
On the Incremental Computation of
Semantics in Dynamic Argumentation

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi
Department of Informatics, Modeling, Electronics and System Engineering,

University of Calabria, Italy
{g.alfano,greco,fparisi}@dimes.unical.it

Gerardo I. Simari, Guillermo R. Simari
Department of Computer Science and Engineering, Universidad Nacional del Sur
(UNS) & Institute for Computer Science and Engineering (ICIC UNS–CONICET),

Bahia Blanca, Argentina
gis@cs.uns.edu.ar, grsimari@gmail.com

Abstract

Argumentation frameworks often model dynamic situations where argu-
ments and their relationships (e.g., attacks) frequently change over time. As a
consequence, the sets of conclusions (e.g., extensions of abstract argumentation
frameworks, or warranted literals for structured argumentation frameworks) of-
ten need to be computed again after performing an update. However, as most
of the argumentation semantics proposed so far suffer from high computational
complexity, computing the set of conclusions from scratch is costly in general.
In this work, we address the problems of efficiently recomputing extensions of
dynamic abstract argumentation frameworks and warranted literals in dynamic
defeasible knowledge bases. In particular, we first present an incremental al-
gorithmic solution whose main idea is that of using an initial extension and
the update to identify a (potentially small) portion of an abstract argumen-
tation framework, which is sufficient to compute an extension of the updated
framework.

1 Introduction
Computational Argumentation is an established research field in the area of Knowl-
edge Representation and Reasoning (KR) [29; 91; 21; 84; 61], which is central in
Artificial Intelligence (AI). An (abstract) argumentation framework [55] is a simple,

Vol. 8 No. 6 2021
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Alfano, Greco, Parisi, Simari, Simari

yet powerful formalism for modeling disputes between agents. The formal mean-
ing of an argumentation framework is given in terms of argumentation semantics,
which intuitively tell us the sets of arguments (referred to as extensions) that can
be accepted together to support a point of view in a discussion. For an abstract
argumentation framework, an argument is an abstract entity whose role is entirely
determined by its relationships with other arguments. In contrast, DeLP [69] is a
well-known argumentation formalism where arguments have an explicit structure as
they derive from a knowledge base (DeLP program) consisting of facts and strict
and defeasible rules. By considering the structure of arguments, i.e., their inner con-
struction, it becomes possible to analyze reasons for and against a conclusion closely,
and the warrant status of a claim in the context of a knowledge base represents the
main output of a dialectical process.

Although the ideas underlying abstract and structured argumentation frame-
works are intuitive and straightforward, most of the argumentation semantics pro-
posed so far suffer from high computational complexity [58; 57; 60; 77; 50]. Most
research in the domain of formal argumentation (both in the abstract and struc-
tured settings) have focused on static frameworks (i.e., frameworks whose structure
does not change over time), whereas argumentation frameworks are frequently used
for modeling dynamic systems [25; 62; 81; 24; 51; 36; 37]; since, as a matter of
fact, the argumentation process is inherently dynamic, this is not surprising. For
instance, consider how many times we change our minds after learning something
new about a situation that is the focus of our reasoning. There is evidence of that
in social network threads [76], where users frequently post new arguments against
or supporting other posts, often made by the same users that change their minds.
Surprisingly, the definition of evaluation algorithms and the analysis of the com-
putational complexity taking into account such dynamic aspects have been mostly
neglected, whereas, in these situations, incremental computation techniques could
significantly improve performance. In many cases, especially when few updates at a
time are performed, the changes made to a framework can result in small changes to
the set of its conclusions—extensions of abstract argumentation frameworks; war-
ranted literals for structured argumentation—and recomputing the whole semantics
from scratch can be avoided.

The following is a summary of the contributions of this work:

• By focusing on the most popular argumentation semantics for abstract frame-
works, i.e., complete, preferred, stable, ideal, and grounded, we present a general
approach for incrementally solving the following computational task: given an
argumentation framework AF , an extension for AF under semantics σ, and an
update u, obtain an extension of the updated argumentation framework u(AF)

1750

On the Incremental Computation of Semantics...

under σ. In other words, we explore the possibility of incrementally solving the
task σ-SE of the International Competition on Computational Models of Ar-
gumentation (ICCMA) [93]: given an argumentation framework, obtain some
σ-extension. The technique consists of the following main steps: (i) identifi-
cation of the influenced set, which intuitively consists of the set of arguments
whose acceptance status may change after performing an update; (ii) identifi-
cation of a (possibly) smaller argumentation framework, called reduced argu-
mentation framework, based on the influenced set and additional information
provided by the initial extension; (iii) using any non-incremental algorithm to
compute an extension of the reduced argumentation framework; and (iv) ob-
taining the final extension by merging a portion of the initial extension with
the one computed for the reduced argumentation framework.

• We show that the main idea behind the above-described incremental approach
can be adapted to extended abstract argumentation frameworks, i.e., bipo-
lar argumentation frameworks allowing the presence of attacks and supports,
as well as argumentation frameworks with second-order interactions (e.g., at-
tacks towards attacks). This is achieved by leveraging meta-argumentation
approaches, which provide ways to transform a more general abstract frame-
work into a Dung framework.

• Intending to minimize wasted effort in the computation of the warrant status
of literals of a DeLP program after performing an update, we summarize the
necessary elements to develop the updating techniques in DeLP’s structured
argumentation. Particularly, we focus only on literals that are potentially
affected by a given update (namely, influenced and core literals), and avoids
the computation of the status of inferable and preserved literals.

Organization. As a prelude, we first briefly recall basic notions of abstract argu-
mentation frameworks [55] and then introduce updates in Section 2. The incremen-
tal technique for recomputing an extension of an updated abstract argumentation
framework under different semantics is presented in Section 3. The main idea behind
the above-described incremental approach is then adapted to cope with extended
argumentation frameworks in Section 4. Next, in Section 5, we discuss the critical
aspects of the technique dealing with structured argumentation in an easy-to-read
manner. Related work is discussed in Section 6, and conclusions and directions for
future work are drawn in Section 7.

1751

Alfano, Greco, Parisi, Simari, Simari

b c

d e f

g h

a

Figure 1: AF0 of Example 2.1.

2 Abstract Argumentation Frameworks and Updates
We assume the existence of a set Args of arguments. An (abstract) argumentation
framework [55] is a pair 〈Ar , att〉, where Ar ⊆ Args is a finite set of arguments,
and att ⊆ Ar × Ar is a binary relation over Ar whose elements are called attacks.
Thus, an argumentation framework can be viewed as a directed graph where nodes
correspond to arguments and edges correspond to attacks.

Example 2.1 (Running example for abstract argumentation). Let AF0 = 〈Ar0,
att0〉 be an argumentation framework, where Ar0 = {a, b, c, d, e, f, g, h} and att0 =
{(a, b), (b, a), (b, c), (c, c), (d, a), (d, e), (e, d), (b, e), (f, e), (g, d), (g, h), (h, e),
(h, f)}. The argumentation framework AF0 is shown in Figure 1.

Given an argumentation framework 〈Ar , att〉 and arguments a, b ∈ Ar , we say
that a attacks b iff (a, b) ∈ att, and that a set S ⊆ Ar attacks b iff there is a ∈ S
attacking b. We use S+ = {b | ∃a ∈ S : (a, b) ∈ att} to denote the set of all
arguments that are attacked by S.

Moreover, we say that S ⊆ Ar defends a iff ∀b ∈ Ar such that b attacks a, there
is c ∈ S such that c attacks b. A set S ⊆ Ar of arguments is said to be:

• conflict-free if there are no a, b ∈ S such that a attacks b;

• admissible if it is conflict-free and it defends all its arguments.

An argumentation semantics specifies the criteria for identifying a set of argu-
ments, called extension, that can be considered “reasonable” together. A complete
extension (CO) is an admissible set that contains all the arguments that it defends.
A complete extension S is said to be:

• preferred (PR) iff it is maximal (w.r.t. ⊆);

• stable (ST) iff it attacks every argument in A \ S;

1752

On the Incremental Computation of Semantics...

σ Eσ(AF0) Eσ(AF)
CO {{f, g}, {a, f, g}, {b, f, g}} {{g}, {a, g}, {b, f, g}}
PR {{a, f, g}, {b, f, g}} {{a, g}, {b, f, g}}
ST {{b, f, g}} {{b, f, g} }
ID {{f, g}} {{g}}
GR {{f, g}} {{g}}

Table 1: Sets of extensions for AF0 and AF = +(c, f)(AF0).

• grounded (GR) iff it is minimal (w.r.t. ⊆).

• ideal (ID) iff it is contained in every preferred extension and it is maximal
(w.r.t. ⊆).

Given an argumentation framework AF and a semantics σ ∈ {CO, PR, ST ,
GR, ID}, we use Eσ(AF) to denote the set of σ-extensions for AF , i.e., the set of
extensions for AF according to the given semantics σ.

All the above-mentioned semantics except the stable admit at least one extension,
and the grounded and ideal admits exactly one extension [55; 56; 41]. Grounded and
ideal semantics are called deterministic or unique status as |EGR(AF)| =
|EID(AF)| = 1, whereas the other above recalled semantics are called nondeter-
ministic or multiple status. For any AF AF , it holds that EST (AF) ⊆ EPR(AF) ⊆
ECO(AF), EGR(AF) ⊆ ECO(AF), and EID(AF) ⊆ ECO(AF).

Example 2.2. The set of admissible sets for the argumentation framework AF0
shown in Figure 1 is {∅, {b}, {g}, {a, g}, {b, g}, {f, g}, {a, g, f}, {b, g, f}}, and the
set Eσ(AF0) of extensions, with σ ∈ {CO, PR, ST , ID, GR} is as reported in the
second column of Table 1.

2.1 Labelling and Status of Arguments
The argumentation semantics can be also defined in terms of labelling [21]. A la-
belling for an argumentation framework 〈Ar , att〉 is a total function Lab : Ar →
{in, out, undec} assigning to each argument a label. L(a) = in means that argu-
ment a is accepted, L(a) = out means that a is rejected, while L(a) = undec means
that a is undecided.

Let in(L) = {a | a ∈ Ar ∧ L(a) = in}, out(L) = {a | a ∈ Ar ∧ L(a) = out},
and un(L) = {a | a ∈ Ar ∧ L(a) = undec}. In the following, we also use the triple
〈in(L), out(L), un(L)〉 to represent the labelling L.

1753

Alfano, Greco, Parisi, Simari, Simari

b c

d e f

g h

a b c

d e f

g h

a

Figure 2: Labelling L corresponding to the preferred extensions EPR ∈
EAF0(PR) = 〈{a, f, g}, {b, d, e, h}, {c}〉 (left-hand side) and E

′
PR ∈ EAF0(PR) =

〈{b, f, g}, {a, d, e, h}, {c}〉 (right-hand side). A green (resp., red, orange) node x is
such that L(x) = in (resp., out, undec).

Given an argumentation framework AF = 〈Ar , att〉, a labelling L for AF is said
to be admissible (or legal) if ∀a ∈ in(L) ∪ out(L) it holds that

(i) L(a) = out iff ∃ b ∈ Ar such that (b, a) ∈ att and L(b) = in; and

(ii) L(a) = in iff L(b) = out for all b ∈ Ar such that (b, a) ∈ att.

Moreover, L is a complete labelling iff conditions (i) and (ii) hold for all a ∈ Ar .
Between complete extensions and complete labellings there is a bijective mapping

defined as follows: for each extension E there is a unique labelling L = 〈E,E+,Ar \
(E ∪ E+)〉 and for each labelling L there is a unique extension in(L). We say that
L is the labelling corresponding to E.

Example 2.3. Continuing from Example 2.2, 〈{a, f, g}, {b, d, e, h}, {c}〉 is the la-
belling corresponding to the preferred extension EPR ∈ EPR(AF0) = {a, f, g}, as
shown in Figure 2.

In the following, we say that the status of an argument a w.r.t. a labelling L
(or its corresponding extension in(L)) is in (resp., out, undec) iff L(a) = in (resp.,
L(a) = out, L(a) = undec). We will avoid to mention explicitly the labelling (or
the extension) whenever it is understood.

2.2 Updating a Dung Argumentation Framework
An argumentation framework typically models a temporary situation, and new ar-
guments and attacks can be added or retracted to take into account new available
knowledge.

1754

On the Incremental Computation of Semantics...

b c

d e f

g h

a

Figure 3: AF = +(c, f)(AF0)

Performing an update on an argumentation framework AF0 means modifying it
into an argumentation framework AF by adding or removing arguments or attacks.
We use +(a, b), with a, b ∈ Ar0 and (a, b) 6∈ att0, (resp. −(a, b), with (a, b) ∈ att0)
to denote the addition (resp. deletion) of an attack (a, b), and u(AF0) to denote
the application of update u = ±(a, b) to AF0 (where ± means either + or −).
Applying an update u to an argumentation framework implies that its semantics
(set of extensions or labellings). Table 1 reports the sets of extensions for the
argumentation framework AF0 of Figure 1 and for AF = +(c, f)(AF0) of Figure 3
which is obtained from AF0 by performing the update +(c, f).

Concerning the addition (resp. deletion) of a set of isolated arguments, it is easy
to see that if AF is obtained from AF0 through the addition (resp. deletion) of a
set S of isolated argument, then, let E0 be an extension for AF0, E = E0 ∪ S (resp.
E = E0 \ S) is an extension for AF that can be trivially computed. Of course, if
arguments in S are not isolated, for addition we can first add isolated arguments and
then add attacks involving these arguments, while for deletion we can first delete all
attacks involving arguments in S. Thus we do not consider these kinds of update in
the following.

3 Incremental Computation of Extensions in Dynamic
Argumentation Frameworks

We tackle the problem of incrementally computing extensions of dynamic argumen-
tation frameworks: given an initial extension and an update (or a set of updates), we
devise a technique for computing an extension of the updated argumentation frame-
work under five well-known semantics (i.e., complete, preferred, stable, grounded,
and ideal).

The idea, initially proposed in [74; 75] and then developed in [4], is that of
identifying a reduced (updated) argumentation framework sufficient to compute an

1755

Alfano, Greco, Parisi, Simari, Simari

update L0(b)
+(a, b) in undec out

L0(a)
in CO, PR, ST , GR

undec CO, GR CO, PR, GR
out CO, PR, ST CO, GR CO, PR, ST , GR

Table 2: Cases for which E0 ∈ Eσ(u(AF0)) for u = +(a, b).

extension of the whole argumentation framework and use state-of-the-art algorithms
to recompute an extension of the reduced argumentation framework only.

For the sake of presentation, we first present the technique for semantics σ ∈ {CO,
PR, ST , GR}, and then show how to deal with the ideal semantics in Section 3.3,
since the definition of the reduced argumentation framework for the ideal semantics
is different from that for the other semantics.

We first give some sufficient conditions ensuring that a given σ-extension for
an argumentation framework AF continues to be a σ-extension for the updated
argumentation framework u(AF). Then, we introduce the influenced set that intu-
itively consists of the set of arguments whose status may change after performing
an update.

Updates Preserving a Given Initial Extension

Given an update ±(a, b) and an initial extension E0 corresponding to L0, for each
pair of initial statuses L0(a) and L0(b) of the arguments involved in the update,
Tables 2 and 3 tell us the semantics for which E0 is still an extension after the
update, as stated in the following proposition.

Proposition 3.1 (Irrelevant Updates [5]). Let AF0 be an argumentation framework,
σ a semantics, E0 ∈ Eσ(AF0) an extension of AF0 under semantics σ, L0 the
labelling corresponding to E0, and u an update. If σ is in the cell 〈L0(a),L0(b)〉 of
Table 2 and u = +(a, b) (resp., of Table 3 and u = −(a, b)), then E0 ∈ Eσ(u(AF0)).

The results in Tables 2 and 3 concerning the grounded semantics follow from
those in [39; 40], where the principles according to which the grounded extension
does not change when attacks are added or removed have been studied.

In the following, given an argumentation framework AF0 and a σ-extension E0
for it, we say that an update u is irrelevant w.r.t. E0 and σ iff the conditions of
Proposition 3.1 hold. Otherwise, u is said to be relevant.

1756

On the Incremental Computation of Semantics...

update L0(b)
−(a, b) in undec out

L0(a)

in NA NA
undec NA CO, PR, GR
out CO, PR, ST , GR CO, PR, GR CO, PR, ST , GR

Table 3: Cases for which E0 ∈ Eσ(u(AF0)) for u = −(a, b).

Example 3.2. Consider AF0 of Figure 1 and its sets of extensions listed in the
second column of Table 1. E0 = {b, f, g} is an extension according to semantics
σ ∈ {CO,PR,ST }. Thus, L0(c) = out and L0(f) = in, and using Proposition 3.1
it follows that for update u = +(c, f) E0 is still an extension of u(AF0) (see the last
column of Table 1). Thus +(c, f) is irrelevant w.r.t. E0 and σ.

In contrast, +(c, f) is relevant w.r.t. E0 = {a, f, g} and any semantics (in this
case L0(c) = undec and L0(f) = in, and no semantics is listed in the cell 〈undec, in〉
of Table 2).

It is important to note that Tables 2 and 3 are not meant to be exhaustive, as
more conditions can be found for which a σ-extension is preserved after an update.
For instance, for the grounded semantics, the initial extension is preserved also if
L0(a) = out and L0(b) = in and argument a of updated +(a, b) is not reachable
from b. Here we provided a simple set of conditions that can be easily checked by just
looking at the initial labelling L0. The technique for the incremental computation
can be trivially extended by considering a more general set of such conditions.

Influenced Set
Given an argumentation framework, an update, and an initial σ-extension of the
considered framework, the influenced set consists of the arguments whose acceptance
status (according to the semantics σ) may change after performing the update.
For irrelevant updates, the influenced set will be empty, as in this case, the initial
extension can be immediately returned as an extension of the updated argumentation
framework. If none of the conditions of Proposition 3.1 hold (i.e., the update is
relevant), then the influenced set may turn out to be not empty. In such case, the
influenced set will be used to delineate a portion of the argumentation framework,
called reduced argumentation framework, that we will use to recompute (a portion
of) an extension for the updated argumentation framework.

Given an argumentation framework AF = 〈Ar , att〉 and an argument b ∈ Ar ,
we use ReachAF (b) to denote the set of arguments that are reachable from b in the

1757

Alfano, Greco, Parisi, Simari, Simari

graph AF .

Definition 3.3 (Influenced Set [5]). Let AF = 〈Ar , att〉 be an argumentation frame-
work, u = ±(a, b), E an extension of AF under semantics σ ∈ {CO, PR, ST , ID,
GR}, and let

• INF0(u,AF,E) =





∅ if u is irrelevant w.r.t. E and σ or ∃(z, b) ∈ att
s.t. z 6= a ∧ z ∈ E ∧ z 6∈ ReachAF (b);

{b} otherwise;

• INFi+1(u,AF,E) = INFi(u,AF,E) ∪ {y | ∃(x, y) ∈ att s.t.
x ∈ INFi(u,AF,E) ∧ @(z, y) ∈ att s.t. z ∈ E ∧ z 6∈ ReachAF (b)}.

The influenced set of u w.r.t. AF and E is INF(u,AF,E) = INFn(u,AF,E) such
that INFn(u,AF,E) = INFn+1(u,AF,E).

Thus, the set of arguments that are influenced by an update of b’s status are
those that can be reached from b without using any intermediate argument y whose
status is known to be out because it is determined by an argument z ∈ E that is
not reachable from (and thus not influenced by) b.

Example 3.4. Consider the argumentation framework AF0 = 〈Ar0, att0〉 of Fig-
ure 1 and the update u = +(c, f). We have that ReachAF0(f)=Ar0 \ {g, h}. The
influenced set depends on the initial extension chosen. For the (preferred) extension
{b, f, g} of Example 3.2, we have that the influenced set is empty as u is irrele-
vant. In contrast, for the (preferred) extension E0 = {a, f, g}, the influenced set is
INF(u,AF0, E0) = {f, e}. Indeed, d 6∈ INF(u,AF0, E0) since it is attacked by g ∈ E0
which is not reachable from f . Thus the arguments that can be reached from d do
not belong to INF(u,AF0, E0). If we consider the initial grounded extension {f, g},
then {f, e} turns out once again to be the influenced set.

Reduced Argumentation Framework
Given the influenced set, we define a subgraph, called reduced argumentation frame-
work, that will be used to compute the status of the influenced arguments, thus
providing an extension that will be combined with that of initial argumentation
framework to obtain an extension of the updated argumentation framework, for
every semantics σ ∈ {CO, PR, ST , GR}.

For any argumentation framework AF = 〈Ar , att〉 and set S ⊆ Ar of arguments,
we denote with AF↓S = 〈S, att∩(S×S)〉 the subgraph of AF induced by arguments
in S. Moreover, given two argumentation frameworks AF1 = 〈Ar1, att1〉 and AF2 =

1758

On the Incremental Computation of Semantics...

e f

Figure 4: RAF(+(c, f), AF0, {a, f, g})

〈Ar2, att2〉, we denote as AF1 tAF2 = 〈Ar1 ∪Ar2, att1 ∪ att2〉 the union of the two
argumentation frameworks.
Definition 3.5 (Reduced Argumentation Framework [5]). Let AF0 = 〈Ar0, att0〉 be
an argumentation framework, E0 ∈ Eσ(AF0) an extension for AF0 under a semantics
σ ∈ {CO, PR, ST , GR}, and u = ±(a, b) an update. Let AF = 〈Ar , att〉 be the
argumentation framework updated using u. The reduced argumentation framework
for AF0 w.r.t. E0 and u (denoted as RAF(u,AF0, E0)) is as follows.
• RAF(u,AF0, E0) is empty if INF(u,AF0, E0) is empty.

• RAF(u,AF0, E0) = AF↓INF(u,AF0,E0) tAF1 tAF2 where:

(i) AF1 is the union of the frameworks 〈{a, b}, {(a, b)}〉 s.t. (a, b) ∈ att,
a 6∈ INF(u,AF0, E0), a ∈ E0, and b ∈ INF(u,AF0, E0);

(ii) AF2 is the union of the frameworks 〈{c}, {(c, c)}〉 s.t. there is (e, c) ∈ att,
e 6∈ INF(u,AF0, E0), e 6∈ (E0 ∪ E+

0), and c ∈ INF(u,AF0, E0).

Hence, the argumentation framework RAF(u,AF0, E0) contains, in addition to
the subgraph of u(AF0) induced by INF(u,AF0, E0), additional nodes and edges
containing needed information on the “external context”, i.e., information about
the status of arguments which are attacking some argument in INF(u,AF0, E0).
Specifically, if there is in u(AF0) an edge from an uninfluenced node a whose status
in in to an influenced node b, then we add the edge (a, b) so that, as a does not
have incoming edges in RAF(u,AF0, E0), its status is confirmed to be in. Moreover,
if there is in u(AF0) an edge from an uninfluenced node e to an influenced node c
such that e is undec, we add edge (c, c) to RAF(u,AF0, E0) so that the status of c
cannot be in. Using fake arguments/attacks to represent external contexts has been
exploited in [20] where decomposability properties of argumentation semantics are
investigated.
Example 3.6. For our running example, if E0 = {a, f, g} and u = +(c, f), the
reduced argumentation framework RAF(+(c, f), AF0, E0) consists of the subgraph
induced by INF(u,AF0, E0) = {f, e} plus the edge (f, f) as there is the attack
(c, f) in the updated argumentation framework from a non influenced argument c
labelled as undec toward the influenced argument f . Hence, RAF(+(c, f), AF0, E0)
= 〈{e, f}, {(f, f), (f, e)}〉 as shown in Figure 4.

1759

Alfano, Greco, Parisi, Simari, Simari

The following theorem states that, for every semantics σ ∈ {CO, PR, ST , GR},
an extension for the updated argumentation framework can be obtained by the union
of an extension of the reduced argumentation framework and the projection of the
initial extension on the uninfluenced part.

Theorem 3.7 ([5]). Let AF0 be an argumentation framework, AF = u(AF0) be the
argumentation framework resulting from performing update u = ±(a, b) on AF0, and
E0 ∈ Eσ(AF0) be an extension for AF0 under a semantics σ ∈ {CO, PR, ST , GR}.
If Eσ(RAF(u,AF0, E0)) is not empty, then there is an extension E ∈ Eσ(AF) for the
updated argumentation framework AF such that E = (E0 \ INF(u,AF0, E0)) ∪ Ed,
where Ed is a σ-extension for reduced argumentation framework RAF(u,AF0, E0).

Example 3.8. Continuing with our example, for the preferred semantics, let E0 =
{a, f, g} and u = +(c, f), we have that INF(u,AF0, E0) = {f, e}, and RAF(+(c, f),
AF0, E0) = 〈{e, f}, {(f, f), (f, e)}〉. Thus, using the theorem, there is an extension
E of the updated argumentation framework such that E = ({a, f, g} \ {f, e}) ∪ Ed
where Ed = ∅ is a preferred extension of the reduced argumentation framework. In
fact, E = {a, g} ∈ EPR(u(AF0)).

It is worth noting that the set of extensions of an argumentation framework
can be empty only for the stable semantics. Thus, in the case that this happens for
the reduced argumentation framework (i.e., Eσ(RAF(u,AF0, E0)) = ∅), the theorem
does not give a method to determine an extension of the updated argumentation
framework, as shown in the following example.

Example 3.9. Consider the two stable extensions {a, c} and {a, d, e} for AF0 and
the update u = +(d, d). Depending on the initial extension, the influenced set is
either INF(u,AF, {a, c}) = ∅ (as u is irrelevant w.r.t. {a, c} and ST) or INF(u,AF,
{a, d, e})
= {d}. Thus, starting from the extension {a, c} we directly know {a, c} is a sta-
ble extension of the updated argumentation framework. However, starting from
{a, d, e}, the reduced argumentation framework will be RAF(u,AF0, {a, d, e}) =
〈{d}, {(d, d)}〉, which has no stable extension. In this case, the theorem does not
provide a stable extension of the updated argumentation framework, thought a stable
extension exists: that obtained by starting from the initial extension {a, c}.

Note that, if we consider the preferred semantics, for which the starting ex-
tensions are again {a, c} and {a, d, e}, a preferred extension of the updated argu-
mentation framework can be obtained no matter what starting extension is cho-
sen. In particular, as the preferred extension for reduced argumentation framework
〈{d}, {(d, d)}〉 is the empty set, it follows that ({a, d, e} \ {d}) ∪ ∅ = {a, e} is a
preferred extension of the updated argumentation framework.

1760

On the Incremental Computation of Semantics...

Algorithm 1 Incr-Alg(AF0, u, σ,E0, Solverσ) [5]
Input: AF0 = 〈Ar0, att0〉,

update u = ±(a, b),
semantics σ ∈ {CO, PR, ST , GR},
extension E0 ∈ Eσ(AF0),
function Solverσ(AF) returning a σ-extension of AF if it exists, ⊥ otherwise;

Output: A σ-extension E ∈ Eσ(u(AF0)) if it exists, ⊥ otherwise;
1: S = INF(u,AF0, E0);
2: if (S = ∅) then
3: return E0;
4: end if
5: AFd = RAF(u,AF0, E0);
6: Let Ed = Solverσ(AFd);
7: if (Ed 6= ⊥) then
8: return E = (E0 \ S) ∪ Ed;
9: else

10: return Solverσ(u(AF0));
11: end if

3.1 Incremental Algorithm

Algorithm 1 computes an extension of an updated argumentation framework [5].
Besides taking as input an initial argumentation framework AF0, an update u, a
semantics σ ∈ {CO, PR, ST , GR}, and an extension E0 ∈ Eσ(AF0), it also takes
as input a function that computes a σ-extension for an argumentation framework, if
any. In particular, function Solverσ(AF) will be used to compute an extension of the
reduced argumentation framework, which will be then combined with the portion
of the initial extension that does not change in order to obtain an extension for the
updated argumentation framework (as stated in Theorem 3.7).

More in detail, Algorithm 1 works as follows. First, the influenced set of AF0
w.r.t. update u and the given initial extension E0 is computed (Line 1). If it is
empty, then E0 will be still an extension of the updated argumentation framework
under the given semantics σ, and thus it is returned (Line 3). Otherwise, the re-
duced argumentation framework AFd is computed at Line 5, and function Solverσ
is invoked to compute a σ-extension of AFd, if any. If σ ∈ {CO, PR, GR}, then
AFd will have an extension Ed, which is combined with E0 \ S at Line 8 to get an
extension for the updated argumentation framework. For the stable semantics, if
EST (RAF(u,AF0, E0)) is not empty, then the algorithm proceeds as for the other

1761

Alfano, Greco, Parisi, Simari, Simari

w
+(v, w)

w′

a′m x′m y′m b′m

a′1 x′1 y′1 b′1a1 x1 y1 b1

an xn yn bn

v

Figure 5: Simulating multiple updates by a single one.

semantics (Line 8). Otherwise, function Solverσ is invoked to compute a stable
extension of the whole updated argumentation framework u(AF0), if any.

The soundness and completeness of the algorithm follows from the result of
Theorem 3.7 and the soundness and completeness of function SolverS used.

Theorem 3.10 (Soundness and Completeness [5]). Let AF0 be an argumentation
framework, u = ±(a, b), and E0 ∈ Eσ(AF0) an extension for AF0 under σ ∈ {CO,
PR, ST , GR}. If Solverσ is sound and complete then Algorithm 1 computes E ∈
Eσ(u(AF0)) if Eσ(u(AF0)) is not empty, otherwise it returns ⊥.

3.2 Applying Multiple Updates Simultaneously
The approach described in the previous section extends to the case of multiple
updates, i.e., set of updates performed simultaneously. In fact, performing a set
of updates U = {+(a1, b1), . . . ,+(an, bn), −(a′1, b′1), . . . ,−(a′m, b′m)} on AF0 can be
reduced to performing a single update +(v, w) on an argumentation framework AFUE0
whose definition depends on both the set of updates U and the initial σ-extension
E0, as explained in what follows.

Given a set U of updates for an argumentation framework AF0, and a σ-extension
E0 for AF0, we use U∗ to denote the subset of U consisting of the relevant updates
(that is, the updates in U for which the conditions of Proposition 3.1 do not hold).

The argumentation framework AFUE0 for applying a set U∗ of relevant updates is
obtained from AF0 by (i) adding arguments xi, yi and the chain of attacks between ai
and bi as shown in Figure 5, for each update +(ai, bi) ∈ U∗; (ii) replacing each attack
(a′j , b′j) in AF0 with the chain of attacks between a′j and b′j as shown in Figure 5,
for each update −(aj , bj) ∈ U∗; and (iii) adding the new arguments v, w,w′ and the
attacks involving them as shown in Figure 5. The following definition considers a
general set of updates which includes also irrelevant updates.

Definition 3.11 (AF for applying a set of updates [75]).
Let AF0 = 〈Ar0, att0〉 be an argumentation framework, and E0 a σ-extension for
AF0. Let

1762

On the Incremental Computation of Semantics...

• att+ = {(a1, b1), . . . , (an, bn)} ⊆ (Ar0 ×Ar0) \ att0, and

• att− = {(a′1, b′1), . . . , (a′m, b′m)} ⊆ att0

such that att+ ∩ att− = ∅ be two sets of attacks.
Let U = {+(ai, bi) |(ai, bi) ∈ att+} ∪ {−(aj , bj) |(aj , bj) ∈ att−} be a set of

updates, and U∗ ⊆ U be the set of relevant updates w.r.t. E0 and σ. Then, AFUE0 =
〈ArU , attU 〉 denotes the argumentation framework obtained from AF0 as follows:

• ArU = Ar0 ∪ {xi, yi | +(ai, bi) ∈ U∗} ∪{x′j , y′j | −(aj , bj) ∈ U∗} ∪{v, w,w′},
where all xi, yi, x′j , y′j, w, w′, and v are new arguments not occurring in Ar0,
and

• attU = (att0 \ att−) ∪ {(ai, bi) |+ (ai, bi) ∈ (U \ U∗)}∪
{(ai, xi), (xi, yi), (yi, bi) | + (ai, bi) ∈ U∗} ∪
{(aj , x′j), (x′j , y′j), (y′j , bj) | − (aj , bj) ∈ U∗} ∪
{(w, yi) | + (ai, bi) ∈ U∗} ∪
{(w′, y′j) | − (aj , bj) ∈ U∗} ∪ {(w,w′)}.

It is worth noting that, in the definition above, each argument xi, yi, x′i, and y′i
is assumed to be unique and non-identical for every attack (ai, bi).

The following theorem states that every extension of the argumentation frame-
work AF obtained by performing on AF0 all the updates in U corresponds to an
extension of +(v, w)(AFUE0), where +(v, w) is a single attack update.

Theorem 3.12 ([75; 5]). Let AF0 = 〈Ar0, att0〉 be an argumentation framework,
E0 a σ-extension for AF0, and U a set of updates. Let AF be the argumentation
framework obtained from AF0 by performing all updates in U on it. Then, for any
semantics σ ∈ {CO,PR,ST ,GR} E ∈ Eσ(AF) iff there is EU ∈ Eσ(+(v, w)(AFUE0))
such that EU ∩Ar0 = E.

3.3 Dealing with the Ideal Semantics
Algorithm 1 can be extended to deal with the ideal semantics. The only difference
is that we need a new definition of reduced argumentation framework since, as
illustrated in the following example, that of Definition 3.5 does not work for the
ideal semantics.

Example 3.13. Consider the argumentation framework AF0 = 〈{a, b, c, d}, {(a, b),
(b, a), (c, d), (d, c), (a, c), (b, c)}〉 and the update u = −(b, c). The ideal extension
of AF0 is E0 = {d} (i.e., arguments a and b are both labeled as undec). The
influenced set is INF(u,AF0, E) = {c, d}. However, the RAF obtained by applying

1763

Alfano, Greco, Parisi, Simari, Simari

Definition 3.5 is 〈{c, d}, {(c, c), (c, d), (d, c)}〉, its ideal extension is {d}, and applying
the result of Theorem 3.7 we would obtain that {d} is still the ideal extension for
u(AF0). But this is not correct, as the ideal extension for u(AF0) is the empty set.

Before defining the reduced framework for the ideal semantics, we define the
paths providing the information on the “context” outside the influenced set INF(u,
AF,E) that needs to be added to determine the new status of the arguments influ-
enced by update u w.r.t. the ideal extension E.

Given an argumentation framework AF = 〈Ar , att〉 with ideal extension E and
a set S ⊆ Ar , we use Node(AF, S,E) (resp. Edge(AF, S,E)) to denote a set of
arguments x1, . . . , xn (resp. attacks (x1, x2), . . . , (xn−1, xn)) in AF such that there
is a path x1 . . . xn in AF with xn ∈ S, x1, . . . , xn-1 6∈ S and x1, . . . , xn-1 6∈ E ∪ E+

(i.e., x1, . . . , xn-1 are undec). Essentially, if S is the influenced set of an update,
to determine the status of nodes in S we must also consider all nodes and attacks
occurring in paths (of any length) ending in S whose nodes outside S are all labeled
as undec. The motivation to also consider the paths ending in S is that some of
the undecided arguments occurring in these paths could be labelled in or out in
some preferred labelling and, therefore, together they could determine a change in
the status of nodes in S.

Definition 3.14. (Reduced Argumentation Framework for Ideal Seman-
tics [75; 8])
Let AF0 = 〈Ar0, att0〉 be an argumentation framework, E0 be the ideal extension for
AF0, and u = ±(a, b) an update. Let AF = 〈Ar , att〉 be the argumentation frame-
work updated by using u. The reduced argumentation framework for AF0 w.r.t. E0
and u (denoted as RAFID(u,AF0, E0)) is as follows.

• RAFID(u,AF0, E0) is empty if INF(u,AF0, E0) is empty.

• RAFID(u,AF0, E0) = AF↓INF(u,AF0,E) tAF1 tAF2 where:

(i) AF1 is the union of the frameworks 〈{a, b}, {(a, b)}〉 such that (a, b) ∈ att
and a 6∈ INF(u,AF0, E0), a ∈ E0, and b ∈ INF(u,AF0, E0);

(ii) AF2 is the union of the frameworks 〈Node(AF, INF(u,AF0, E0), E0) and
Edge(AF, INF(u,AF0, E0), E0)〉.

Example 3.15. For the argumentation framework AF0 of running example (see Fig-
ures 1 and 3), where the initial ideal extension is E0 = {f, g} and u = +(c, f), the
reduced argumentation framework RAFID(+(c, f), AF0, E0) consists of the subgraph
induced by INF(u,AF0, E0) = {f, e} plus the sub-graph consisting of the paths of un-
decided arguments ending in the influenced set, that is, AF2 = 〈{a, b, c}, {(a, b), (b, a),

1764

On the Incremental Computation of Semantics...

(b, c), (c, c),
(c, f)}〉. Hence, RAFID(+(c, f), AF0, E0) = 〈{a, b, c, e, f}, {(a, b), (b, a), (b, c), (c, c),
(c, f), (f, e)}〉. The ideal extension of the reduced framework is the empty set.

It can be shown that the result of Theorem 3.7 also holds for the case of the ideal
semantics [8]. By applying that result, we obtain that the (updated) ideal extension
for the updated argumentation framework of Example 3.15 is ({f, g} \ {f, e}) ∪ ∅ =
{g} (see Table 1).

Example 3.16. Consider again the argumentation framework AF0 and the update u
of Example 3.13, where the ideal extension of AF0 is E0 = {d} and INF(u,AF0, E) =
{c, d}.

Thus, RAFID(u,AF0, E0) = AF↓INF(u,AF0,E0) tAF1 tAF2 where:

• AF↓INF(u,AF0,E) = 〈{c, d}, {(c, d), (d, c)}〉,

• AF1 = 〈∅, ∅〉 and

• AF2 = 〈{a, b, c}, {(a, b), (b, a), (a, c)}〉.
That is, RAFID(u,AF0, E0) = 〈{a, b, c, d}, {(a, b), (b, a), (c, d), (d, c), (a, c)}〉, and
its ideal extension is ∅. Thus, using the result of Theorem 3.7, we obtain that the
ideal extension for the updated argumentation framework u(AF0) is the empty set.

Finally, Algorithm 1 can be used to compute the updated ideal extension of a
given argumentation framework by using AFd = RAFID(u,AF0, E0) at Line 5 and
an external solver that computes the ideal extension of the reduced argumentation
framework.

In the next two sections, we will deal with other possible ways to apply the in-
cremental algorithm in other approaches to formal (computational) argumentation.
First, Section 4 deals with bipolarity and extended argumentation frameworks, while
Section 5 centers on Defeasible Logic Programming (DeLP) as a structured argu-
mentation formalism.

4 Bipolarity and Second-Order Attacks
Dung’s framework has been extended along several dimensions; for instance,

see [22; 83; 96]. The proposed incremental approach can be applied to different kinds
of abstract argumentation frameworks that extend Dung’s model. The main idea is
that of using meta-argumentation approaches, which provide ways to transform a
more general abstract framework into a Dung framework, and apply the incremental
technique on the meta argumentation framework [4; 6; 7].

1765

Alfano, Greco, Parisi, Simari, Simari

Bipolarity in argumentation is discussed in [17], where a survey of the use of
bipolarity is given, as well as a formal definition of bipolar argumentation frame-
works, which extend Dung’s concept of argumentation framework by also including
the relation of support between arguments. The notion of support has been found to
be useful in many application domains, including decision making [16]. Several inter-
pretations of the notion of support have been proposed in the literature [17; 46; 47;
48; 38; 96] (see [53] for a comprehensive survey). In this work, we focus on deductive
support [38; 96] which is intended to capture the following intuition: if argument a
supports argument b then the acceptance of a implies the acceptance of b, and thus
the non-acceptance of b implies the non-acceptance of a. However, the approach
presented in this section can be adapted to work also with necessary support [89;
88; 23] due to the duality between these two kinds of interpretations of the support
relation [53]. The acceptability of arguments in the presence of a support relation
was first investigated in [46]. Later on, to handle bipolarity in argumentation, [47;
48] proposed an approach based on using the concept of coalition of arguments,
where sets of arguments are considered as a group that plays the role of an ar-
gument and defeats then occur between coalitions. However, when considering a
deductive interpretation of support [38; 96], coalitions may lead to counter-intuitive
results [53]; nevertheless, they are useful in contexts where support is interpreted
differently.

Furthermore, other abstract argumentation frameworks have been considered,
such as Extended Argumentation Frameworks, which extend bipolar argumentation
frameworks by modelling (apart from attacks/supports between arguments) also at-
tacks towards an attack or a support (called second-order attacks). Thanks to a meta
argumentation approach, an extended argumentation framework can be converted
into an abstract argumentation framework by using additional meta-arguments as
well as attacks between them to model supports and second-order attacks.

In the following, we discuss how to extend the incremental technique to deal with
extended argumentation frameworks. An Extended Argumentation Framework [38]
is a quadruple 〈Ar , att, sup, s-att〉, where where (i) Ar ⊆ Args, (ii) att ⊆ Ar × Ar ,
(iii) sup ⊆ Ar ×Ar is a binary relation over Ar whose elements are called supports,
(iv) att ∩ sup = ∅,and (v) s-att is a binary relation over Ar × (att ∪ sup) whose
elements are called second-order attacks.

In the following, a second-order attack from an argument a to an attack (b, c)
will be denoted as (a� (b→ c)), while an attack from an argument a to a support
(b, c) will be denoted as (a � (b ⇒ c)). Thus, a Dung argumentation frame-
work is an extended argumentation framework of the form 〈Ar , att, ∅, ∅〉, while a
bipolar argumentation framework is extended argumentation framework of the form
〈Ar , att, sup, ∅〉.

1766

On the Incremental Computation of Semantics...

ba

d e

f

c

a
f

Xe,e

Za,b

d

Xb,d

Yb,d

b

Xe,f

Xa,c

Ya,c

Xd,e Yd,e e

Ye,d Xe,d

Ye,f

Ye,e

c

Xc,b

Yc,b

Xa,(b,d) Ya,(b,d)

Figure 7: Meta framework for EF0 of Example 4.1.

Example 4.1. Consider the extended argumentation framework EF0 = 〈Ar0, att0,
sup0, s-att0〉 where:

• Ar0 = {a, b, c, d, e, f} is the set of arguments;

• att0 = {(a, c), (c, b), (b, d), (d, e), (e, d), (e, e), (e, f)} is the set of attacks;

• sup0 = {(a, b)} is the set of supports; and

• s-att0 = {(a, (b, d))} is the set of second-order attacks.

The corresponding graph is shown in Figure 6, where second-order attacks are drawn
using double-headed arrows.

The semantics of an extended argumentation framework can be given by means
of the following meta argumentation framework.

Definition 4.2 (Meta Argumentation Framework [38]). The meta argumentation
framework for EF = 〈Ar , att, sup, s-att〉 is MF = 〈Arm, attm〉 where:

• Arm = Ar ∪ {Xa,b, Ya,b | (a, b) ∈ att} ∪ {Za,b | (a, b) ∈ sup} ∪
{Xa,(b,c), Ya,(b,c) | (a, (b, c)) ∈ s-att, (b, c) ∈ att}

• attm={(a,Xa,b), (Xa,b, Ya,b), (Ya,b, b)|(a, b) ∈ att} ∪
{(b, Za,b), (Za,b, a) | (a, b) ∈ sup} ∪
{(a,Xa,(b,c)), (Xa,(b,c), Ya,(b,c)), (Ya,(b,c), Yb,c) |
(a, (b, c)) ∈ s-att, (b, c) ∈ att} ∪
{(a,Xa,(b,c)), (Xa,(b,c), Ya,(b,c)), (Ya,(b,c), Zb,c) |
(a, (b, c)) ∈ s-att, (b, c) ∈ sup}

1767

Alfano, Greco, Parisi, Simari, Simari

The meaning of meta-arguments Xa,b, Ya,b and Za,b is as follows. Xa,b represents
the fact that the corresponding attack (a, b) is “negligible” in the extended argumen-
tation framework—it belongs to an extension of the meta argumentation framework
iff a does not belong to an extension of the extended argumentation framework. On
the other hand, Ya,b represents the fact that (a, b) is “significant” in the extended
argumentation framework, and it belongs to an extension of the meta argumenta-
tion framework iff argument b does not. Finally, meta-argument Za,b represents a
support relation between a and b: it does not belong to an extension for the meta
argumentation framework iff the supported argument b is accepted in the deductive
model of support.

Moreover, a second order attack of the form (a� (b→ c)) is encoded as an attack
towards the meta-argument Yb,c (that represents the fact that (b, c) is “significant”),
while an attack of the form (a� (b⇒ c)) is encoded as an attack toward the meta-
argument Zb,c. The meta argumentation framework for the extended argumentation
framework of Example 4.1 is shown in Figure 7.

Extensions for an extended argumentation framework EF are obtained from ex-
tensions for its meta argumentation framework MF: E is an σ-extension for EF iff
Em ∈ Eσ(MF) and E = Em ∩ Ar , where Ar is the set of arguments of EF. Using
this relationship, the notion of labelling can be extended to extended argumentation
frameworks as well. As done in [38], in the following we will focus on the preferred
and stable semantics. However, the technique can be also applied to grounded, ideal,
and complete semantics by means of meta argumentation approach.

Example 4.3. For the meta argumentation framework MF of Figure 7, we have the
following preferred extensions (which are also stable extensions): (i) {a, b, d, f, Ya,c,
Xc,b, Yd,e, Ya,(b,d), Xe,e, Xe,d, Xe,f , }, which corresponds to the extension {a, b, d, f}
of the extended argumentation framework of Example 4.1, and (ii) {c, d, f, Xa,c,
Yc,b, Za,b, Xb,d, Yd,e Xe,e, Xe,d, Xe,f , Xa,(b,d)}, which corresponds to the extension
{c, d, f} of the extended argumentation framework.

Updates over Extended Argumentation Frameworks For extended argu-
mentation frameworks we also consider updates consisting of additions and deletions
of support relations and second-order attacks, in addition to the attack updates
considered for Dung’s frameworks. Specifically, the addition (resp., deletion) of a
support relation from an argument a to an argument b will be denoted as +(a⇒ b)
(resp. −(a ⇒ b)). Analogously, the addition (resp., deletion) of a second-order
attack from an argument a to an attack (b, c) will be denoted as +(a � (b → c))
(resp., −(a � (b → c))). Finally, if (b, c) is a support, then the update will be
denoted as +(a � (b ⇒ c)) (resp., −(a � (b ⇒ c))). We use u(EF0) to denote the

1768

On the Incremental Computation of Semantics...

extended argumentation framework resulting from the application of update u to an
initial extended framework EF0.

We introduce the compact argumentation framework for performing an update
on extended argumentation frameworks—it will be used in a variant of Algorithm 1
for the incremental computation. The definition builds on (the compact version
of) that proposed in [38] and considers additional meta-arguments and attacks that
will allow us to simulate addition updates to be performed on the extended argu-
mentation framework by means of single updates performed on the corresponding
(compact) meta argumentation framework.

Definition 4.4 (Compact Argumentation Framework [7]). Let EF = 〈Ar , att, sup,
s-att〉 be an extended argumentation framework, and u an update of one of the
following forms:

• u = ±(e→ f) • u = ±(e⇒ f)
• u = ±(e� (g → h)) • u = ±(e� (g ⇒ h)).

The compact argumentation framework for EF w.r.t. u is CF(EF, u) = 〈Arm, attm〉
where:

• Arm = A ∪ {Za,b | (a, b) ∈ sup} ∪
{Xc,d, Yc,d | (e, (c, d)) ∈ s-att, (c, d) ∈ att} ∪
{Ze,f | u = +(e⇒ f)} ∪
{Xg,h, Yg,h | u = +(e� (g → h))}

• attm = att \ {(g, h) | u = +(e� (g → h))} ∪
{(g,Xg,h), (Xg,h, Yg,h), (Yg,h, h) | u = +(e� (g → h))} ∪
{(b, Za,b), (Za,b, a) | (a, b) ∈ sup} ∪
{(e, Za,b) | (e, (a, b))∈s-att, (a, b)∈sup} ∪
{(c,Xc,d), (Xc,d, Yc,d), (Yc,d, d), (e, Yc,d) |
(e, (c, d)) ∈ s-att, (c, d)∈att} ∪
{(f, Ze,f) | u = +(e⇒ f)}.

Besides the meta-arguments Za,b of Definition 4.2, and the attacks involving those
arguments, the above meta argumentation framework contains meta-arguments
Xc,d, Yc,d for encoding second order attacks in s-att toward attacks (c, d) ∈ att. In
fact, an attack e� (a⇒ b) in s-att toward a support is encoded as an attack from e
toward Za,b in the meta argumentation framework, while e� (c→ d) in s-att is en-
coded as an attack from e toward Yc,d in the meta argumentation framework (which
contains also the attacks (c,Xc,d), (Xc,d, Yc,d), (Yc,d, d)). Moreover, meta-arguments
Ze,f and Xg,h, Yg,h, are added to the meta argumentation framework for encoding,

1769

Alfano, Greco, Parisi, Simari, Simari

a

f

Za,b

d

Xb,d

Yb,d

b

ec

Xc,b

Yc,b

Figure 8: Compact argumentation framework for the extended argumentation frame-
work EF0 of Figure 6 w.r.t. the update u = +(d� (c→ b)).

respectively, the addition of a second order attack toward a support (e, f) ∈ sup
or toward an attack (g, h) ∈ att. In the latter case, meta-arguments Xg,h and Yg,h
along with the set of attacks {(g,Xg,h), (Xg,h, Yg,h), (Yg,h, h)} are used to simulate
the attack g → h which is attacked by e in the extended argumentation framework.
This enables the definition of simple attack updates to simulate second-order attack
updates.

Example 4.5. The compact argumentation framework for the EAF EF0 of Figure 6
w.r.t. the update u = +(d � (c → b)) is shown in Figure 8. Herein, the attacks
involving the meta-arguments Xb,d and Yb,d allow us to simulate the second order
attack a � (b → d). Moreover, the attacks involving the meta-arguments Xc,b and
Yc,b are added to enable the simulation of the second-order update u by a single attack
update on the meta argumentation framework.

We now define updates on the meta argumentation framework.

Definition 4.6 (Updates for the meta argumentation framework [7]). Let EF =
〈Ar , att, sup, s-att〉 be an extended argumentation framework, and u an update for
EF. The corresponding update um for the compact argumentation framework
CF(EF, u) is as follows:
um = um =
+(Ze,f → e) if u = +(e⇒ f) −(Ze,f → e) if u = −(e⇒ f))
+(c→ d) if u = +(c→ d) −(c→ d)) if u = −(c→ d))
+(e→ Yg,h) if u = +(e� (g → h)) −(e→ Yg,h) if u = −(e� (g → h))
+(e→ Za,b) if u = +(e� (a⇒ b)) −(e→ Za,b) if u = −(e� (a⇒ b))

For instance, continuing with Example 4.5, given the extended argumentation
framework EF0 of Figure 6 and the update u = +(d � (c → b)), we have that

1770

On the Incremental Computation of Semantics...

update um for the compact argumentation framework CF(EF0, u) shown in Figure 8
is um = +(d→ Yc,b).

Finally, given an initial extension for an extended argumentation framework and
an update, we define the initial labelling for the corresponding compact argumenta-
tion framework as follows.
Definition 4.7 (Corresponding initial labelling [7]). Given an extended argumenta-
tion
framework EF0 = 〈Ar , att, sup, s-att〉 and a initial labelling L0, the correspond-
ing initial labelling Lm0 for the compact argumentation framework CF(EF0, u) =
〈Arm, attm〉 is as follows:

∀a ∈ Ar ∩Arm : Lm0 (a) = L0(a);
∀ Xa,b ∈ Arm : Lm0 (Xa,b) = in if L0(a) = out

Lm0 (Xa,b) = out if L0(a) = in
Lm0 (Xa,b) = undec if L0(a) = undec

∀ Ya,b ∈ Arm : Lm0 (Ya,b) = in if (i) Lm0 (Xa,b) = out and
(ii) ∀c ∈ Ar s.t. (c, (a, b)) ∈ s-att,

L0(c) = out
Lm0 (Ya,b) = out if (i) Lm0 (Xa,b) = in or

(ii) ∃ c ∈ Ar | (c, (a, b)) ∈ s-att
and L0(c) = in

Lm0 (Ya,b) = undec, otherwise.

∀Za,b ∈ Arm : Lm0 (Za,b) = in if (i) L0(b) = out and
(ii) ∀ c ∈ Ar s.t. (c, (a, b)) ∈ s-att,

L0(c) = out
Lm0 (Za,b) = out if (i) L0(b) = in or

(ii) ∃ c ∈ Ar | (c, (a, b)) ∈ s-att
and L0(c) = in

Lm0 (Za,b) = undec, otherwise.

For instance, given the initial preferred extension E0 = {a, b, d, f} of the extended
argumentation framework EF0 of Example 4.1, the initial labelling for the compact
argumentation framework CF(EF0, +(d → Yc,b)) of Figure 8 is such that Lm0 (a) =
L0(a) = in, Lm0 (c) = L0(c) = out, Lm0 (Xc,b) = in, and Lm0 (Yc,b) = out. Also, we
have that Lm0 (b) = L0(b) = in, Lm0 (Xb,d) = out, Lm0 (Yb,d) = out since Lm0 (a) =
L0(a) = in, and Lm0 (d) = L0(d) = in.

1771

Alfano, Greco, Parisi, Simari, Simari

Algorithm 2 Incr-EAF(EF0, u, E0, σ, Solverσ)
Input: Extended argumentation framework EF0 = 〈Ar0, att0, sup0, satt0〉,

update u over EF0,
an initial σ-extension E0 for EF0,
semantics σ ∈ {PR,ST },
function Solverσ(AF) that returns an σ-extension of AF if it exists, and ⊥
otherwise;

Output: An σ-extension E for u(EF0) if it exists, ⊥ otherwise;
1: if checkProp(EF0, u, E0, σ) then
2: return E0;
3: end if
4: Let CF0 = CF(EF0, u) be the compact argumentation framework for EF0 w.r.t.
u (cf. Definition 4.4);

5: Let um be the update for CF0 corresponding to u (cf. Definition 4.6);
6: Let Em0 be the initial σ-extension for CF0 corresponding to E0;
7: Let Em = Incr-Alg(CF0, um, σ, Em0 , Solverσ);
8: if (Em 6= ⊥) then
9: return E = (Em ∩Ar0);

10: else
11: return ⊥;
12: end if

Incremental Algorithm for Extended Argumentation Frameworks We are
now ready to present the algorithm for extending the incremental technique to the
case of extended argumentation frameworks. Given an extended argumentation
framework EF0, a semantics σ ∈ {PR, ST }, an extension E0 ∈ Eσ(EF0), and an
update u of the form u = ±(a ⇒ b), u = ±(a → b), u = ±(e � (c ⇒ d)),
or u = ±(e � (c → d)), Algorithm 2 computes an extension E of the updated
extended argumentation framework u(EF0), if it exists [7]. The algorithm works as
follows. It first checks if the initial extension E0 is still an extension of the updated
extended argumentation framework at Line 1, where checkProp(EF0, u, E0, σ) is a
function returning true iff the update is irrelevant—the interested reader can find
the conditions under which an update for an extended argumentation framework
is irrelevant in [7]. If this is the case, it immediately returns the initial extension.
Otherwise, it computes the compact argumentation framework CF0 (Line 4), the
update um for CF0 (Line 5), and the initial σ-extension Em0 for CF0 (Line 6). Next,
it invokes function Incr-Alg (i.e., Algorithm 1). Incr-Alg takes as input the parameters
CF0, um, σ, Em0 , and Solverσ, where Solverσ is an external solver that can compute

1772

On the Incremental Computation of Semantics...

an σ-extension for the input argumentation framework. Finally, the extension of the
updated extended argumentation framework (if any) is obtained by projecting out
the extension Em returned by Incr-Alg over the set of arguments Ar0 of the initial
extended argumentation framework (Line 9).

From a computational point of view, in the worst case (that is, when every ar-
gument is influenced, and thus the RAF collapses to be the updated framework),
Algorithm 1 and Algorithm 2 have the same computational complexity as the cor-
responding task in the static setting under the considered AF semantics. It is worth
noting that the overhead of computing the influenced set and the RAF is polynomial
in the input framework’s size.

The use of the incremental techniques discussed in this section and the previous
one become significant in practice. In fact, in [5] it is shown that Algorithm 1 out-
performs state-of-the-art solvers that compute the extensions from scratch for single
updates by two orders of magnitude on average, and it remains faster than the
competitors even when recomputing an extension after performing updates simulta-
neously. Moreover, [7] reports on an experimental analysis showing that Algorithm 2
also outperforms by two orders of magnitude the computation from scratch on EAFs,
where solvers from scratch taking as input the (compact) Dung argumentation fra-
meworks resulting from the transformation of the candidate EAF (cf. Definition 4.4)
are used. Finally, the experimental results concerning the use of both Algorithm 1
and Algorithm 2 also revealed that the improvements of using incremental techniques
become larger as the computation from scratch becomes more challenging.

5 Incremental Computation in Defeasible Logic
Programming

In [30], four frameworks that consider the structure of arguments were presented.
Two of them—ASPIC+ [85] and ABA [94]—build the set of all possible arguments
from the knowledge base and then rely on using one of the possible Dung semantics
to decide on the acceptance of arguments. The other two—Logic-Based Deductive
Argumentation [32] and DeLP [70]—only build the arguments involved in answering
the query. These last two frameworks exhibit several differences [30]—among them
is the base logic used as a knowledge representation language: [32] relies on proposi-
tional logic, requiring a theorem prover to solve queries; on the other hand, DeLP [70]
adopts an extension of logic programming, which is a computational framework per
se. To better understand the differences among the frameworks mentioned above,
we refer the interested reader to [68], where a variant of DeLP using the grounded
semantics is also discussed.

1773

Alfano, Greco, Parisi, Simari, Simari

A fundamental distinction between DeLP and the other three frameworks, which
significantly affects a query’s resolution, rests on how attacks between arguments are
described. DeLP considers two forms of defeat: proper and blocking; the former is
akin to Dung’s attack [55], whereas the latter presents a different behavior since the
two arguments that are part of the blocking defeat relation, attacker and attackee,
are defeated (hence the use of the term blocking defeater). Of course, this could be
modeled in Dung’s graphs as a mutual attack, but the DeLP mechanism forbids, in
a properly formed dialogue, the use of two blocking defeaters successively because
the introduction of another blocking defeater is unnecessary since the first two are
already defeated. Moreover, to find the answers required by the query, other con-
siderations of dialogical nature are taken into account, strengthening the reasoning
process by forbidding common dialogical fallacies; these characteristics have been
reflected in the development of a game-based semantics [95].

In this section, we focus on the incremental computation in the context of
structured argumentation. Particularly, we discuss an incremental technique [12;
11] for Defeasible Logic Programming (DeLP) [69; 70] which shares the same under-
lying ideas and the goal of avoiding wasted effort as in the (incremental) technique
previously discussed for AFs. Given that our primary focus is on the changes in the
structure of the arguments used to answer a query, we have considered the DeLP
language; however, the ideas here developed can inspire similar techniques for other
structured argumentation frameworks such as ABA and ASPIC+. Next, we will
summarize the necessary elements to develop the updating techniques in DeLP’s
structured argumentation; see [11] for an extended presentation.

5.1 Defeasible Logic Programming and Updates
A DeLP program P = (Π,∆) consists of sets Π and ∆ of strict and defeasible rules
defined using elements of a set Lit of literals, that are ground atoms obtained from
a set At of atoms. LitP denotes the set of literals occurring in a rule of P, and the
symbol “∼” represents strong negation; for any literal α ∈ Lit the formula ∼∼α
is considered equivalent to α and can be used for denoting it. Particularly, given
the literals α0, α1, . . . , αn, a strict rule α0 ← α1, . . . , αn (with n ≥ 0) represents
non-defeasible information, while defeasible rules α0−≺α1, . . . , αn (with n > 0)
represent tentative information, i.e., information that can be used if nothing can be
posed against it. Given a strict or defeasible rule r, we use head(r) to denote α0,
and body(r) to denote the set of literals {α1, . . . , αn}. Strict rules with empty body
will also be called facts.1

1With a little abuse of notation, in the following we will denote a fact (α←) simply by α.

1774

On the Incremental Computation of Semantics...

As an example of DeLP program, let us consider P1 = (Π1,∆1), where:

Π1={x, y, z, (w ← y)} is the set of strict rules (and facts), and

∆1 = {(a−≺w), (a−≺ z), (∼a−≺ z), (b−≺ a), (b−≺ z), (c−≺ b, x),

(∼c−≺ b), (d−≺ ∼c)} is the set of defeasible rules.

Given a DeLP program P = (Π,∆) and a literal α ∈ LitP , a (defeasible) deriva-
tion for α w.r.t. P is a finite sequence α1, α2, . . . , αn = α of literals such that (i)
each literal αi is in the sequence because there exists a (strict or defeasible) rule
r ∈ P with head αi and body αi1 , αi2 , . . . , αik such that ij < i for all j ∈ [1, k], and
(ii) there do not exist two literals αi and αj such that αj = ∼αi. A derivation is
said to be a strict derivation if only strict rules are used.

A program P is contradictory if and only if there exist defeasible derivations for
at least two complementary literals α and ∼α from P. We assume that Π (the strict
part of P) is not contradictory. However, complementary literals can be derived
from P when defeasible rules are used in the derivation. Two literals α and β are
said to be contradictory if (i) neither Π ∪ {α} nor Π ∪ {β} strictly derive a pair of
complementary literals, whereas (ii) Π∪{α, β} does. Pairs of complementary literals
are clearly contradictory; a set of literals is said to be contradictory if it contains
two contradictory literals.

Considering the program P1, the literal c can be derived using the following sets
of rules and facts: {(c−≺x, b), (x), (b−≺ a), (a−≺w), (w ← y), (y)}; the derivation
(y, w, a, b, x,
c) describes how rules can be applied to derive c. However, the set of rules Π1∪∆1
is contradictory since also ∼c can be derived using the rules: {(∼c−≺ b), (b−≺ a),
(a−≺w), (w ← y), (y)}. The non-contradictory set of literals that can be derived
from Π1 is {x, y, w, z}.

DeLP incorporates a defeasible argumentation formalism for the treatment of
contradictory knowledge, allowing the identification of conflicting pieces of knowl-
edge, and a dialectical process is used for deciding which information prevails as
warranted. This process involves the construction and evaluation of arguments that
either support or interfere with a user-issued query. An argument A for a literal α
is a couple 〈A, α〉 where A is a set of defeasible rules representing a derivation that
is (i) supported by facts, (ii) non-contradictory, and (iii) ⊆-minimal (i.e., there
is no proper subset of A satisfying both (i) and (ii)). As an example, 〈A1, c〉 =
〈{(c−≺x, b), (b−≺ a), (a−≺w), (w ← y)}, c〉 and 〈A2,∼a〉 = 〈{(∼a−≺ z)},∼a〉 are
two arguments that can be obtained from the program P1. An argument 〈A, α〉 is
said to be a sub-argument of 〈A′, α′〉 if A ⊆ A′.

1775

Alfano, Greco, Parisi, Simari, Simari

The main task of DeLP is establishing warranted literals. A literal α is said
to be warranted if there exists an undefeated argument 〈A, α〉. To determine if an
argument 〈A, α〉 is undefeated, defeaters for 〈A, α〉 are considered, and since rein-
statement could happen when all of A’s possible defeaters are defeated, the process
continues considering defeaters for A’s defeaters, and so on. To define defeaters, to
decide when an attack is successful, we require a comparison criterion � over argu-
ments, which is irreflexive and asymmetric. As the comparison criterion is a modular
part of the argumentation inference engine, we will abstract away from this criterion
and simply assume the existence of a comparison criterion � between arguments:
〈A, α〉 � 〈B, β〉 meaning that argument 〈A, α〉 is preferred to 〈B, β〉. Intuitively, an
argument 〈A, α〉 attacks an argument 〈B, β〉 when there is a sub-argument 〈C, γ〉 of
〈B, β〉, such that α and γ are contradictory. When the attacker satisfies that 〈C, γ〉
is not preferred to 〈A, α〉 (i.e., 〈C, γ〉 6� 〈A, α〉), the attacker is called a defeater. A
defeater 〈A, α〉 for 〈B, β〉 will be referred to as a proper defeater if 〈A, α〉 � 〈C, γ〉;
otherwise, it will be called a blocking defeater.

An other part of the dialectical process is the construction of the so called di-
alectical tree, which is used to decide the warrant status of a literal. A dialectical
tree contains all the possible acceptable argumentation lines (namely, sequences of
defeating arguments) that can be constructed from the given argument that sits on
the root of that tree as paths from the root to the leaves. (see [52] for a discussion).
More in detail, a dialectical tree for an argument 〈A, α〉 is a tree-like structure where
nodes are arguments and the root node is 〈A, α〉. Each root-to-leaf path in the tree
is an acceptable argumentation line, which is a finite sequence of arguments that
satisfy the following four constraints: (i) every argument of the sequence defeats its
predecessor; (ii) the arguments in odd (resp., even) positions of the sequence does
not contradict the strict part of the program; (iii) two blocking defeaters cannot
appear one immediately after the other in the sequence; and (iv) arguments cannot
appear twice in the sequence (also when appearing as sub-arguments).

Therefore, it is interesting to note that a dialectical tree for an argument repre-
sents the exhaustive dialectical analysis for that argument. Each dialectical tree is
then marked to obtain the status of the literal α in the argument at its root through
a bottom-up marking procedure, consisting in i) marking all leaves of the tree as
undefeated; then, ii) every non-leaf node is marked as defeated if and only if
at least one of its children is marked as undefeated, otherwise it is marked as
undefeated. Thus, if there exists a marked dialectical tree whose root contains an
argument for α, which is marked as undefeated, we will say that α is warranted2.

2The system available at the following link allows us to compare the abstract semantics with that
of DeLP: https://hosting.cs.uns.edu.ar/~daqap/client/index.html; see [78] for a description.

1776

On the Incremental Computation of Semantics...

Considering the program P1, only x, y, z, w, and b are warranted.
Given a DeLP program P, we define a total function SP : Lit → {in, out,

undec} assigning a status to each literal w.r.t. P as follows: SP(α) = in if α is
warranted; SP(α) = out if SP(∼α) = in; SP(α) = undec if neither SP(α) = in nor
SP(α) = out. For literals not occurring in the program we also say that their status
is unknown.

Updates. An update for a DeLP program P = 〈Π,∆〉 modifies P into a new
program P ′ = 〈Π′,∆′〉 by adding or removing a strict or a defeasible rule r. In
particular, we allow the removal of any rule r of P through an update, and consider
the addition of a rule r such that body(r) ⊆ LitP and head(r) ⊆ Lit, thus allowing
also the addition of a rule whose head is a literal not belonging to LitP . Given a
DeLP program P and a strict or defeasible rule r, we use u = +r (resp., u = −r)
to denote a rule addition (resp., deletion) update to be performed on P, obtaining
the DeLP-program u(P) resulting from the application of update u to P. In the
following, we assume that any update u is feasible, meaning that i) we only remove
(resp. add) strict or defeasible rules appearing (resp., not appearing) in the given
program P, and ii) guaranteeing that the strict part of the updated program u(P)
will not be contradictory.

5.2 Incremental Computation of Warranted Literals
We first introduce the concept of labeled directed hypergraph associated with a
DeLP program, which is central to our incremental approach.

Given a program P, the corresponding labelled hypergraph G(P) = 〈N,H〉
consists of a set N of nodes and a set H of labelled hyper-edges (Src, t, l), where
Src is a possibly empty set called the source set, t is called the target node, and
l ∈ {def, str, cfl} is a label associated to the hyper-edge. Literals for which there
exists a strict derivation in Π are immediately added to the set N of nodes of
G(P). Then, for each (strict or defeasible) rule whose body is in N , the head is
added to N , and a (str or def) labelled hyper-edge corresponding to the (strict or
defeasible) rule is added to the set H of hyper-edges. Finally, there is a pair of (cfl)
labelled hyper-edges for each pair of complementary literals appearing as nodes in
the hypergraph.

The hypergraph G(P1) for the DeLP program P1 is shown in Figure 9(a) where
↔ (resp. �− and J−) denotes hyper-edges labeled as cfl (resp. def and str).

We say that there is a path from a literal β to a literal α, if either (i) there exists
a hyper-edge whose source set contains β and whose target is α, or (ii) there exists
a literal γ and also there exist paths from β to γ and from γ to α. Moreover, we say

1777

Alfano, Greco, Parisi, Simari, Simari

c ∼c

a

∼a

d

x

b

z y

w

c

a

∼a

x

b

z y

w

(a) (b)

Figure 9: (a) G(P1) for program P1; (b) G(P ′1) for program P ′1 = −(∼c−≺ b)(P1).

that a node y is reachable from a set X of nodes if there exists a path from some x
in X to y.

Given an update u, we denote with G(u,P) the labeled hypergraph G(u+(P)) or
G(u−(P)), depending on whether u consists of an insertion or deletion, respectively.
The reason of this difference is that, to determine the set of literals whose status
may change by deleting a rule r, we need to consider the hypergraph also containing
the hyper-edge derived from r.

Given a DeLP-program P and an update u, our incremental approach for recom-
puting the status of the literals after performing u consists of the following steps.

• Firstly, it is checked whether the update u is irrelevant, that is all literals in
Lit are preserved. In such a case the initial status SP is returned.

• If u is not irrelevant, we need to:

(i) compute the set of literals that are “influenced” by the update;
(ii) among the influenced literals determine the subset of literals (called core

literals) whose status may change after performing the update. The status
of uninfluenced literals does not change after the update.

(iii) compute the updated status of the core literals; and
(iv) determine the updated status of the inferable literals, i.e., the literals

whose status can be immediately determined from the status of the core
literals.

The identification of relevant and irrelevant updates, as well influenced, pre-
served, core, and inferable literals is discussed below. In [12; 11], it is shown that,
in practice, the algorithm resulting from applying the above-mentioned steps turns
out to be much more efficient than recomputing everything from scratch.

1778

On the Incremental Computation of Semantics...

Irrelevant updates. Sufficient conditions guaranteeing that the status of each
literal in the updated program is the same as that of the initial program are inves-
tigated in [11]. In these cases we say that the update u is irrelevant. One of these
conditions holds whenever we add (resp. remove) a defeasible rule whose head’s
status is in (resp. out) w.r.t. the initial program. However, this does not hold for
updates concerning strict rules. In these cases, we need to makes use of the hyper-
graph associated with a DeLP program, as well as the status of the literals related
to an update.

A literal is said to be related to a given update u = ±r and program P if it can
be reached from head(r) in the labelled hypergraph G(u,P) by navigating forward
each rules and backward strict rules only, until no new related literals can be found.
We call deductive closure of facts and strict rules of a program P the set of literals
that are facts in P or can be derived from the strict part Π of P. Given this, an
update u = ±r is irrelevant if either (i) head(r) does not belong to G(u,P); or (ii)
either head(r) or ∼head(r) appears in the deductive closure of facts and strict rules
of both programs P and u(P); or (iii) at least one literal in the body of r is either
out or not related to u. Recomputing the status of the updated program’s literals
can be avoided if an irrelevant update is performed.

Relevant updates and influenced set. We now consider the computation of the
status of literals for updates which have not been identified as irrelevant. An update
is relevant whenever it causes the status of at least one literal to change. That is,
even if for relevant updates the status of some literals may not change, and therefore
for those literals, their status does not need to be recomputed when the update is
performed. To avoid wasted effort, we determine the subset of literals whose status
needs to be recomputed after an update. Towards this end, we discuss the concept of
influenced set, which consists of the set of literals that are related to a given update
u and program P but using only labeled hyper-edges whose corresponding rules are
such that (i) the head (or its complement) is not in the deductive closures of both
P and u(P), and (ii) the body does not contain a literal that is not related to u and
P and such that its status is out—intuitively, the other hyper-edges can be ignored
as they correspond to rules whose head does not change status. For instance, for
the program P1 and update u = −(∼c−≺ b), the influenced set consists only of the
literals b, c, ∼c, and d.

The notion of influenced set for DeLP programs is conceptually similar to the
influenced set of Definition 3.3 for abstract argumentation frameworks (where ar-
guments have no internal structure). Although the aim is analogous, here we deal
with incremental computation of the status of structured arguments, and consider a
notion of influenced set w.r.t. an update for a DeLP program and its status that we

1779

Alfano, Greco, Parisi, Simari, Simari

then apply to (hyper)graphs representing DeLP programs, from which structured
arguments are derived. A significant difference is that here we have both strict and
defeasible rules meaning that to determine a portion of the hypergraph that contains
nodes corresponding to literals whose status may change, we need to navigate strict
edges both forward and backward. As an example, consider the DeLP program
Pχ = 〈Πχ,∆χ〉 where Πχ = {f1, f2, a ← b, ∼a ← c} and ∆χ = {b−≺ f1}, and
let u = +(c−≺ f2) be an update yielding the updated DeLP program P ′χ. The in-
fluenced set is {c, ∼a, a, b}. Observe that b is included in the influenced set by
navigating backward via the (hyper)edge corresponding to the strict rule a ← b,
while the other literals are reached by forward reachability. Note that including b is
important as its status changes (it is undec w.r.t. P ′χ, it was in w.r.t. Pχ).

Preserved, core, and inferable literals. Using the influenced set we can iden-
tify the preserved literals, i.e., the literals whose status does not change after per-
forming a relevant update. This set consists of the literals (i.e., nodes) of the
updated hypergraph that are not influenced. The status of a literal for which there
is no argument in the (updated) program may depend only on the status of its
complementary literal—we call such literals inferable and use them to define what
we call core literals. The core literals for an update u are those in LitP ′ that are
influenced but are not inferable, where P ′ is the updated program. The status of an
inferred literal w.r.t. the updated program can be either out or undec, and if it is
out it is entailed by the status of a core or preserved literal that is in. Finally, the
status of the literals not in LitP ′ can be readily determined to be undec.

Considering the program P1 and update u = −(∼c−≺ b), ∼c and d are the only
inferable literals, while b and c are core literals. The (updated) status of the inferable
literal ∼c is out as it is entailed by the (updated) status of its complementary literal,
which is in; the status of the inferable literal d remains undec.

Efficiency. The incremental technique discussed in this section has been the sub-
ject of analysis in [11; 12], which report on a set of experiments comparing the
incremental approach with full recomputation from scratch (that is, the direct com-
putation of the status of all the literals in an updated DeLP program using the
DeLP-Solver). It turned out that the incremental approach significantly outper-
forms computation from scratch. Specifically, the incremental algorithm takes only
a few seconds for DeLP programs, while the approach from scratch takes almost 2
minutes.

1780

On the Incremental Computation of Semantics...

6 Related Work

Overviews of key concepts in argumentation theory and formal models of argumen-
tation in the field of Artificial Intelligence are presented in [29; 31; 91; 19]. Further
discussion regarding uses of computational argumentation as an Agreement Tech-
nology can be found in [86].

A comprehensive introduction to the semantics of static abstract argumenta-
tion frameworks can be found in [21]. Although the idea underlying abstract ar-
gumentation frameworks is intuitive and straightforward, most of the semantics
proposed so far suffer from a high computational complexity [58; 57; 59; 60; 64; 65;
66; 67]. Complexity bounds and evaluation algorithms for abstract argumentation
frameworks have been intensely studied in the literature, but most of this research
focused on static frameworks, whereas, in practice, argumentation frameworks are
dynamic systems [42; 62; 25; 81; 24; 51]. In fact, in general, an AF represents a
temporary situation, and new arguments and attacks can be added/retracted to
model new available knowledge. For instance, for disputes among users of online
social networks [76], arguments/attacks are continuously added or removed by users
to express their point of view in response to the last move made by the adversaries
(often disclosing as few arguments/attacks as possible).

There have been several significant efforts aimed at coping with the dynamic
aspects of abstract argumentation. In [39; 40], the authors have investigated the
principles according to which a grounded extension of a Dung abstract argumen-
tation framework does not change when the set of arguments/attacks is changed.
Meanwhile, in [35] a synthesis is presented concerning the characterization of changes
based on the work presented in [44; 45; 33; 34] where the evolution of the set of ex-
tensions after performing a change operation is studied; here, a change operation can
be about adding or removing one interaction or adding or removing one argument
and a set of interactions.

Dynamic argumentation has been applied to the decision-making mechanisms
of an autonomous agent by [18], where it is studied how the acceptability of ar-
guments evolves when a new argument is added to the decision system. Other
relevant works on dynamic aspects of Dung’s argumentation frameworks include the
following. [25] has proposed an approach exploiting the concept of the splitting of
logic programs to deal with dynamic argumentation. The technique considers weak
expansions of the initial argumentation framework, where added arguments never
attack previous ones. [28] have investigated whether and how it is possible to mod-
ify a given argumentation framework so that a desired set of arguments becomes
an extension, whereas [90] have studied equivalence between two argumentation fra-
meworks when further information (another argumentation framework) is added to

1781

Alfano, Greco, Parisi, Simari, Simari

both argumentation frameworks. [26] has focused on expansions where new argu-
ments and attacks may be added, but the attacks among the old arguments remain
unchanged, while [27] have characterized update and deletion equivalence, where
adding/deleting arguments/attacks is allowed (deletions were not considered by [90;
26]).

Several approaches for dividing argumentation frameworks into subgraphs have
been explored in the context of dynamic argumentation frameworks. The division-
based method, proposed in [81] and then refined in [24], divides the updated frame-
work into two parts: affected and unaffected, where only the status of affected argu-
ments is recomputed after updates. Using the results introduced in [81], the work
presented in [80] investigated the efficient evaluation of the justification status of
a subset of arguments in an argumentation framework (instead of the whole set of
arguments), and proposed an approach based on answer-set programming for lo-
cal computation. In [79], an argumentation framework is decomposed into a set
of strongly connected components, yielding sub-argumentation frameworks located
in layers, which are then used for incrementally computing the semantics of the
given argumentation framework by proceeding layer by layer. Then, [97] introduced
a matrix representation of argumentation frameworks and proposed a matrix re-
duction that, when applied to dynamic argumentation frameworks, resembles the
division-based method in [81].

Changes in bipolar argumentation frameworks have been studied in the work [49],
where it is shown how the addition of one argument together with one support that
involves that argument (and without introducing any attack) impacts the extensions
of the updated bipolar argumentation framework. However, these works do not
address the incremental computation in dynamic bipolar argumentation frameworks,
nor in extended argumentation frameworks modeling attacks towards the attack
relation [82; 22] and defeasible support [38].

There have been fewer attempts to consider the dynamics of the defeasible ar-
gumentation in the field of structured argumentation [30]. As in the abstract argu-
mentation case, there have been some works following the belief revision approach.
In [63], the issue of modifying strict rules to become defeasible was analyzed in
the context of revisions effected over a knowledge base, while in [87] the authors
thoroughly explored the different cases that may occur when a DeLP program is
modified by adding, deleting, or changing its elements. Neither of these works ex-
plored the implementation issues related to the problems studied here. Regarding
implementations of approaches focusing on improving the tractability of determining
the status of pieces of knowledge, in [42; 43], the authors consider several alternatives
to avoid recomputing warrants. In [54], the authors focus on challenges arising in
the development of recommender systems, addressing them via the design of novel

1782

On the Incremental Computation of Semantics...

architectures that improve the computation of answers. Finally, [73] makes use of
heuristics designed to improve efficiency, and [92] deals with the computational com-
plexity of performing recalculations in a structured argumentation setting by relying
on an approximation algorithm.

We believe that the set of ideas proposed in this work may be a forerunner of
similar techniques for the optimization of other structured argumentation frame-
works such as, for example, ABA and ASPIC+. Regarding ABA, the construction
of deductions is very similar to that of arguments for DeLP, although the way ar-
guments attack each other is different. Therefore, similarly, the ABA framework
could be represented using hypergraphs (where assumptions may be modeled as de-
feasible facts) to identify irrelevant updates and restrict the hypergraph to compute
the semantics of updated programs efficiently. The similarities between DeLP and
ASPIC+ are even more substantial: both have a distinction between strict and defea-
sible inference rules, and both use comparison criteria to resolve attacks into defeats;
however, while ASPIC+ evaluates arguments with the standard AF semantics, DeLP
has a special-purpose definition of argument evaluation [71]. Therefore, the ideas
developed here can be of inspiration to optimize the incremental computation of the
semantics of ASPIC+ programs.

7 Conclusions and Future Work

We have reviewed techniques for the incremental and efficient computation in dy-
namic abstract argumentation and defeasible knowledge bases. In the case of ab-
stract argumentation, we have presented a technique enabling any non-incremental
algorithm to be used as an incremental one for computing some extension of dy-
namic argumentation frameworks. The algorithm identifies a tighter portion of the
updated argumentation framework to be examined for recomputing the semantics.
The incremental algorithm proposed for Dung’s frameworks enables a technique for
the incremental computation of extensions of dynamic frameworks incorporating
supports and second-order attacks (that we called extended argumentation frame-
works). Recently, in [3], we have investigated incremental techniques for the ASAF
framework [72], where attacks and support relations of any order are considered.
For the case of structured argumentation, we have discussed an algorithm able to
incrementally solve the problem determining the warrant status of literals in a DeLP
program which is updated by adding or deleting strict or defeasible rules. The exper-
imental analysis performed in [5; 7; 12; 11] showed that, in practice, the incremental
approach, for both the cases of abstract and structured frameworks, turns out to be
much more efficient than recomputing everything from scratch.

1783

Alfano, Greco, Parisi, Simari, Simari

The notions behind the use of an incremental approach can be extended fur-
ther, as done in [8; 1], where an incremental technique was recently proposed aimed
at determining whether a given argument is skeptically preferred accepted in dy-
namic argumentation frameworks by exploiting the concept of influenced and re-
duced argumentation frameworks presented here in Section 3. Future work will
be devoted to extending our technique to cope with other argumentation frame-
works [13; 14] and other computational problems [2; 9; 15]. It would be interesting
to deal with different interpretations of the support relation, e.g., that one in [47;
48] where a meta argumentation approach is also adopted to deal with bipolarity.
We plan to address the problem of incrementally enumerating all the extensions of
an abstract argumentation framework. Following [8; 10], devising an incremental
computation approach for the skeptical/credulous acceptance in dynamic argumen-
tation frameworks, and its extensions (e.g., bipolar argumentation frameworks and
ASAFs), is another intriguing direction for future work. Finally, we believe the
basic ideas presented for the case of structured argumentation could carry over to
other frameworks, e.g., ASPIC+ or ABA; this is another research direction we are
planning to pursue in future work.

Acknowledgments
The authors are grateful to the participants of the workshop Current Trends in
Formal Argumentation (held at the University Centre of Bertinoro from November
3rd to 6th, 2019), and in particular to Matthias Thimm, for discussions on the
limitations of the technique previously presented in [11] that improved the charac-
terization of the irrelevant updates, and of the set of influenced literals, which are
on the basis of the incremental approach for DeLP. Moreover, the authors wish to
thank the reviewers for their comments and suggestions that helped us in improving
the paper. Finally, this work was partly supported in Argentina by Universidad
Nacional del Sur (UNS) under grant PGI 24/ZN34, Consejo Nacional de Investi-
gaciones Cientificas y Técnicas (CONICET), and Agencia Nacional de Promoción
Cientifica y Tecnológica under grant PICT-2018-0475.

References
[1] G. Alfano and S. Greco. Incremental skeptical preferred acceptance in dynamic argu-

mentation frameworks. IEEE Intelligent Systems, 2021.
[2] Gianvincenzo Alfano, Marco Calautti, Sergio Greco, Francesco Parisi, and Irina Trubit-

syna. Explainable acceptance in probabilistic abstract argumentation: Complexity and
approximation. In Proceedings of the 17th International Conference on Principles of

1784

On the Incremental Computation of Semantics...

Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18,
2020, pages 33–43, 2020.

[3] Gianvincenzo Alfano, Andrea Cohen, Sebastian Gottifredi, Sergio Greco, Francesco
Parisi, and Guillermo Ricardo Simari. Dynamics in abstract argumentation frame-
works with recursive attack and support relations. In Proc. of European Conference on
Artificial Intelligence (ECAI), pages 577–584, 2020.

[4] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Computing stable and pre-
ferred extensions of dynamic bipolar argumentation frameworks. In Proc. of Workshop
on Advances In Argumentation In Artificial Intelligence co-located with XVI Interna-
tional Conference of the Italian Association for Artificial Intelligence (AI*IA), pages
28–42, 2017.

[5] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Efficient computation of
extensions for dynamic abstract argumentation frameworks: An incremental approach.
In Proc. of International Joint Conference on Artificial Intelligence (IJCAI), pages
49–55, 2017.

[6] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Computing extensions of
dynamic abstract argumentation frameworks with second-order attacks. In IDEAS,
pages 183–192, 2018.

[7] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. A meta-argumentation ap-
proach for the efficient computation of stable and preferred extensions in dynamic
bipolar argumentation frameworks. Intelligenza Artificiale, 12(2):193–211, 2018.

[8] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. An efficient algorithm for
skeptical preferred acceptance in dynamic argumentation frameworks. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pages 18–24, 2019.

[9] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. On scaling the enumeration
of the preferred extensions of abstract argumentation frameworks. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019, Limassol, Cyprus,
April 8-12, 2019, pages 1147–1153. ACM, 2019.

[10] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Computing skeptical pre-
ferred acceptance in dynamic argumentation frameworks with recursive attack and
support relations. In Proceedings of COMMA, volume 326 of Frontiers in Artificial
Intelligence and Applications, pages 67–78. IOS Press, 2020.

[11] Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Gerardo I. Simari, and
Guillermo R. Simari. An incremental approach to structured argumentation over dy-
namic knowledge bases. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixteenth International Conference, KR, pages 78–87, 2018.

[12] Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Gerardo I. Simari, and
Guillermo R. Simari. Incremental computation of warranted arguments in dynamic
defeasible argumentation: The rule addition case. In Proc. of the Symposium on Ap-
plied Computing (SAC), pages 911–917, 2018.

[13] Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. On the se-

1785

Alfano, Greco, Parisi, Simari, Simari

mantics of abstract argumentation frameworks: A logic programming approach. Theory
Pract. Log. Program., 20(5):703–718, 2020.

[14] Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. On the
semantics of recursive bipolar afs and partial stable models. In Proceedings of the
Workshop on Advances In Argumentation In Artificial Intelligence 2020 co-located with
the 19th International Conference of the Italian Association for Artificial Intelligence
(AIxIA 2020), Online, November 25-26, 2020, volume 2777 of CEUR Workshop Pro-
ceedings, pages 16–30. CEUR-WS.org, 2020.

[15] Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, and Irina Trubitsyna. Argumen-
tation frameworks with strong and weak constraints: Semantics and complexity. In
Proc. of AAAI, page (to appear), 2021.

[16] Leila Amgoud, Jean-François Bonnefon, and Henri Prade. An argumentation-based
approach to multiple criteria decision. In Proc. of European Conference on Symbolic
and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU), pages 269–
280, 2005.

[17] Leila Amgoud, Claudette Cayrol, and Marie-Christine Lagasquie-Schiex. On the bipo-
larity in argumentation frameworks. In Proc. of International Workshop on Non-
Monotonic Reasoning (NMR), pages 1–9, 2004.

[18] Leila Amgoud and Srdjan Vesic. Revising option status in argument-based decision
systems. Journal of Logic and Computation, 22(5):1019–1058, 2012.

[19] Katie Atkinson, Pietro Baroni, Massimiliano Giacomin, Anthony Hunter, Henry
Prakken, Chris Reed, Guillermo R. Simari, Matthias Thimm, and Serena Villata. To-
wards artificial argumentation. AI Magazine, 38(3):25–36, 2017.

[20] Pietro Baroni, Guido Boella, Federico Cerutti, Massimiliano Giacomin, Leendert W. N.
van der Torre, and Serena Villata. On the input/output behavior of argumentation
frameworks. Artificial Intelligence, 217:144–197, 2014.

[21] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to
argumentation semantics. The Knowledge Engineering Review, 26(4):365–410, 2011.

[22] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. Encom-
passing attacks to attacks in abstract argumentation frameworks. In Proc. of European
Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU), pages 83–94, 2009.

[23] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. AFRA:
Argumentation Framework with Recursive Attacks. IJAR, 52(1):19–37, 2011.

[24] Pietro Baroni, Massimiliano Giacomin, and Beishui Liao. On topology-related proper-
ties of abstract argumentation semantics. A correction and extension to dynamics of
argumentation systems: A division-based method. Artificial Intelligence, 212:104–115,
2014.

[25] Ringo Baumann. Splitting an argumentation framework. In Proc. of International
Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR), pages
40–53, 2011.

1786

On the Incremental Computation of Semantics...

[26] Ringo Baumann. Normal and strong expansion equivalence for argumentation frame-
works. Artificial Intelligence, 193:18–44, 2012.

[27] Ringo Baumann. Context-free and context-sensitive kernels: Update and deletion
equivalence in abstract argumentation. In Proc. of European Conference on Artificial
Intelligence (ECAI), pages 63–68, 2014.

[28] Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks: Enforc-
ing and monotonicity results. In Proc. of Third International Conference on Computa-
tional Models of Argument (COMMA), pages 75–86, 2010.

[29] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence.
Artificial Intelligence, 171(10 - 15):619 – 641, 2007.

[30] Philippe Besnard, Alejandro J. Garcia, Anthony Hunter, Sanjay Modgil, Henry
Prakken, Guillermo R. Simari, and Francesca Toni. Introduction to structured ar-
gumentation. Argument & Computation – Special Issue: Tutorials on Structured Argu-
mentation, 5(1):1–4, 2014.

[31] Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT Press, 2008.
[32] Philippe Besnard and Anthony Hunter. Constructing argument graphs with deductive

arguments: A tutorial. Argument & Computation, 5(1):5–30, 2014.
[33] Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine

Lagasquie-Schiex. Change in argumentation systems: Exploring the interest of re-
moving an argument. In Proceedings of the 5th International Conference on Scalable
Uncertainty Management (SUM), pages 275–288, 2011.

[34] Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine
Lagasquie-Schiex. Changement dans un système d’argumentation : suppression d’un
argument. Rev. d’Intelligence Artif., 26(3):225–253, 2012.

[35] Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine
Lagasquie-Schiex. Characterizing change in abstract argumentation systems. In Trends
in Belief Revision and Argumentation Dynamics, volume 48, pages 75–102. 2013.

[36] Stefano Bistarelli, Francesco Faloci, Francesco Santini, and Carlo Taticchi. Studying
dynamics in argumentation with Rob. In COMMA, pages 451–452, 2018.

[37] Stefano Bistarelli, Lars Kotthoff, Francesco Santini, and Carlo Taticchi. Containerisa-
tion and dynamic frameworks in iccma’19. In Proceedings of the Second International
Workshop on Systems and Algorithms for Formal Argumentation (SAFA 2018) co-
located with the 7th International Conference on Computational Models of Argument
(COMMA 2018), Warsaw, Poland, September 11, 2018., pages 4–9, 2018.

[38] Guido Boella, Dov M. Gabbay, Leendert W. N. van der Torre, and Serena Villata.
Support in abstract argumentation. In Computational Models of Argument: Proceedings
of COMMA 2010, Desenzano del Garda, Italy, September 8-10, 2010., pages 111–122,
2010.

[39] Guido Boella, Souhila Kaci, and Leendert W. N. van der Torre. Dynamics in argumen-
tation with single extensions: Abstraction principles and the grounded extension. In
Proc. of European Conference on Symbolic and Quantitative Approaches to Reasoning

1787

Alfano, Greco, Parisi, Simari, Simari

and Uncertainty (ECSQARU), pages 107–118, 2009.
[40] Guido Boella, Souhila Kaci, and Leendert W. N. van der Torre. Dynamics in argumen-

tation with single extensions: Attack refinement and the grounded extension. In Proc.
of Sixth Int. Workshop on Argumentation in Multi-Agent Systems (ArgMAS), pages
150–159, 2009.

[41] Martin Caminada. Semi-stable semantics. In Proc. of 1st International Conference on
Computational Models of Argument (COMMA), pages 121–130, 2006.

[42] Marcela Capobianco, Carlos I. Chesñevar, and Guillermo R. Simari. Argumentation
and the dynamics of warranted beliefs in changing environments. Autonomous Agents
and Multi-Agent Systems, 11(2):127–151, 2005.

[43] Marcela Capobianco and Guillermo R. Simari. A proposal for making argumentation
computationally capable of handling large repositories of uncertain data. In Proc. of
Scalable Uncertainty Management, pages 95–110, 2009.

[44] Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex.
Revision of an argumentation system. In Proc. of International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), pages 124–134, 2008.

[45] Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex.
Change in abstract argumentation frameworks: Adding an argument. Journal of Arti-
ficial Intelligence Research, 38:49–84, 2010.

[46] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of ar-
guments in bipolar argumentation frameworks. In Proc. of European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU),
pages 378–389, 2005.

[47] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolar abstract argumenta-
tion systems. In Argumentation in Artificial Intelligence, pages 65–84. 2009.

[48] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Coalitions of arguments: A
tool for handling bipolar argumentation frameworks. International Journal of Intelli-
gent System, 25(1):83–109, 2010.

[49] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Change in abstract bipolar
argumentation systems. In Proc. of International Conference on Scalable Uncertainty
Management (SUM), pages 314–329, 2015.

[50] Laura A. Cecchi, Pablo R. Fillottrani, and Guillermo R. Simari. On the complexity
of DeLP through game semantics. In Proc. of the 11th International Workshop on
Nonmonotonic Reasoning, Lake District, GBP, pages 386–394, 2006.

[51] Günther Charwat, Wolfgang Dvorák, Sarah A. Gaggl, Johannes P. Wallner, and Stefan
Woltran. Methods for solving reasoning problems in abstract argumentation - A Survey.
Artificial Intelligence, 220:28–63, 2015.

[52] Carlos I. Chesñevar and Guillermo R. Simari. Modelling inference in argumentation
through labelled deduction: Formalization and logical properties. Logica Universalis,
1(1):93–124, 2007.

[53] Andrea Cohen, Sebastian Gottifredi, Alejandro J. Garcia, and Guillermo R. Simari. A

1788

On the Incremental Computation of Semantics...

survey of different approaches to support in argumentation systems. The Knowledge
Engineering Review, 29(5):513–550, 2014.

[54] Cristhian A. D. Deagustini, Santiago E. Fulladoza Dalibón, Sebastian Gottifredi,
Marcelo A. Falappa, Carlos I. Chesñevar, and Guillermo R. Simari. Relational databases
as a massive information source for defeasible argumentation. Knowledge-Based Sys-
tems, 51:93–109, 2013.

[55] Phan Minh Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–358, 1995.

[56] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical
argumentation. Artificial Intelligence, 171(10-15):642–674, 2007.

[57] Paul E. Dunne. The computational complexity of ideal semantics. Artificial Intelligence,
173(18):1559–1591, 2009.

[58] Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In
Argumentation in Artificial Intelligence, pages 85–104. 2009.

[59] Wolfgang Dvorak, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for argumentation. In Proc. of European Conference on Symbolic
and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU), 2010.

[60] Wolfgang Dvorak and Stefan Woltran. Complexity of semi-stable and stage semantics
in argumentation frameworks. Information Processing Letters, 110(11):425–430, 2010.

[61] Thomas Eiter, Hannes Strass, Miroslaw Truszczynski, and Stefan Woltran, editors. Ad-
vances in Knowledge Representation, Logic Programming, and Abstract Argumentation,
volume 9060. Springer, 2015.

[62] Marcelo A. Falappa, Alejandro J. Garcia, Gabriele Kern-Isberner, and Guillermo R.
Simari. On the evolving relation between belief revision and argumentation. The
Knowledge Engineering Review, 26(1):35–43, 2011.

[63] Marcelo A. Falappa, Gabriele Kern-Isberner, and Guillermo R. Simari. Explanations,
belief revision and defeasible reasoning. Artif. Intell., 141(1/2):1–28, 2002.

[64] Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. Efficiently estimating the prob-
ability of extensions in abstract argumentation. In Proc. of International Conference
on Scalable Uncertainty Management (SUM), pages 106–119, 2013.

[65] Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. On the complexity of probabilis-
tic abstract argumentation frameworks. ACM Transactions on Computational Logic,
16(3):22, 2015.

[66] Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. On efficiently estimating the
probability of extensions in abstract argumentation frameworks. International Journal
of Approximate Reasoning, 69:106–132, 2016.

[67] Bettina Fazzinga, Sergio Flesca, Francesco Parisi, and Adriana Pietramala. PARTY: A
mobile system for efficiently assessing the probability of extensions in a debate. In Proc.
of International Conference on Database and Expert Systems Applications (DEXA),
pages 220–235, 2015.

1789

Alfano, Greco, Parisi, Simari, Simari

[68] Alejandro J. Garcia, Henry Prakken, and Guillermo R. Simari. A comparative study of
some central notions of ASPIC+ and DeLP. Theory and Practice of Logic Programming,
20(3):358–390, 2020.

[69] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming: An ar-
gumentative approach. Theory and Practice of Logic Programming (TPLP), 4(1-2):95–
138, 2004.

[70] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming: DeLP-
servers, contextual queries, and explanations for answers. Argument & Computation,
5(1):63–88, 2014.

[71] Alejandro Javier Garcia, Henry Prakken, and Guillermo Ricardo Simari. A comparative
study of some central notions of ASPIC+ and delp. Theory Pract. Log. Program.,
20(3):358–390, 2020.

[72] Sebastian Gottifredi, Andrea Cohen, Alejandro J. Garcia, and Guillermo R. Simari.
Characterizing acceptability semantics of argumentation frameworks with recursive at-
tack and support relations. Artif. Intell., 262:336–368, 2018.

[73] Sebastian Gottifredi, Nicolas D. Rotstein, Alejandro J. Garcia, and Guillermo R.
Simari. Using argument strength for building dialectical bonsai. Annals of Mathe-
matics and Artificial Intelligence, 69(1):103–129, 2013.

[74] Sergio Greco and Francesco Parisi. Efficient computation of deterministic extensions
for dynamic abstract argumentation frameworks. In Proc. of European Conference on
Artificial Intelligence (ECAI), pages 1668–1669, 2016.

[75] Sergio Greco and Francesco Parisi. Incremental computation of deterministic extensions
for dynamic argumentation frameworks. In Proc. of European Conference On Logics In
Artificial Intelligence (JELIA), pages 288–304, 2016.

[76] Nadin Kökciyan, Nefise Yaglikci, and Pinar Yolum. Argumentation for resolving privacy
disputes in online social networks: (extended abstract). In Proc. of International Con-
ference on Autonomous Agents and Multiagent Sytems (AAMAS), pages 1361–1362,
2016.

[77] Markus Kröll, Reinhard Pichler, and Stefan Woltran. On the complexity of enumerating
the extensions of abstract argumentation frameworks. In Proc. of IJCAI, pages 1145–
1152, 2017.

[78] Mario A. Leiva, Gerardo I. Simari, Sebastian Gottifredi, Alejandro J. Garcia, and
Guillermo R. Simari. DAQAP: defeasible argumentation query answering platform. In
Proceedings of the 13th International Conference on Flexible Query Answering Systems
(FQAS), pages 126–138, 2019.

[79] Beishui Liao. Toward incremental computation of argumentation semantics: A
decomposition-based approach. Annals of Mathematics and Artificial Intelligence, 67(3-
4):319–358, 2013.

[80] Beishui Liao and Huaxin Huang. Partial semantics of argumentation: basic properties
and empirical results. Journal of Logic and Computation, 23(3):541–562, 2013.

[81] Beishui Liao, Li Jin, and Robert C. Koons. Dynamics of argumentation systems: A

1790

On the Incremental Computation of Semantics...

division-based method. Artificial Intelligence, 175(11):1790–1814, 2011.
[82] Sanjay Modgil. An abstract theory of argumentation that accommodates defeasible

reasoning about preferences. In Proc. of European Conference on Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty (ECSQARU), pages 648–659, 2007.

[83] Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Artificial
Intelligence, 173(9-10):901–934, 2009.

[84] Sanjay Modgil and Henry Prakken. Revisiting preferences and argumentation. In Proc.
of International Joint Conference on Artificial Intelligence (IJCAI), pages 1021–1026,
2011.

[85] Sanjay Modgil and Henry Prakken. The ASPIC+ framework for structured argumen-
tation: A tutorial. Argument & Computation, 5(1):31–62, 2014.

[86] Sanjay Modgil, Francesca Toni, Floris Bex, Ivan Bratko, Carlos I. Chesnevar, Wolf-
gang Dvorak, Marcelo A. Falappa, Xiuyi Fan, Sarah Alice Gaggl, Alejandro J. Gar-
cia, Maria P. Gonzalez, Thomas F. Gordon, Joao Leite, Martin Mouzina, Chris Reed,
Guillermo R. Simari, Stefan Szeider, Paolo Torroni, and Stefan Woltran. Agreement
Technologies, volume 8 of Law, Governance and Technology, chapter 21: The Added
Value of Argumentation: Examples and Challenges, pages 357–404. Springer, 2013.

[87] Martin O. Moguillansky, Nicolas D. Rotstein, Marcelo A. Falappa, Alejandro J. Garcia,
and Guillermo R. Simari. Dynamics of knowledge in DeLP through argument theory
change. TPLP, 13(6):893–957, 2013.

[88] Farid Nouioua and Vincent Risch. Bipolar argumentation frameworks with specialized
supports. In Proc. of ICTAI, pages 215–218, 2010.

[89] Farid Nouioua and Vincent Risch. Argumentation frameworks with necessities. In Proc.
of SUM, pages 163–176, 2011.

[90] Emilia Oikarinen and Stefan Woltran. Characterizing strong equivalence for argumen-
tation frameworks. Artificial Intelligence, 175(14-15):1985–2009, 2011.

[91] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[92] Bas Testerink, Daphne Odekerken, and Floris Bex. A method for efficient argument-
based inquiry. In Proceedings of the 13th International Conference on Flexible Query
Answering Systems (FQAS), pages 114–125, 2019.

[93] Matthias Thimm and Serena Villata. The first international competition on computa-
tional models of argumentation: Results and analysis. Artificial Intelligence, 252:267–
294, 2017.

[94] Francesca Toni. A tutorial on assumption-based argumentation. Argument & Compu-
tation, 5(1):89–117, 2014.

[95] Ignacio D. Viglizzo, Fernando A. Tohmé, and Guillermo R. Simari. Annals of Mathe-
matics and Artificial Intelligence, 57(2):181–204, 2009.

[96] Serena Villata, Guido Boella, Dov M. Gabbay, and Leendert W. N. van der Torre.
Modelling defeasible and prioritized support in bipolar argumentation. Annals of Math-
ematics and Artificial Intelligence, 66(1-4):163–197, 2012.

1791

Alfano, Greco, Parisi, Simari, Simari

[97] Yuming Xu and Claudette Cayrol. The matrix approach for abstract argumentation
frameworks. In Proc. of International Workshop on Theory and Applications of Formal
Argumentation (TAFA), pages 243–259, 2015.

Received May 20211792

