EXTENSION OF THE BEST CONSTANT APPROXIMATION
OPERATOR IN ORLICZ SPACES

SERGIO FAVIER! AND ROSA LORENZO!

ABSTRACT. In this paper we deal with the best p-approximation operator by
constants extended from an Orlicz space L¥(2) to the space vt (), where
1t denotes the right derivative of the function . We obtain pointwise con-
vergence for a suitable class of functions. Also we consider a maximal operator
which allows as to get modular convergence for a specific class of Orlicz spaces.

1. INTRODUCTION AND NOTATIONS

We consider S, the set of all non decreasing functions # : [0,00) — [0, 00) with
¥(0) =0 and ¥(x) — 00 as x — oo, ¥(x) — 0as x — 0, and ¢¥(x) > 0if x > 0.

A function ¢ € S satisfies the A, condition if there exists a constant k& > 0 such
that

P(2z) < k()

for all x > 0. We write ¢ € Ay in this case.

Also we say that a function ¢ € S satisfies the V5 condition, and denote ¢ € Vo,
if there exists a constant o > 1 such that

(1) U(r) < govloz),

for all z > 0.

Let ©Q be a bounded and Lebesgue measurable set in R™ and, for a function
¥ € SN Ay, we define L¥(§2) as the class of all Lebesgue measurable functions f,
defined on Q, such that [, ¢(|f(z)|)dz < oo, where we write dx for the Lebesgue
measure in R™.

We also consider ® for the class of N—functions ¢, i.e. @(z) = [ ¢(t)dt for

some ¢ € S. Note that if ¢ € &, then @ — 00, as & — 00, and the space L¥(Q)
defined above, is the classical Orlicz space. We denote by v~ and ¢ for the left
and right derivatives of ¢ respectively, with ¢~ (0) = 0.

For ¢ € ®, we have
(1:2) S0t () < ol@) <avt (@) < p(2a),

for all z > 0, and then it follows a similar inequality considering ¥~ instead of ¥,

(1.3) 207 (3) < ele) <zv™ (@) < 920),

for all z > 0.
We point out that the function ¢ € ® satisfies the As condition if and only if
T or ¢~ satisfies the A, condition.
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2 BEST APPROXIMATION OPERATOR

Also given a function ¢ € ® that satisfies the Ay condition and since p(z) =
Jo ¥ (t)dt = [T (t)dt, it is easy to see that

(1.4) V() S YT () < kg (),
for all z > 0 and since (x + )y (z +y) < ©(2(x +y)), it holds

(15) S @)+t () <P +y) <KW @) + 9 ),

for all x,y > 0 and where the constant k refers to the one appearing in the A,
condition on . We also point out that inequality (1.5) holds for 1~ instead of ¥+.
Given ¢ € ® N Ay we use (1.2) to see that L?(€2) € L¥" (Q), for any Lebesgue
measurable and bounded set €2. Further, from (1.4) we have L¥" (Q) = L¥™ ().
We say that a real number c is a best p-approximation of f € L?(Q) if and only
if it is satisfied

(16) | el15@) ez = it [ o(156@) = .

For f € L¥(Q), we define p,(f)(Q) = py(f) as the set of all real constants ¢
that satisfy (1.6). The mapping p, : L¥ — 2% is called the best approximation
operator.

In [1], Landers and Rogge have made a significant development of the best
approximation theory in Orlicz spaces. In that paper the authors considered a
o—lattice of functions as the approximation class, which includes the constant
functions considered in this manuscript. The same authors deal, in [2] , with an
extension for the best approximation operator originally defined in LP(2). Lately
the extension of this operator for constant functions, as the approximation class,
was treated in [3] where the pointwise convergence, as € goes to 0, of the best
approximation f.(x), was obtained when Q is the ball centered in = and radius
g, Bc(z). In this paper it was also considered a maximal function, related with
the best approximation operator, but different to the one considered in [4], which
allows us to get norm convergence for these extended best approximation, when e
goes to 0. In [5] and [6] it was considered the extension of the best approximation
where the approximation class is the algebraic polynomials and for some suitable
class of smooth functions. For Orlicz spaces this extension of the best approxima-
tion operator and its relation with other classical operators in harmonic analysis are
considered in [1], [3], [7] and [8]. We point out also that the conditional expectation
is a known example of a best approximation operator originally defined in L?(Q),
extended to L(Q).

Until now, in all cases, the extension of the best approximation operator in an
Orlicz space L?(2), was treated with the hypothesis of differentiability of ¢, which
plays an important role to extend the best approximation operator. In our case we
deal with a non necessarily smooth convex function ¢ and then the right and left
derivatives ¥~ and T are involved.

The paper is organized in the following way. In Section 2, we characterize the
best p-approximations and extend the best approximation operator by constants
from the Orlicz space L¥ to the wider space L¥". We also obtain some estimates on
the extended operator which allow us to get pointwise convergence and strong in-
equalities. These results generalize those, obtained in [3], for the extended operator
defined in L¥', where ¢’ denoted the derivative function of .

The purpose of Section 3 is to prove a modular convergence result

(L.7) 0(1f(y) = fe(y)))dy — 0,

R
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as € — 0, for a suitable class of function € function. For this aim we introduce the
maximal operator M, f related with the best ¢-approximation by constants for

N
fe L;Z;C (R™). We also get a sufficient condition which assures strong inequalities

of the type

(19) oM (e)da < C [ 0(Clr(a))aa.

Rn

where f € L;@: (R™).

We point out that the authors in [7] obtain necessary and sufficient conditions
that ensure inequalities like (1.8).

Finally, we compare the maximal operator M,|f| with the operator of Hardy-

Littlewood My f.

2. CHARACTERIZATION OF THE BEST APPROXIMATION OPERATOR

We start with a characterization for the best approximation constant in p, (f)(£2).
First, observe that given ¢ € ®, the left and right derivatives ¢~ and ¢+ are mea-
surable functions.

Lemma 2.1. Let o € N Ay and let f € LY(Q). Then, c € u,(f)(Q) if and only

if
“(If = c)d (|f - c)d
2.1) / s / IR R
and
- —c)d + — c)dzx.
(22) / s / T el
Proof. Set

F(t) = [ ollf - thde.

The function F is convex, then it has a minimum at ¢ € R if and only if 0 < F'*(c)
and F~(c) < 0, where we set '~ and F'* for the right and left derivatives functions
of F respectively.

Since
0< FH(e) = / S — ) — / W (If - el)de,
Qn{f<c} Qn{f>c}

and we get inequality (2.1).
It remains to prove inequality (2.2).

As
0> F (= [ wf-dde— [ wH(f e
an{f<c} an{fze}
we get,
[ wlr—ddes [ wt(f - e
an{f<c} an{fze}
Therefore, the proof is completed. O

Theorem 2.2. Let ¢ € ® N Ay and let f € LP(). Then statement (1) or (2) is
equivalent to ¢ € py(f)(Q).



4 BEST APPROXIMATION OPERATOR
(1) (a)
/W(lf — c|)dx S/ (W= (f =) +o7(1f = cl))da.
Q Qn{f<c}
(b)
Jorr—ehd< [ @ (lr e+ wt(f - e
Q Qn{f>c}
(2) (a) For any a > ¢, we have
Jortr=dos [ @ (e +ut(1f ~ e
Q Qn{f<a}
(b) For any o < ¢, we have

Jortr=dios [ @ e+ ot (1f - e
Q Qn{f>a}

Proof. Let’s first prove that inequalities (2.1) and (2.2) imply (1)(a) and (1)(b).
Since

[or=chdo= [ wir—ehda+ [ (i~
Q QN{f>c} Qn{f<c}

we consider (2.1) and we get
Jortr=chde< [ wt(s-chdes [ w(f -
Q an{f<c} an{f<e}
and (1)(a) follows. Now we also have
[ortr=cio= [ wr-chdes [ w(f -
) an{f<c} on{f>c}

and using (2.2) we get

/ W (If - cl)de </ s (7 —c\)dm+/ o (If - cl)de.
Q an{fzc} an{fzc}

Thus we have proved (1)(b).
Now we prove that inequalities (1)(a) and (1)(b) imply (2.1) and (2.2). Since

/Q YT e = /Q B (If = cl)dz — /Q R GRS

inequality (1)(a), implies
[ ez [ wt(r - e
Qn{f>c} Qn{f<c}

and we obtain (2.1).
Now since

/Qn{f<c} v (|f = ¢|)dx = /Qiﬁ_(|f—c|)dfc—/m{f2c}w_(f—c)dgc,
and by (1)(b), we get

/ B (If - el)de < / B f — el)dr,
an{f<c}

Qn{fzc}
which is (2.2).
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NOW We prove that inequalities (1) (a) and (1) (b) imply (2) (a) and (2) (b).
From (1)(a) and « > ¢ we have

- +(If = ¢))d “(If = el)d
/w (F ez [ i —edes [ e
and since {f < ¢} C {f < a}, we get (2)(a)

/ B (If - el)de < / S(f - el)de + B (1f - cl)da
Qn{f<a} Qn{f<a}
To prove (2)(b), let @ < ¢. From (1)(b) we have

[ =chaz< [ wt(if - cdat v (1f — ey,
an{f>c} an{f>c}
and since {f > ¢} C {f > a}, we get

/ B (If - el)dz < / $(f — cl)de + / b (f - el)da
Q QN{f>a} Qn{f>a}

Next we prove the statements (2)(a) and (2)(b) imply (2.1) and (2.2).
From (2)(a) with o = ¢+ L we get

/df(lf ~()dx </ b f —c\)d:c+/ B (1f - cl)de
Q Qn{f<ct+i} QN{f<c+i}

and the right hand of the inequality above can be written as

/ B(f - el)de + / GH(If — el)de
an{f<e) Qn{e<f<ct+}

i .
L R Ry AN U

Note that A, = {¢ < f < ¢+ %} is a decreasing sequence of sets such that
w(Ay) == fAn YT (|f — ¢|) < oo. Thus u(NCA,) = limy, 00 p(A,) = 0.
And then

/ W (If — e)dz </ b f —c\)dx+/ 6 (If - cl)de
Q an{s<c} an{s<e}

which is equivalent to (2.1).
Now, for @ = ¢ — % in (2)(b) we have

/w-<|f—c|>dx</ w+<\f—c\>dx+/ O (If — e)dz
Q Qn{f>c—1} Qn{f>c—11}

which can be written as

/ WH(If — el)da + / B (f - cl)de
Qn{f=c} QN{c— L <fLe}

- —c|)d - —c|)d
+ /Q I GRS /Q ety BT el

Now consider B, = {¢c— + < f < ¢}. This is a decreasing sequence of sets such
that pu(Bn) == [ ¥H(|f - c|) < oco. Then u(N°By,) = limy, 00 u(By) = 0.
Then we obtaln

/w-<\f—c\>dx</ w+<\f—c\>dx+/ b (If — c)dx
Q Qn{fzc} Qn{fzc}

which implies (2.2).
Then the proof is completed.
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We point out here that the same proof of Theorem 2.2 holds even for f € L¥" ().

Definition 2.3. Let ¢ € ® N Ag. We say that a constant c¢ is an extended best
approzimation of f, where f € " (Q), if it is a solution of the following two
inequalities

2.3 - —cldzx < + — c|)dzx.

(2.3) /Q A (ETIE /Q o T el
— _ + _

(2.4) / s / R GRS

For f € LY" (Q), we set pop+ (f)(Q) = pyp+ (f) as the set of all real constants c
that satisfy (2.3) and (2.4). The mapping fi,+ : L¥" — 2% is called the extended
best approximation operator.

Remark 2.4. The inequalities (2.3) and (2.4) in Definition 2.3 characterizes the
elements in p, (f)(€2) if the function f belongs to the space L¥(Q2), then p,(f)(Q) =
o (F)(Q), for f € L9(9).

In the next lemma, we extend the best approximation operator from space L?(§2)
to the space LY (Q).

Lemma 2.5. Let p € N Ag and let f € L‘Z’+(Q). Then, there exists a constant ¢
which is an extended best approximation of the function f.

Proof. To prove the existence of the best extended approximation of f, we will
demonstrate that the inequalities of the Definition 2.3 are verified.

Let f € L¥"(Q), and set f,, = min(max(f, —n),n), n € N. Since —n < f,, < n,
we have f, € L>(Q). Then, for each n € N, f,, € L?(2) and by Theorem 2.2 (1b),
there exists ¢, € py(f)(€2) such that

/ B (| — eal)de < / (1 — cal)dat
Q Qn{fn>cn}

/ W ([fa — cal)de.
Qﬁ{fn>cn}

We prove first that the sequence {¢,} is bounded.
Suppose that the sequence {¢,} is not bounded from above. Then there exists a
subsequence {c,, } such that c,, /oo as j — co. As {c,,} satisfies (2.5), we have

/ O ([, — ey )z < / O (fu, — cn, )zt
Q Qm{fnj >an}

/ U (fay — e, de.
Qﬂ{fnj 2571]' }

Since 1~ and %™ are non decreasing functions from (2.6) we have

/ 0 (lfo, — o) < / O (|fu, — al)dzt
T Oy Zen; }

(2.5)

(2.6)

(2.7)
/ G (| fo, — al)dz < / 6 (1, — al)da + / 6 f, — al)de,
ON{fu, Zen, } Q Q

for any a < ¢y, .
The function 1~ satisfies the As condition, then there exists a constant k > 0
such that

(2.8) O (|eny ) S kYT (Ifn; = ey ) + K7 (1 [)-
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From equations (2.7) and (2.8), we have

(2.9)
/Q 6 (len, Dz < K /Q O, — n ) + & /Q & (|, Ve

o L i
<k /Q O (|, — al)dz + & /Q G (|, — al)dz + & /Q 4 (1fo, .

Since limy, 00 fro = f ¥ | fnl < |max(f, —n)| < |f], from Equation (2.9) it follows
that

“(len Ndz <2k [ (| fn. — al)dz +k [ wF(|f])da.
/Qw <|c]\>w<2/9w (Ifn, — al)dz + /Qw (11])da

The function ¥+ satisfies the condition Ag, then there exists a constant k > 0 such
that ¥ (|fn, — af) < kOF(If]) + ko™ (o).

Then, [, ¥~ (|en,|)dz < C, for some constant C' > 0, which is a contradiction.

The proof that the sequence {¢,} is bounded from below follows similarly using
(1)(a) instead of (1)(b) in Theorem 2.2.

Then we may assume that lim, . ¢, = c¢. We will prove that the constant ¢
satisfies the inequalities (2.3) and (2.4) of the Definition 2.3.

Since ¢, € py(fn), from Lemma 2.1 we have

— _ + _
(2.10) /Q I R / G (1o — enl)de.

Qm{fngcn}
Now, since
O = ) Xqpsey S Hminf o ([fn = enl) X1, 50015

we use the Fatou’s Lemma to get

R e
(2.11) /Q o (T ) < imin / o Vel

n— oo

By (2.10) and (2.11), we get

/ o (If — e))de < liminf / G (o — cal)da
Qn{f>c} nreo QN{frn<en}

As |e,| < M, for some constant M > 0, from (1.5) we have
(I fn = enDX(pa<eny S R@T(F]) + 4T (M)).
Moreover

limsup (| fn = enl) X(g, ey SUTUF =) Xpp<erys

n—oo

for any integer j > 0. So, using the Fatou-Lebesgue’s Theorem we get

/ v (f - ¢)dz < limsup / G (fa = cal)de
Qn{f>c} QN{fn<en}

n— oo

< / WH(f — cl)dr,
on{f<c+1}

for any integer j > 0. Now, the integral on the right side of (2.12) can be written

(2.12)

as

/ G (If - e)dz = / S (If — cl)dx
Qn{f<e+3} Qn{f<e}

(2.13)
+ / WH(If — of)de.
Qn{e<f<et3}
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Now consider A; = {c¢ < f < c+ %} which is a decreasing sequence of sets such
that u(A;) = fAj YH(|f — c|)dz < oo. Thus p(N52,A;) = lim; o p1(A;) = 0. Then
from (2.12) and (2.13) we have
[ s —ddes [ wt(f -
Qn{f>c} QN{f<c}

which is inequality (2.3) of Definition 2.3.
To prove Inequality (2.4) of the Definition 2.3 we proceed as follows.
Since ¢, € py(fn), then from Lemma 2.1 (2.2) we have

ey [ i falde< [ (el
QN{fn<cn} QN{fn=cn}
Now, since
O = el) Xp<ey SUminf = (| = cnl) X <en)

and using the Fatou’s Lemma we have

“(If — ¢])dr < liminf (| fn — en])dx.
(2.15) /Q o TS e < limin /Q o el

n— oo

By (2.14) and (2.15), we get

/ v (If - )z < liminf/ W+ (| f — col)dz.
Qn{f<c} QN{fn=cn}

n— o0
Then
[ w1 o <timsup [ 6 (fo — cal)da.
Qn{f<c} n—00 JON{fn>cn}
Now, since

U fn = eal) Xqguzeny < @S] + 47 (M)),

for some M > 0 and
limsup ™ (|fn = cal)X(frzeny < UT(f — C|)X{fzc—§}7
n—oo

for any integer j > 0. Therefore, using Fatou-Lebesgue’s Theorem, we get

(2.16) /| T / G+ (IS — el

an{fze-1}

The integral on the right side of (2.16) can be written as

/ B (If — cl)dz = / G (f - el)da
QN{f=c—1 Qn{f>c}

(2.17) 3
+/Qm{c— YT(If = cl)da.

F<f<e}

Then, for B; = {c — % < f < ¢}, we have a decreasing sequence of sets such that
a(Bj) == fBj YH(|f —c|) dx < oo, then i(N32, Bj) = im0 fi(B;) = 0. Then from
(2.16) and (2.17) we have

[ wri-ddes [ w1 el
QN{f<c}

Qn{f>c}

Thus we get Inequality (2.4) of the Definition 2.3.



SERGIO FAVIER AND ROSA LORENZO 9

The following theorem provides some properties for the set of extended best

approximation g+ (f)(2) and its proof follows exactly the same way as Theorem
2.2.

Theorem 2.6. Let o € ® N Ay and let f € LY (). Then the statements (1) and
(2) are equivalent to c € py+ (f)(€).

(1)

a - —c|)dzx - —cC + —cC x.
<>/Qw (If - e)d S/m{fgc}(” (If — ) + o+ (f - c))d

- —c|)dx - —c + —cC xT.
(b)/gw (If = cl)d S/m{f%}(w (If =) +¥7(If —cl))d

(2) (a) For any o > ¢, we have

/w*<|f—c|>dx s/ (W (If = e) + &+ (| f — o).
Q Qn{f<a}

(b) For any o < ¢, we have

/ Y ([f = c)dz < / W= (f =) o™ (|f = c])da.
Q Qn{f>a}

Next we give a property for the set of extended best constant approximations.

Theorem 2.7. Let o € ® N Ay and let f € LY (Q). Then the set o+ (f) () is a
closed bounded interval.

Proof. Let f be a function in " (©2). We will see that if a constant ¢; satisfies
Inequality (2.3) of Definition 2.3, so does any constant ¢ > ¢;. Then

/ W (1f — ey < / o (If - e1l)de
QN{f>c} QN{f>c}

“(If —al)d (1 f — e Nd
S/Qm{f>cl}¢ (|f 01|) xg/ P (\f 01|) -

Qn{f<e1}

+ — cDdzx + —c|)dzx.

an{f<c}

Similarly if a constant ¢y satisfies Inequality (2.4) of Definition 2.3, so does any
constant ¢ < ¢o. In fact

/ w-<|f—c|>dxs/ b (If — cal)da
Qn{f<c}

Qn{f<ec}

“(If = e2])d (1 F — eolVd
<[ vlrmahls [ (e

+ _ + _
< /Q A / G(f - cl)de.

Qn{fzc}

Thus, g+ (f)(£2) is an interval.
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Now, we will see that this interval is bounded. For any a < ¢, where ¢ €
o+ (f)(€2), we have by (1)(b) of Theorem 2.6 and the constant k for the Ay condi-

tion on ¢,
/w (If - e dw+/w (1f1) )

/Q = (|el) d <
/Qn{f>c} (1f =el) +¥7(1f =) dm"‘/?/} (1£1) dx)

k(
(
([, @5 =ab s urs —alyde+ [ v=r) ae)
(

([, @70 e+ 0t 07 —alde s [ (1) dr).

Then i+ (f)(£2) has an upper bound since ¢~ (x) — 0o, as x — oo.
Similarly, given ¢ € juy+ (f)(Q), let any § > c. Then from (1)(a) of Theorem 2.6,

[ortr=dios [ @ (r=eh+u(f - cido
Q Qn{f<c}

IN

k

IN

k

IN

< / W (1 = BI) + v (| — BI))da
Qn{f<c}

g/ (W (1 = BI) + v (1 — BI))da
Qn{f<a}

Thus, we deduce that the set p,+(f)(€2) is bounded from below.

To prove that ju+(f)(Q2) is closed, let {c, }nenbe a sequence in i+ (f)(€2) such
that ¢,, — ¢ as n — co. We will prove that c satisfies inequalities (2.3) and (2.4) of
the Definition 2.3. Then, since

U (1F ) Xggoe < Bminf o (1f = eal) Xroe, ).

we get, from Fatou’s Lemma,

(2.18) / Y (|f —¢])dx < liminf/ V(| f — en|)dz
Qn{f>c} o Jan{f>en}
Now from (2.3) we get

[ s o < limut G (f — eal)da
QN{f>c}

nroo Jan{f<en}

Then, since 17 (0) = 0, we have

[ s e <timsuwp [ GH(f = eal)de
Qn{f>c} n—oo Jan{f<ecn}
:limsup/ V(| f — cnl)d.
n—oo JON{f<cn}

(1 fn = enl) Xgp<ep < R@T(S]) + 7 (M)),

for some M > 0 and

As

V(I — o) xgr<er = 1im_>8up¢+(|f —cnl) X{f<en}s

we get, using Lebesgue-Fatou’s Theorem,

/ Y (|f — el)dz < / WH(f — cl)dz
QN{f>c} Qn{f<c}
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The proof that ¢ satisfies (2.4) of Definition 2.3. follows in a similiar way and
then the proof is completed. O

According to [1] a multivalued operator T : A (2) — 2% is a monotone operator
o + .
if given f,g € LY (Q),f < g, g1 € o+ (f) and g2 € py+(g9) we have min(gi, g2) €
py+ (f) and max(gy, g2) € g+ (g). We point out that if 7" is an univalued operator,
this definition coincides with the standard definition of monotony. Next we prove
that i+ is a monotone operator using this generalized notion.

Theorem 2.8. Let p € ® N Ay, then piy+ is a monotone operator on L (Q).

Proof. Let f1, fo € Llﬁ(ﬂ)7 where f1 < f2 and ¢1 € py+(f1) and ¢z € puy+ (f2)-
We will prove first that

(2.19) / b (|1 — eal)de < / W (11 — o) de
QN{ f1>min(ci,c2)} QN{f1<min(c1,c2)}

and

(2.20) / O (11 — eal)de < / W (11 — o) da
QN{ f1<min(cy,c2)} QN{f1>min(c1,c2)}

but we only have to consider the case min(cy,ca) = co because the case ¢; < co
follows straightforward. So let min(¢y,c2) = ¢. Then

/ 6 (11 — esl)dr < / O (11 — eal)da

QN{f1>ca2} QN{f2>ca}

< / b (12 — eal)da < / W (1o — eal)de
QN{fa>ca} QN{f2<e2}

s/ G (11 — eal)de s/ W (11 — eal)de
QN{fa<ca} QN{fi<c2}

and inequality (2.19) holds.
Next, we analyze inequality (2.20).

/ v (fi - o< | ~(fi = er])de

Qn{fi<ca} Qﬂ{f1<02}

g/ o (Ifs - erl)de < / (1 — er])de
QN{fi<c1} Qﬁ{f1>cl}

</ vt —abdo< [ (Ui~ ol
Qn{fi>c1} ﬁ{f1>62}

Thus, IIliIl(Cl,CQ) € Uy+ (f1)
Now we prove max(ci,c2) € puy+(f2). As the case ¢; < ¢y is trivial we assume
max(c1, ) = ¢1. Then

/ w2 - ade < [ 6™ (1fz — cal)da

Qﬂ{f2>C1} Qﬁ{f2>01}

(2.21) < / ™ (Ifo — c2f)da < / V(| f2 — cal)da
QN{f2>ca} QN{f2<ca2}

< / W (s — er])de < / W (1fe — erl)de
QN{f2<c2} QN{f2<c1}
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Now, we analyze the other inequality

/ b (12 — e1])de < / B (11 — crl)de
QN{fa<eci} QN{fa<ci}

(2.22) < / Y (Ifi —erl)dz < / V(1L — eal)da
Qn{fi<eci} Qn{fi>c1}
<[ wf-abde< [ wt(fa- el
QN{fi1>c1} QN{f2>c1}
Then, from (2.21) and (2.22), we obtain max(cy,c2) € piy+(f2)- O

From now on we consider ) = B¢(x), where B.(x) is a ball centered at x €
R™ with radius e. We denote s, (f)(z) for the set of extended best constant
approximations of f and we denote fe(z) for any constant ¢ € 5, (f )(m)

Also, for a function f locally integrable in L*" (R™), we write f € Lloc (R™).

Next we get some inequalities involving the extended best approximations that
generalize Theorem 3 in [4] and Theorem 2.1 in [5]. This result allows us, on
one hand, to compare the maximal operator of Hardy-Littlewood with an operator
associated with the family {fc(x)} and on the other hand, it allows us to prove the
a.e. convergence of fe(x) — f(x) as e — 0.

Theorem 2.9. Let p € PN Ay and f € Lloc( "), If fe(@) € py (f)(z), where
x € R" and € > 0, then it holds

(2.23) SO (@) < el / Py < Cro* (If]e()-

1 1 _
(2.24) gV fe(@) = f@)]) < |B6(*%')|/Be(m)¢ (If(y) = f(=)])dy,

where C = 3k, C; = 3k? and the constant k is the one appearing in the A,
condition on .

Proof. First, we show the right side of (2.23). Without lost of generality we may
assume f > 0 and then f.(z) > 0 by Theorem 2.8.

If f(y) = [f(y) = fe(@)] + fe(x), then = (f(y)) = ¥~ ([f(y) — fe(@)] + fe(z)). We

have

! Y (f)dy =

[Be(w)] Be(x) |Bél(x / “([f = fe@)] + fe(x))dy
1
(

|B6 )| / Ot Y ([f = fe(@)] + fe(2))dy

+ = Vv (f)dy.
| e(z)l B.(x)n{f<f.} )

From (1.5), we have

]. _ k -
| Be()] Bs(m>w ek |Be () I/ z)ﬁ{f>fe}¢ U = felo))dy
(2.25) Lk S

|Be()] Be(z)N{f>fe}
1

- dy.
T B@ Jnomisesy DY

We apply (2.3) of Definition 2.3 and we have that
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1 / _ k
T Y (f)dy < (nl
|Be(®)] JB. (a) |Be(2)| JB.(@)n{r< s}

+ kY™ (fe(x)) +

(fe(z) = fdy
(2.26)

1 +
- dy.
| Be()] /Be(m)ﬁ{féfe}w )y

Then we have

1 - L ) .
(2.27) [Be(2)] Be<z)¢ )y < | Be(x) Be(m)ﬁ{fgfe}[w el = )iy

+ kY™ (fe(@))-
Since in the above integral f.(z) — f > 0 and f > 0, we apply (1.5) and we obtain

U (fe(x) = ) + 9T (F) <207 [(fel@) = f) + f] = 207 (fe(@))-

Then from (2.27) we get

1

] o
By, ¥y S Ot ()

with Cl = 3]€2

To prove the left hand side of (2.23) we may assume f > 0. In fact, given a con-
stant fc(x) in the set pif,, (f)(2), there exists c. € p5, (|f])(2) such that [fe(z)] < ce.
Indeed as —|f| < f < |f| and the extended best approximation operator is a mono-
tone operator, there exist constants a. > 0 and be > 0 with —ac € py (—|f])(2)
and be € pg(|f[)(z) such that —ac < fe < be. As —ac € pf. (—|f])(2), then
ac € py([f))(z). Set cc = max{ac,bc}. Since the set pg (|f])(2) is a closed in-
terval, the maximun belongs to the set of extended best constant approximations
pyr (1D (). Thus, |fe(2)] < ce.

Now ¢ (fe(z)) can be written as

1 S R . o
(2.28) 1
1B VT (fe(x))dy.

|1Be(@)| J.@nis21.)
We have fc(x) — f >0 on Bc(x) N {fc > f} and since f > 0 we use (1.5) to get

# + T k + ) — +
B.(x)] /BM‘” eleDdy S 5y [ e [ U@ = D 0T (Dldy

! +
[Be(x)| o(x))dy.
" |Be(z) /Be(z)m{f>f€}’(/} (f (J“)) Y

Also by (1.4) there exists a positive constant k such that the above expression can
be estimated by

b (fol@)— )+ () o G (F())dy.

k2 /
Y] [
|Be(@)| JB.(@)n{f<f.3 1Be()| JB.(2)nir>1.}
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Now, by ( ) of Definition 2.3, we have

]€2
et / |B( R G R

—(f)d
|Be<x | / omepy D
1

+ ; d
BN Jomigary ¥ DY

Then assuming k& > 1, we have

1 Yor
B Bmw (fe(@))dy
]{32

S Be@)] o nissr
]{12
\B (@) JB. ()< s

(2.29) W (—fe(@) + ) + o7 (fe(@))]dy

Y= (f)dy,

which can be bounded by

k3
v ~(f)d “(f)dy,
| Be(z)] /Be(z)m{gﬂ}w (Hey + |Be()] /Bf(x)ﬂ{f<f€}w (ey

then we have proved

G ) < / Py,

with C' = 3k3.
Now to obtain (2.24) let fc(2) € g1 (f)(2), then fe(z) — f(z) € py (f — f(2)).
We apply (2.23) to the function f — f(x) and we have

l + z) — flx 71 - — f(x
G150~ S < e [ () - s@hay

Thus the proof is completed.

The next corollary follows strightforward from Theorem 2.9.

Corollary 2.10. Let p € PN Ay and f € Lloc( ") If fe(z) € py (f)(x), where
x € R™ and € > 0, then we have the followmg estimates

(2.30) VU@ < o / Dy < C(|fle(x))-

1
231 S (fele) ~ f@) < / ¢ (17 (w) ~ )y,
(2:31) c |Be($)| B.(z)
where C = 3k3 and the constant k is the one appearing in the Ay condition on .
Now, we have the next theorem which is a direct consequence of Theorem 2.9.

Theorem 2.11. Let ¢ € ® N Ay with ¢ (x) > 0, when x > 0. Then for each

function f € Lloc (R™) and for almost every x € R™ we have
lim(sup{|fe(2) = f(2)] : fe(2) € by (f)}) = 0.

Note that last theorem can be seen as a generalization of the Lebesgue Differen-

tiation Theorem. This is the case if p(z) = 22,
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3. MAXIMAL INEQUALITIES

In this section we will study the modular convergence (1.7). Note that if p(z) =
22, the best approximation constant is B% f B. f(y) dy, and the modular convergence
(1.7) follows from the properties of the Hardy Littlewood maximal function. In our
case we consider any convex function ¢ and then we have to consider a different
maximal function.

Definition 3.1. Let M, be the mazimal operator defined as

(3.1) Mo f(x )—Sup{lfe( ) = fe(@) € pys (F) ()}

We will set strong inequalities for M., which guarantee modular convergence of
fe(x), as € goes to 0. To do this we need to consider the Hardy Littlewood Maximal
Operator.

Definition 3.2. Let My be the maximal opemtor of Hardy-Littlewood defined as
(3.2) Mp(f)(x) = |f(y)ldy,

where f € L}, .(R™).

>0 |B( )N JB.(x)

We denote ¢ for the generalized inverse function of 1)~ which is given by

(3.3)

S

(x)= sup s,
P (s)sz

and
denote by ¢ for the generalized inverse function of ¢+ which is given by

(3.4) P(x) = sup s.
Pt (s)<w

From (1.4) we get
(3.5) ?(=) < o(z) < p(x),

for some constant C' > 0 and for every 0 < z < oo.

Theorem 3.3. Let ¢ € ® Ny and AY™(t) < Y+ (Kt), t > 0, for some constants
K, A>1. Then there exist positive constants Cy, C and C' such that

. X @ (D)) < Mo (If)(2) < GCMu @ T)(|f])(2))-

(36) el
Proof. First we prove the right hand side of (3.6).
By Theorem 2.9 there exists a constant C' > 0 such that

e Ll
As |fle(z) < (W7 (|fle(x))), we have

C _
[fle(z) < (B( . (1 (W) )

<6>0 | Be(x |/ )dy> <T>1}3|B |/ )d?/)
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Then |flc(z) < @(CMy (T (|f])) for all € > 0, thus

(3.7) Mo (If)(x) = sup [fle(2) < GCMu (™ (1) (@)-

To prove the left hand side of (3.6) we have, from Theorem 2.9, that there exists
a constant C; > 0 such that

1 ) e
1B.(z)] BE(I)Qﬂ (If))dy < Lo (| fle(x)).-

Since |fle(x) < My (|f])(z) we can estimate (3.8) by

(3.8)

y < Crv" (Mo (If) (@),

| Be xl
for all € > 0. As T (x) ()for some constant C' > 0, we have
11 "
F)Ddy < Crp™ (My(|f]) (@),
B Jo.o (1 f W) 19" (Mo ([ f]) (@)

for all € > 0, thus

(3.9) %MH(W(\J“I))(JC) < Crv T (Mo(IfD)(2)-

Using the hypothesis on ¢+ we have AT (t) < ¢+ (Kt), t > 0, then 0 < Y7 (t) <
APt (t) < YT (Kt), t > 0 and thus 0 < ¢+ (Kt) — T (t) for all ¢ > 0.

Now, for all 0 < e we have @ (t) —¢) < t for all t > 0. If we consider
0<e=v¢t(Kt)—yT(t) for all t > 0, we obtain
(3.10) P (t) = ¢ (K1) — €) < K,

for all ¢ > 0.
Using (3.9) and (3.10) we have

CchH(W(IfI))( ) < @ (M (If)(@))) < K (Mol f])(x).

Therefore the proof is completed. O

3.11)  &(

Next we point out the following corollary.

Corollary 3.4. Let o € ®N Ay and Ay (t) < T (Kt), t = 0, for some constants
K, A > 1. Then there exists positive constants Cy, C' and C such that

1 1
(3.12) ?SZ(CHO? My @ *(If))(2)) < My(If])(2) < G(CMuF)(|f])(2))-
Proof. The proof follows straightforward from Theorem 3.3 and (3.5). (]

We also obtain the following inequality from Corollary 2.10.

Corollary 3.5. Let p € DN Ay and Ayt (t) < 1 (Kt), t >0, for some constants
K, A > 1. Then there exists positive constants C1 and C such that

(3.13) %@(CilMH(w_(‘fD)(x)) S M ([f) (@) < G(CMpy (™) f]) ().

The following result, established in [9], will be used in the sequel and character-
izes the functions ¢ € S which allows a strong inequality for the Hardy Littlewood
maximal function in the Orlicz space LY.



SERGIO FAVIER AND ROSA LORENZO 17

Theorem 3.6. Let ¢ : [0,00) — [0,00) be a non decreasing function such that
¥(0) =0 and ¥(x) — 0o, as x — co. Then ¢ satisfies the Vo condition if and only
if

[ wlta(Diands < [ w(clr@)as,
where f € L}, (R™) and the constant C is independent of f.

Theorem 3.7. Let p € SN Ay and let YT be such that Ay (t) < ¢+ (Kt), where
t 20, for some constants K,A> 1. If 0 € SN Ay and the function o ¢ € Vs, then
there exists a constant C' independent of f such that

(3.14) /e (If)(@)de < © /Rnﬂ(éIf(x)Ddx

where f € Lloc (R™).

Proof. Set ¢ = 00 @. As p € Vo we have, by Theorem 3.6, that there exists a
constant K7 > 0 such that

(3.15) w(MH(g)(w))dx < Ky - P(Kig(x))dr,

for all non negative functlon g€ L} (R™).
By Theorem 3.3 we have

(3.16) M (If)(z) < GCMu T (If1))(2))-
Note that the inequalities (3.15) and (3.16) hold for the constant K» = max{C, K1 }.
Now by the homogeneity of My, the monotony of § and inequalities (3.15) and
(3.16) we have

| oMol @))de < [ 0 Mu (0 (1)) @) da
(317 = [ eMu (@) = [ oM (Kad™ (1)) (@) de

R"L R"L
<Ky | (EaKay™ (| f(2)))de < K | (K™ (|f(2)]))dz
R7l Rn
where K3 = max{Ks, K3}. Now since Ay () < o+ (Kt) for all t > 0 for some
constants K, A > 1 and for [ € N such that K3 < A we get

Kaypt(z) < Ali/)+(m) < 1/}+(le) =T (Ky2).
Therefore

B(Esp (| (@)])de < K / B+ (Kal £ (2)]))da

Rn

YT (K5 f (2)])dw

R’!L
where K5 = max{Ks, K;}. Now we use (3.10) to get

PUT() < Kt.
Then since 1) = 0 o @, we have (Y op™)(t) = (B o @) o) (t) < O(Kt). Since T is
a non decreasing function, we obtain
DT (I f(2)]) < O(KEK5|f(2))),
and then
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Ks | @ (Ks|f(2)])de < Ks/ 0K K| f(a))de < C [ 0(Clf(x)))de,
Rn R™ R7

where C' = max{Ks, KK5}.
Thus the proof is completed. O

Corollary 3.8. Let ¢ € SN Ay and let f be a function in LY (R™) N v (R™). Let
T be such that ApT(t) < ¢+ (Kt), where t > 0 and for some constants K, A > 1.
If0 € SN Ay and 0 o p € Vy, then for fo(z) € py+(f) we get

- 0(f(y) — fe(y))dy — 0,

as € — 0.

Proof. Since 6 is a nondecreasing function and satisfies the As condition, there
exists a constant K > 0 such that

O fe = f1) S O(fel + [f) S OMo[fI + |F]) < KOMlf]) + KO(I£]),

for all € > 0. _
By Theorem 3.7, there exists a constant C' independent of f such that
(318) [ ol fl@)ds <& [ 011z,
Rn Rn

As f € L(R") N LY" (R™), from (3.18) we have

K [ 0Mf@)d+ K [ 0(1f(@)ds < .
R R
Now by Theorem 2.11 we have
sup{lf. () = F@)]: f.(x) € uie (F)(@)} — 0,

as € — 0,

and then, 0(|f.(x) — f(x)]) — 0 as e — 0. Thus, by Dominated Convergence
Theorem we get

[ 805 - 1.y 0.

as € — 0.
O
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