

2kBT

)]
. (36)

The last term on the right-hand side of Eq. (36) represents
the chemical potential excess (with respect to the ideal gas
contribution) due to the electron interaction with the magnetic
field,

µex
e

kBT
= ln

[
tan h (η)

η

]
, (37)

which depends on the parameter defined by

η ≡ ~ωe

2kBT
=

β

kBT/(2EH)
. (38)

The asymptotic behaviors of µex
e are

µex
e

kBT
=

−η2/3 + O(η4), (η � 1),

− ln(η), (η� 1).
(39)

Protons: the energy of a proton in the field is given by

E = ~ωp j +
p2

z

2mp
, j = 0, 1, 2, . . . . (40)

with ωp = (me/mp)ωe. The zero-point and spin-field interaction
energies of protons are omitted in Eq. (40) because they do not
affect the chemical equilibrium. Classical statistics yields

µp

kBT
= ln

(
npλ

3
p

)
+ ln

1 − exp
(
−~ωp/kBT

)
~ωp/kBT

 , (41)
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where λp = ~
√

2π/(kBTmp) is the proton thermal wavelength,
and np the number density of protons. The chemical potential
excess of protons is given by

µex
p

kBT
= ln

[
1 − e−qη

qη

]
, (42)

with q ≡ 2me/mp ≈ 0.00108923, and the limits

µex
p

kBT
=

{−qη/2 + O(η2), (η � 1),
6.82228 − ln(η), (η� 1).

(43)

Atoms: the energy spectrum of bound states of atoms have
been detailed in previous section. Energies of centered and
decentered states may be written in the general form

E = Eκ(k⊥) +
k2

z

2M
, (44)

where κ is the set of quantum numbers of a bound state, i.e.,
κ= {n, l,m,ms} at low field and κ= {N, ν,m,ms} at strong field,
both connected by the relationships (16)–(19). In addition, the
quantity Eκ(k⊥) in (44) is straightforwardly derived from either
Eq. (21) or (28), taking their minimum value.

The chemical potential of magnetized atoms may be written
in the usual form,

µH = kBT ln
nHλ

3
H

ZH

 , (45)

with λH = ~
√

2π/(kBT M) ≈ λp, nH the number density of atoms,
and ZH a partition function which contains non-ideal effects and
the coupling of internal and transverse kinetic energies,

ZH =
∑
κ

1
MkBT

∫
wκ(k⊥)e−Eκ(k⊥)/(kBT )k⊥dk⊥, (46)

wκ(k⊥) being the so-called occupational probability of the state
(κ, k⊥). Equations (45) and (46) are derived in the framework of
the Helmholtz free-energy method (Potekhin et al. 1999). This
method is valid at a moderately low-density regime, usually ρ <
10−2 g cm−3 in field-free conditions (Hummer & Mihalas 1988;
Saumon & Chabrier 1991), although the well-known reduction
of effective sizes of atoms due to the magnetic field may push
this limit to a higher value. At low temperatures, when most
atoms have k⊥�Kc, the partition function reduces to (Pavlov
& Meszaros 1993)

ZH =
∑
κ

M⊥
M

wκe−Eκ/(kBT ), (47)

where now Eκ is the energy of the rest atom. Clearly, ZH
converges to a standard internal partition function when the
magnetic field is switch off (M⊥ → M).

A precise account of particle interactions in the evalua-
tion of species populations at equilibrium, demands the use of
quantum-mechanics calculations of collective energies for a ref-
erence atom and its nearest neighbor particles, all them under
the action of a magnetic field. To the best knowledge of the
authors, these calculations are not available. Since a study of
particle interaction effects on the chemical equilibrium is beyond
the scope of the present paper, we adopt here a simple scheme
(Hummer & Mihalas 1988; Lai 2001), which is typically used
in model atmospheres of white dwarf stars (e.g., Bergeron et al.

1991; Rohrmann et al. 2002)1. In this formalism, the occupation
probability is given by a product of two contributions

wκ(k⊥) = w(n)
κ ×w(c)

κ , (48)

which express a reduction of the phase space available for the
state κ as a consequence of statistically independent perturba-
tions of the atom due to neutral (w(n)

κ ) and charged (w(c)
κ ) particles.

The neutral contribution is written as

w(n)
κ (k⊥) = exp [−nHvκ(k⊥)] , (49)

where vκ(k⊥) is the effective volume of the atom in the state
(κ, k⊥), and it is assumed that bound particles different to atoms
(molecules, particle chains, negative ions) are not present in the
gas. Equation (49) results from changes in the gas entropy due to
a reduction of the available volume for the atom due to overlap-
ping of electron configurations in the system. On the other hand,
for the evaluation of w(c)

κ we use the results of Nayfonov et al.
(1999). This term can be interpreted as a lowering of the con-
tinuum energy level yielded by electric microfield fluctuations
originated from neighboring charged particles.

High excited states usually have large atomic size and are
very weakly bound, so that Eq. (48) gives a low occupation prob-
ability for them. Moreover, wκ assures the convergence of the
partition function in two ways, yielding a finite number of
bound states effectively occupied and an upper value for the
allowed values of the pseudo-momentum. Because the limit of
atomic sizes (d) allowed in a gas with mass density ρ (roughly
πd3/6 = M/ρ), there is a maximum value of pseudo-momentum
for decentered states (d >∼ rc)

ktop
⊥ <∼ 2β

aB

(
6M
πρ

)1/3

≈ 5.568
β

ρ[c.g.s.]1/3 au (50)

Accordingly, integration on Eq. (46) is performed with Gaussian
quadrature in the range 0 ≤ k⊥ ≤ 10ktop

⊥ to ensure an appropriate
evaluation of ZH.

5.1. Effective atomic sizes

The electron cloud (mean probability distribution) in a non-
moving atom changes from spherical symmetry at β� 1 to
cylindrical at β� 1. In the zero-field limit, the effective radius
of a state κ= (n, l,m) is

rnl =
aB

2

[
3n2 − l(l + 1)

]
, (51)

with aB the Bohr radius. On the other hand, at very intense
fields the root mean square of the transversal radius of states
κ = (N, ν,m) tends to the Landau state value,

d⊥ = aL

√
2nr + |m| + 1 = aB

√
|m| + 1
β

, (52)

where aL = aB/
√
β is the Larmor radius and the last expression

in Eq. (52) corresponds to bound states (nr = 0).
An analysis of the spatial probability distribution of the elec-

tron for a number of eigenenergy states using data from Ruder
et al. (1994) and Schimeczek & Wunner (2014), let us find

1 For a detailed treatment in neutron stars conditions see Potekhin et al.
(1999).
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Table 2. Some values of coefficients in Eq. (53).

State b⊥ bz cz

1s0 0.5 0.2 0.4
2s0 0.8 0.1 0.3
2p0 1.5 0.2 0.3
2p−1 2.5 1.2 0.35

approximated fits for the longitudinal size and transverse radius
of the wavefunctions

dz =
rnl

1 + bzβcz
, d⊥ =

rnl

1 + b⊥β1/2 , (53)

with bz, b⊥, and cz numerical parameters depending on the state
κ. Some values are given in Table 2. The effective volume of an
atom at rest or moving is approximated by

vκ(k⊥) =
π

6

(
2d2
⊥ + d2

z + r2
∗
)3/2

, (54)

where r∗ = r∗(k⊥) measures the mean electron-proton separation,
which is the distance between the mean positions of proton and
electron in an atom with transverse pseudo-momentum k⊥. In
particular, r∗ ≈ 0 for centered states and r∗ → rc (Eq. (27)) for
strongly decentered states. Analytical expressions can be used to
represent r∗ following a smooth transition between these limits.
However, for numerical calculations in relatively low densities
(ρ < 0.01 g cm−3) or moderate low field intensities (β <∼ 1), it is
possible to adopt

r∗ =

{0, (centered state),

rc, (decentered state),
(55)

At the mentioned conditions, we have verified that the occupa-
tion probability of decentered states deviates from unity mostly
when approximation Eq. (31) is valid.

5.2. Law of mass action

According to condition (33) and Eqs. (36), (41), and (45), the
equilibrium constant Q for the ionization process of hydrogen in
a magnetic field is given by

Q =
nH

nenp
=
λ3

e

2
f (η)Z∗HeE0/kBT , (56)

where

Z∗H = ZHe−E0/kBT , (57)

E0 (>0) is the ionization energy of magnetized atoms, and the
factor f (η) comes from the chemical potential excess of electron
and proton,

f (η) =
tanh(η)(1 − e−qη)

qη2 ; (58)

Z∗H represents the partition function defined with the zero-point
energy in the ground state (N = 0, ν= 0,m = 0,ms = − 1

2 ), and
therefore is a measure of atomic excitation degree. At low
or moderate fields and sufficiently low temperature (far away
of pressure ionization conditions), Z∗H takes a minimum value

Fig. 6. Values of the partition function Z∗H along isotherms for the two
densities indicated on the plot. Temperatures increase from bottom to
top (labeled for ρ= 10−8 g cm−3).

between one and two depending of the occupation fraction of
the spin-up state at (ν,m) = (0, 0).

Finally, the number density of a state κ reads

nκ =
nH

MkBTZH

∫
wκ(k⊥)e−Eκ(k⊥)/(kBT )k⊥dk⊥. (59)

6. Results

In this section, we show the calculations of the equilibrium ion-
ization of magnetized hydrogen carried out for temperatures and
densities present in MWD atmospheres. MWDs constitute about
10% of the total population of single white dwarfs. As their non-
magnetic analogs, they have thin non-degenerate atmospheres
and are mostly composed of hydrogen. Several hundred MWDs
are currently known (Kepler et al. 2014). They have effective
temperatures Teff ≈ 5000–80 000 K and gravity surfaces around
log g ≈ 8, where the gas density in their atmospheres roughly
ranges from 10−12 to 10−3 g cm−3.

In Fig. 6 the run of the partition function versus the magnetic
field intensity is shown for several temperatures and densi-
ties. Curves at T = 5000 K correspond to conditions where the
electronic excitations are neglegible in the zero-field limit. For
this temperature, the partition function decreases to unity at
log β <∼ −1.5 (B <∼ 108 G) as the energy of the spin-up state
in the level n = 1 shifts toward the continuum. At larger fields,
Z∗H slowly increases due to contributions of tightly bound states
(ν= 0, m =−1, −2, . . . ) coming from high energies (see Fig. 3).
Electronic excitations take place for higher temperatures. In par-
ticular, isotherms with T ≥ 30 000 K and ρ= 10−8 g cm−3 (solid
lines in the figure) show a strong increase in Z∗H at intermedi-
ate field values due to contributions from decentered states. As
the field rises, the partition function curves finally drop to mini-
mum values (similar to the low temperature results) because
large energy differences between decentered states and the
tightly bound state (v,m) = (0, 0), which grow gradually with β.
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Fig. 7. Concentration of atoms along isotherms for two densities. Tem-
peratures are indicated on the plot for the case ρ= 10−8 g cm−3. The
same T values correspond to ρ= 10−4 g cm−3, decreasing from bottom
to top.

Furthermore, the partition function takes lower values at high
densities, as can be seen for ρ= 10−4 g cm−3 (dotted lines in
Fig. 6). This is caused by decreased occupation probabilities of
excited states, especially decentered states, which are destroyed
due to their large atomic sizes.

Figure 7 shows the neutral atom fraction, xH = nH/(nH + np),
derived from the equilibrium condition (56) and the barionic
conservation equation assumed in the present work (ρ/M = nH +

np). Magnetic effects on the equilibrium constant coming from
free electrons and protons are represented by the factor f (η),
which decreases monotonically from one to zero as the field
intensity grows. Therefore, f (η) favors the gas ionization. How-
ever its effect is usually countered by other contributions to Q,
particularly by Z∗H at moderate fields and by the Boltzmann fac-
tor (containing the ionization energy E0) at intense fields. In fact,
as the field strength is raised over β ≈ 0.01, the Boltzmann factor
strongly increases (through the ionization energy) and ultimately
overcomes the equilibrium constant. As a consequence, the gas
tends to a full recombination at high magnetic fields. The abun-
dance of atoms grows as the density increases to ρ ≈ 10−4 g cm−3

(dotted lines in Fig. 7), while the ground state and other tightly
bound states remain unperturbed (occupation probability close
to unity).

Various effects of the magnetic field on the gas in the con-
ditions of atmospheres of MWDs may be explored. On the one
hand, Fig. 8 illustrates on a plane of temperature versus magnetic
strength (in logarithmic scales) the mean values determined for
a sample of MWDs (Külebi et al. 2009), representing physical
conditions in their atmospheres. The lines show percentages of
the spin-down state contribution in the partition function. It can
be clearly seen in the figure that spin-up states are removed of
the partition function for log β > −3 just over the bulk of strong
MWDs. This result is largely independent of the density in the
regime studied.

Fig. 8. Contributions (in percent) of spin-down states to the parti-
tion function Z∗H. Results are shown for two densities, ρ= 10−8 and
10−12 g cm−3. No sensitive dependence on the density is appreci-
ate. Circles represent the mean conditions (effective temperature vs.
field intensity) found in the atmospheres of a sample of known MWDs
(Külebi et al. 2009).

Fig. 9. Same as Fig. 8, but for the fraction (in percent) of partition func-
tion Z∗H coming from decentered states. Values are indicated on the plot
for ρ= 10−8 g cm−3.

On the other hand, Fig. 9 shows the importance of decen-
tered states relative to centered ones on the partition function
Z∗H. Decentered states become dominant at high temperatures
and intermediate values of the magnetic field, with peaks around
β≈ 0.1, just where the strongest MWDs are located. The contri-
bution of decentered states extends to lower temperatures and a
wide range of field values for low densities (ρ= 10−12 g cm−3 in
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Fig. 10. Same as Fig. 8, but for concentrations of neutral atoms in the
gas. Values of xH are indicated on the plot for ρ = 10−8 g cm−3.

the figure). According to these results, decentered states could be
present in the outer layers of hot MWDs (Teff >∼ 20 000 K) with
megagauss fields and in deep atmospheric layers of the strongest
magnetic objects. Present calculations are based on extrapola-
tions toward low magnetic fields of results of CM effects derived
at higher fields, following the expected values by Vincke et al.
(1992) and Baye et al. (1992). It is clear that valuable insight
can be gained if new accurate studies are aimed to analyze
the coupling between the internal energy of atoms and their
transverse movements at moderate and weak magnetic fields.
These studies will be useful to search and identify possible
spectroscopic signatures of decentered states in the spectrum
of MWDs.

Figure 10 displays the predicted curves of the iso-abundance
of atoms in the usual diagram of temperature against field inten-
sity. It is immediately clear that the abundance of neutral atoms
does not stay constant along the sample of known MWDs.
The onset of magnetic recombination occurs approximately at
log β=−2 (B≈ 5× 107 G), decreasing the gas ionization for
the strongest MWDs observed. The electronic recombination
increases with the gas density in the whole density regime of
these atmospheres, since the lowest energy states remain barely
perturbed by particle neighbors at ρ <∼ 10−3 g cm−3. It is worth
noting that changes in the ionization equilibrium can affect the
structure of an atmosphere, specially through its influence on the
radiative opacities.

7. Final remarks

We presented a general method for calculating the partition func-
tion of hydrogen atoms in a wide range of field strengths. The
evaluations rely on fits of accurate energy evaluations of atoms
at rest, complemented by CM effects on internal atomic struc-
ture, particularly those that arise from thermal motions across
the magnetic field. The work benefited from mathematical rela-
tions that express the correspondence between sets of quantum

numbers at the limits of zero-field and very strong fields. These
relations are given here for the first time.

To our knowledge, this is also the first time that a detailed
treatment of the atomic hydrogen abundance under ionization
process has been undertaken for magnetic fields from zero to
very high strengths. In particular, we extended the analysis of
ionization balance of hydrogen to include the regime of mod-
erate magnetic fields (β <∼ 1, B <∼ 109 G). This compresses the
realm of magnetic white dwarfs, where the effects of the field
on the chemical equilibrium are not included in current atmo-
sphere models. We found, however, that these effects cannot be
ignored at least for the strongest MWDs. Although these fields
are much lower than those achieved in neutron stars, they are
sufficiently strong to modify the ionization equilibrium. Future
work will be devoted to the formation of molecules and other
species (which are also altered by the magnetic field) in order
to obtain reliable occupation numbers of atomic states and free
particles.

It was shown here that decentered states could be present
in the surface of strong MWDs, being the dominant contribu-
tion of the partition function in some cases (hot and strongly
magnetic atmospheres). If this phenomenon occurs, it can have
effects on the energy distribution emitted by these stars. A defini-
tive analysis of the decentered state’s role on MWDs requires
further investigation on the formation of these states at weak
magnetic fields and, in general, on the relationship between the
movement of atoms across the field and their internal energy
spectrum.
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Appendix A: Analytical fits

We show analytic fits to the energy data of Schimeczek &
Wunner (2014) for bound states of hydrogen atoms at rest in the
approximation of infinite nuclear mass. Results are expressed
in logarithmic scales. In this appendix we adopt the notation
(log ≡ log10)

x = log β, (A.1)

ε = log(−E∞/EH), (A.2)

εn = log(−En/EH) = −2 log(n), (A.3)

εν = −2 log
[
Int

(
ν + 1

2

)]
. (A.4)

Fits were performed in the range −4 ≤ log β ≤ 3, although they
are well behaved in the full non-relativistic domain (log β <
4)2. In particular, they converge to the right limits at β= 0
and log β� 1. Fitting equations are organized by the quantum
number ν.

A.1. States ν= 0

Energies of tighly bound states (ν= 0, m = 0,−1,−2, . . . ) are
represented by

ε =



1 +
εn − 1

1 + a1 exp{a2[x − xa − 0.1(x − xa)2]} , (x < xa)

εa + (εb − εa)
(

x − xa

xb − xa

)1.22

, (xa < x < xb)

εb + (εc − εb)
(

x − xb

3 − xb

)0.92

, (xb < x)

(A.5)

with

a1 =
εn − εa

εa − 1
, (A.6)

a2 = −ε′a
(1 + a1)2

(εn − 1)a1
. (A.7)

The m-dependence of parameters (xa, xb, εa, εb, εc, ε′a) is very
well adjusted by

f = b0 + b1[log(1 + |m|)]b2 . (A.8)

The values of coefficients b j are listed in Table A.1.
Equation (A.5) fits the results of Schimeczek & Wunner (2014)
with relative error within a few percentage points (see Fig. 1).

A.2. States ν= 1

Energies of states with ν= 1 are given by a global approximation

ε = εν +
εn − εν

1 + a1 exp{a2(x − xb)[1 − δ(x − xb)]} , (A.9)

a1 =
εn − εb

εb − εν , (A.10)

2 It is worth noting that relativity effects remain negligible even at
much larger values of β. An accurate numerical solution shows that rel-
ativistic corrections to binding energies do not exceed 0.01EH as long
as log β < 6 (Nakashima & Nakatsuji 2010).

Table A.1. Values of coefficients of quantities calculated with
Eq. (A.8).

Quantity b0 b1 b2

(ν= 0)

xa −8.51584(−1) −2.90213 1.01555
xb +7.86224(−1) −2.28335 9.37692(−1)
εa +9.50091(−2) −1.97412 1.00523
εb +5.73409(−1) −1.54066 9.77581(−1)
εc +1.26974 −3.78015(−1) 9.10852(−1)
ε′a +1.70505(−1) +5.16550(−2) 6.92991(−1)

(ν= 1)

xb −6.66302(−1) −1.50237 1.17845
εb −3.61037(−1) −9.80935(−1) 1.22078
ε′b +2.13743(−1) +2.23000(−1) 8.82388(−1)

(ν= 2)

xb +5.28777(−2) −2.38204 9.60364(−1)
εb −4.52254(−1) −1.00281 1.23880
ε′b +1.19340(−1) +2.96234(−1) 1.03199

(ν= 3)

xb −7.10984(−1) −1.78597 1.16795
εb −7.90709(−1) −7.84790(−1) 1.36181
ε′b +1.17903(−1) +2.60062(−1) 1.11196

Notes. The numbers in parentheses indicate powers of ten.

a2 = −ε′b
(1 + a1)2

(εn − 1)a1
, (A.11)

with n = |m| + 2, δ= 0.26 except at |m|= 1, 2, 3 (where δ= 0.20,
0.22, 0.24, respectively) and x > xb (δ= 0). Quantities xb, εb,
and ε′b are calculated with help of Eq. (A.8) and Table A.1. The
performance of fits at ν= 1 is shown in Fig. 2.

A.3. States ν = 2

Energies of states corresponding to ν= 2 are represented by a
piecewise approximation. For x ≤ xb, we use Eq. (A.9) with
n = |m| + 2, δ= 0.2, supplemented by Eq. (A.8) with the data in
Table A.1. For x > xb, ε is given by

ε = εb +
2
π

(εb − εn=1) tan−1
[
πε′b(x − xb)
2(εb − εn=1)

[1 + ξ(x − xb)],
]
,

(A.12)

with

ξ = −0.0125 + 0.030456[log(1 + m∗)]1.134 (A.13)

and m∗ = min(|m|, 4).

A.4. States ν= 3

We adopt a piecewise approximation for energies at ν= 3. As
before, Eq. (A.9) is applied for x ≤ xb, with n = |m|+ 3 and δ= 0,
0.08, 0.13, 0.15, 0.165, and 0.17 for |m|= 0, 1, 2, 3, 4, 5, and ≥ 6,
respectively. Parameters are represented by Eq. (A.8) with the
data in Table A.1. For x > xb, the following expression is used:

ε = εb +
(εν − εb)(x − xb)

{[(εν − εb)/ε′b]q + (x − xb)q}1/q , (A.14)

with q = 2.5.
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A.5. States ν ≥4

The energy of state with ν ≥ 4 is calculated as follows:

ε =



εa +
(εa − εn)(x − xa)[
c2

a + (x − xa)2]1/2 , (x ≤ xa)

εa + (ε∗ − εa)
[
(εb − ε∗)ζ + (εb − εa)(x − x∗)2

c∗ + (εb − εa)2(x − x∗)2

]
, (xa, xb)

εb +
(εν − εb)(x − xb)[
c2

b + (x − xb)2
]1/2 , (xb ≤ x)

(A.15)

with

ca =
εa − εn

ya
, c∗ = (ε∗ − εa)(εb − ε∗)ζ2, cb =

εν − εb

yb
, (A.16)

ζ = xb − xa, ε∗ =
εb − εa

2
, x∗ =

xa(ε∗ − εa) + xb(εb − ε∗)
εb − εa

.

(A.17)

In addition, xa, xb, εa, εb, ya, yb are fitted by Eq. (A.8). In
turn, parameters b j ( j = 0, 1, 2) in this equation are calculated as
follows:

b0[xa] =

−1.1τ − 1.154902 − 2.087178∆1.082710, (even ν)

−τ − 1.18 − 2.312886∆0.7737455, (odd ν)
(A.18)

b0[xb] =

{−0.522879, (even ν)

−1.154902, (odd ν)
(A.19)

b0[εa] =

−0.68 − 1.176143∆0.8685913, (even ν)

−0.9558838 − 1.069160∆0.8065575, (odd ν)
(A.20)

b0[εb] =

−0.8867395 − 1.744739∆1.095173, (even ν)

−1.12 − 1.707775∆1.119483, (odd ν)
(A.21)

b0[ya] =


0.02 − 0.034τ +

0.2
ν1.1 + 3

, (even ν)

0.013 − 0.034τ +
0.2

ν0.74 + 6
, (odd ν)

(A.22)

b0[yb] =

0.3780437ν−0.9572978, (even ν)

0.3480917ν−0.9508739, (odd ν)
(A.23)

b1[xa] =

{−0.01890508, (even ν)

0.1044253, (odd ν)
(A.24)

b1[xb] =

−0.95 − 1.1ν−0.4, (even ν)

−0.1 − 2ν−0.4, (odd ν)
(A.25)

b1[εa] =

−0.2 − 1.1ν−0.4, (even ν)

−0.2 − 0.9ν−0.4, (odd ν)
(A.26)

b1[εb] =

−2.487767ν−0.9652760, (even ν)

−2.713701ν−1.000845, (odd ν)
(A.27)

b1[ya] =

{0.1438085, (even ν)

0.1457385, (odd ν)
(A.28)

b1[yb] =

0.8265754ν−0.9347425, (even ν)

1.0286911ν−0.9818393, (odd ν)
(A.29)

b2[xa] =

{0.5904491, (even ν)

0.7094884, (odd ν)
(A.30)

b2[xb] =

0.85 + 1.1ν−0.4, (even ν)

0.90 + 1.5ν−0.4, (odd ν)
(A.31)

b2[εa] =

0.6 + 0.8∆0.4, (even ν)

0.7 + 0.73∆0.4, (odd ν)
(A.32)

b2[εb] =

{1.209001, (even ν)

1.251972, (odd ν)
(A.33)

b2[ya] =

{1.596943, (even ν)

1.603306, (odd ν)
(A.34)

b2[yb] =

{1.114659, (even ν)

1.181565, (odd ν)
(A.35)

where

∆ =


log(ν) − log(4), (even ν)

log(ν) − log(5), (odd ν)
(A.36)

τ = t − Int[t] (A.37)

and

t = 2

√[
1
2

(
ν +

1
2

)]
± 2, (A.38)

with sign + (−) for even (odd) ν.
In order to avoid crossing levels, when current expressions

give xa > xb the corresponding mean values (xa + xb)/2 and (εa +
εb)/2 are assigned for xa = xb and εa = εb, respectively.

A.6. Effective mass of transverse motions

The effective mass given by Eqs. (22) and (23) can be approxi-
mated by

M⊥ = M (1 + bβc) . (A.39)

With energy values calculated by Schimeczek & Wunner (2014),
we found for m = 0

b =

1.78× 10−3(1 + ν)2.58, (even ν),

10−3(2 + ν)3, (odd ν).
(A.40)

c =

{1 + 0.27 log(ν + 0.4), (even ν),

1.02 + 0.3 log(ν + 0.4), (odd ν).
(A.41)
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