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Abstract
One possible application ofNear Infrared techniques is to analyze human brainmetabolic activity.
Currently usedmodels take into account the layered structure of the human head but, usually, they do
not consider the non-planar surface of some of the boundaries, i.e. graymatter, which results in a
muchmore complex structure, thus leading tomore sophisticatedmodels and longer calculation
times. Themain objective of this work is to determine if it is worth to replace a planar layered structure
by a non-planar one. To this endwe implement a Bayesian-based quantitativemethodology for
choosing between two competitivemodels describing light propagation in layered turbidmedia.
Experiments of time-resolved diffuse reflectancemeasurements are performed in layered phantoms
and complementedwith numerical calculations. The resultingDistributions of Time of Flight of
bothmodels are compared using Bayesianmodel selection analysis. The non-planar interface was
introduced in the simulations by a simple surface parametrization. Results suggest that, under certain
conditions, amultilayermodel with planar boundaries is good enough.

1. Introduction

In the last two decades, Near Infrared Spectroscopy
(NIRS) techniques have been used to study light
propagation in biological tissue, which can be con-
sidered as turbid media for NIR light [1–5]. In their
way through turbid media, photons interact with
different constituents of the matter, suffering absorp-
tion and scattering processes. In general, the propaga-
tion of light through turbid media is described by the
Radiative Transfer equation (RTE), which under
certain conditions can be replaced by its simplified
approach, known as the Diffusion Approximation
(DA) [2–4]. One possible application is to register the
functionality of organs, and in the particular case of
brain, NIRS techniques are a helpful tool to bedside
diagnostic (or to follow the evolution) of stroke
patients [6–8]. As early demonstrated by Jöbsis [1],
variations in the way that NIR light behaves on its
travel through biological tissue allows to determine, in
a non-invasive way, oxygen level or general metabolic
changes by monitoring possible increments or decre-
ments of the absorption of radiation inside the studied

medium. Because of this, it is of interest to have
accurate models concerning light propagation in the
human head, for which multiple layers need to be
considered [9–12]. Many models, which describe light
propagation in multi-layered turbid media, were
proposed [9, 13–15]. In particular, Liemert and Kienle
[10] developed a theoretical method to describe light
propagation throughmulti-layered turbid cylinders of
finite thickness. Most recently, García et al [11, 12]
improved this model by assuming that the deepest
layer is infinitely thick. In that way, diffusely reflected
information of the turbid media can be obtained, and
no diffusely transmitted radiation is reachable.
Another work deals with rectangular rather than
cylindrical geometries, also considering the deepest
layer as infinitely thick [16]. At present, most of the
literature related to light propagation in multi-layered
turbid media treats the headmodel described above as
if the boundaries between layers were plain [9–11,
13, 16, 17], i.e., ignoring the non-planar structure of
the gray matter, which presents numerous convolu-
tions, sulci and gyri. Concerning numerical explora-
tion, the influence of a structured layer has been
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studied by Okada et al [18]. They have investigated a
sophisticated brain model with non-planar bound-
aries, that also considers the existence of a thin
Cerebrospinal Fluid (CSF) layer that fills the gyri
structure cavities. However, the criteria used to
determine that variations introduced by the gyri and
sulci structure ismainly empirical, and is subject to the
more notorious influence of the CSF layer. Other
authors, [19, 20] have studied numerical models
containing very detailed structures. This kind of
approach Requires some overhead due to segmenta-
tion andmesh generation processes and it is not always
clear if that effort brings additional benefits with
respect to some simpler approaches [11, 21]. In this
work we study light propagation in a three-layered
model considering a non-planar boundary between
the two deepest layers, modeled by a simplified
sinusoidal structure, and compare it with a model
containing only planar boundaries. For either case, we
compute time domain diffuse reflectances using num-
ericalmethods performed onMATLAB®. For compar-
ison, experiments on time domain diffuse reflectance
were considered as well. Moreover, dependency of the
time-resolved diffuse reflectance is analyzed qualita-
tively for different orientations of the optodes relative
to the structure of the non-planar boundary, by
comparing theDistributions of Timeof Flight (DTOF)
of photons resulting for each case. To quantitatively
asses the differences between reflectance results when
changing optodes orientation a relative entropy criter-
ion is applied. Finally, and as themain objective of this
work, a Bayesian Model Selection (BMS) analysis is
performed, in order to quantify the advantage of
considering a more complex human head model or if
the far more simpler planar boundary approach is
enough for NIRS purposes. Although the main
objective of this work is the comparison of models
with different geometrical structures, and given the
results of this first situation, we also perform an
additional analysis in which the BMS approach is used
for comparing models in the planar boundaries
situation, but now considering the variation of the
absorption coefficient of the two first layers and the
thickness of the first one, which is also of interest
forNIRS.

BMS is an extension of Bayesian inference meth-
ods [22] in which one does not only describe a para-
meter uncertainty through a prior distribution, but
also the model uncertainty, obtaining posterior dis-
tributions for model parameter and for model them-
selves using Bayes’ theorem, thus allowing for direct
model selection. This approach has been applied in
many areas of science such as Life Sciences and Medi-
cine where it was used for example, for variable selec-
tion of factors associated with false positives in
diagnostic kits [23], weight loss [24] and structure in
Bayesian networks for patient-specific models [25]. In
genetics it was used in the combination and selection
of genetic information from metabolic pathways [26].

Other applications can be found in Humanities and
Economy as well as in Physical Sciences and Engineer-
ing [27–30] and many others areas [31]. To the best of
the authors knowledge, it has not been applied before
to Light propagation through turbidmedia [32].

The paper is organized as follows: in section 2 we
present the rationale as well as the description of the
models, including the criterion used and the Bayesian
Model Selection. Next, in section 3, the details con-
cerning the experimental issues are described. The
results and discussion of this work are given in
section 4 and, finally, section 5 summarizes the main
conclusions.

2. Rationale of the proposed approach

In general, whenmodeling a given physical situation it
is necessary to define certain parameters that allow the
model to better describe the desired phenomenon.
However, the increasing number of parameters would
need to be estimated a priori, or assumed, if there is
lack or no information about them. Moreover, com-
putational complexity can increase depending on the
structure of the chosen model. A question arises
naturally: considering a model, M1, which uses less
parameters, but describes the phenomenon in a poorer
manner, and another model, M2, that uses more
parameters and describes the situation more precisely
but having increased costs, which model should be
used? Intuitively, if M1 resembles enough M2 (in the
sense that similar results are obtained for similar
situations), then there is no need to useM2 considering
its increased complexity, because the gain of using a
more detailed model would be negligible. Conversely,
ifM2 describes situations that are not reachable byM1,
then it is justified to use this more detailed model. We
will consider two situations, namely: a semi-infinite
three-layered medium with planar boundaries
between its layers, and a semi-infinite three-layered
medium with one non-planar boundary described by
a sinusoid defined parametrically. They will be
regarded asM1 andM2, respectively and both are to be
considered as possible simplified representations of
the human head. As it is necessary to define certain
characteristics of the surface, the complexity increases
forM2 with respect toM1.

2.1.Model description
As stated above, our simplified model M1 describes
light propagation through layered turbid media with
planar boundaries. Let us consider an N layers
medium, with the last layer extended to infinity. Light
propagation through turbid media can be modelled
using the Diffusion equation [33]. Considering the
domain Ω with boundary ∂ Ω, the photon fluence is
described by
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sent the absorption and diffusion coefficients, respec-
tively, being m¢ xs ( ) the reduced scattering coefficient. S
stands for the source term and Ã is a factor that
depends on the refractive indexmismatch between the
turbid medium and its surroundings [5]. In this work
it will be assumed that the refraction index remains
constant through the entire domain. This implies that
there will be no internal reflections between layers.
However, the surrounding non-scattering media will
be considered as air, with n=1. Let N represent the
number of layers, ma i, and m¢s i, the absorption and the
reduced scattering coefficient of the i-th layer, respec-
tively. Let Lj be the depth of the j-th boundary,
measured from the interface between layer j and j+1
with j: 1, L, N−1 and let = - L L L, , , N1 2 1( ) a
vector with the layer depths. The light source is
assumed to be located at rs and a detector is placed at
rd.We can notateM1 as amodel in the followingway:
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where the second equality means that the only variable
used will be , while the rest will remain fixed. For the
second model,M2, light propagation will be described
replacing one planar layer with a sinusoidal one, to
emulate, in a simplified fashion, the sulci and gyri of
the brain. Using the same notation as above, the
secondmodel will be described as

m l m l
l

= ¢

=
 



M M A A n r r

M A

, , , , , , , ,

, , , 3
a s s d2 2

2

( ( ) ( ) )
( ) ( )

being A and λ the amplitude and wavelength of the
structure of the sinusoidal interface, respectively. We
will assume that the sine wave separates the last two
layers and -LN 1 is the depth at which the deepest layer
begins. Moreover, in this work, we will restrict our
study to the three layers case (N=3), since the only
structural alteration will be taken at the interface
between the deepest layer and the one before it, thus
being not relevant how many layers exist between the
surface and this interface. In this configuration, the
depth of layer 1 will remain fixed and the depth of the
second layer will be variable. With this in mind,
equations (2) and (3) can be expressed as:

= = =M M M L M L 41 1 1 2 1( ) ( ) ( ) ( )

l=M M L A, , , 52 2( ) ( )
where we remark that L2=L in order to simplify the
notation. A schematic representation of both models,
is given infigure 1.

These twomodels can be seen as competitive when
describing light propagation in the human head,

where the complex structure formed by the circumvo-
lutions, sulci and gyri is replaced by a sinusoidal inter-
face, and the deepest layer represents gray matter
tissue. Both models can be implemented computa-
tionally either using Monte Carlo simulations [34, 35]
or numerical models of the Diffusion Approximation
[36], depending on the optical properties used. Finally,
they are relatively simple to reproduce experimentally.

2.2. Bayesianmodel selection
In this subsection we describe the main aspects of the
Bayesian Model Selection (BMS). However, before
proceeding, it is necessary to consider the effect of the
optode orientation relative to the structure of the non-
planar boundary, since in practical cases this orienta-
tion is unknown a priori. To this end, the Kullback-
Leibler divergence (KL) will be used [37, 38]. Usually,
this test is employed to quantify differences between
two probability density functions (pdf), p(x) and r(x),
defined as follows:

òº ºG p x
p x

r x
dx G p rlog , , 62

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
[ ] ( )

where G[p, r] is a semi-positive quantity [39, 40]. In
our context, p(x) and r(x) represent DTOF measured
from different orientations with p(x) fixed. If the
binary logarithm is employed, G can be interpreted as
the amount of new information required to describe
the new model r(x) or configuration in terms of bits.
Thus the KL divergence is a measure of how much
information is gained or lost, for instance, when the
optodes direction relative to the non-planar interface
wavefront is changed. A low value of theKL divergence
indicates that the replacement is worthless. Conver-
sely, a high value of KL suggests that information may
be lost if a given source-detector arrangement is used
instead of another one. Note that if = p x r x( ) ( )

=G p r, 0[ ] , as expected. We will show that optode
orientation produces no significant (or irrelevant or
non measurable) variations in the DTOF and we can
thus proceed tomodel comparison.

For the model selection criteria we will choose a
model using BMS. Precisely, it uses the Bayes factor,
which is defined as the ratio between the likelihood of
M1 given data Y and the likelihood ofM2 given data Y.
In symbols:

=K
p M Y

p M Y
71

2

( ∣ )
( ∣ )

( )

Consider a set of R models =M M M,..., R1{ } (in
this work, R=2) are under consideration for data
Y (DTOF), and that under Mk, Y has density

qp Y M,k k( ∣ ), where θk is a vector of unknown para-
meters that indexes the members ofMk. The Bayesian
approach proceeds by assigning a prior probability
p(Mk) to each model and a prior probability distribu-
tion qp Mk k( ∣ ) to the parameters of eachmodel.

The model selection problem consists in finding
which model in M can replace the data Y. The
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probability thatMk was in fact this model, conditional
on having observed Y, is the posterior model prob-
ability:
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is the integrated likelihood of Mk. Based on this
posterior probabilities, pairwise comparison of, say,
two models M1 (planar boundaries media) and M2

(non-planar boundaries media) is summarized by the
posterior odds:
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This expression reveals how the data, through the
Bayes factor K, equation (10), updates the prior odds
p M p M1 2( ) ( ) to yield the posterior odds. Figure 2
shows a flowchart of the Bayesian Model Selection
implementation.

The aim of the BMS is to discover a useful simple
model from a large speculative class of models that
allows to provide valuable scientific insights or less

Figure 1. Schematic representation of the two types of three layersmodels: (a) the planar one,M1(L) and (b) the sinusoidalmodel,
lM L A, ,2( ).

Figure 2.Diagram to illustrate the BayesianModel Selection procedure. The light blue rectangles indicate the data that is known and
provided,meanwhile the green rectangles show the inner computations performedwith the given data.
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costly methods for prediction [41]. According to the
value obtained for the Bayes factor it is possible to
determine if it is convenient to replace M1 by M2 or
not. The Bayes factor was computed for fixed optical
parameters, ma i, and m¢s i, (see table 1, in section 4) as
well as keeping fixed the source and detector positions,
rs, and rd, respectively. In this analysis only geometrical
characteristics were taken as variables, i.e the para-
meter L in model M1(L), and L, λ and A in model
M2(L, A, λ). When analysing experimental data, a 3D
geometry must be considered. For that purpose, the
FEM method used to describe light propagation was
implemented. In general, the procedure concerning
the BMS goes through the following steps:

• In each case, both models, M1 and M2, were
weighted, first, by a uniform probability density
function (pdf) and, second, by aGaussian pdf.

• The limits of the Uniform pdf were set as the
extremes of the range in which geometrical proper-
ties vary, i.e. L inM1 and L,A andλ inM2.

• The mean value and standard deviation of each
Gaussian pdf were varied for different possible
situations, i.e. considering either if one has good
knowledge or not about the geometry of the
mediumof interest.

The first point deserves some explanation. The use
of a Uniform or Gaussian pdf is based on a Bayesian
approach of the user’s prior knowledge with respect to
the underlying situation. When the Uniform distribu-
tion is considered, there is no value with more plausi-
bility than the others within the feasibility region. In
this case, only the data likelihood interacts in the pro-
cess of determining which model is more likely to be
producing the data. For theGaussian case the situation
is different: there is a specific weight for each value and
the highest weight is reserved for the mean value. The
rest of the values will have higher or lower weight with
respect to the mean depending on the value of the
standard deviation and the distance to the mean. This
situation is suitable for the case when the user has
some knowledge about the values, for example, when
some (or all) parameters can be inferred from litera-
ture or obtained from some other imaging modality.
Strictly speaking, the Gaussian pdf used here is not a
full Gaussian pdf in the sense that the entire domain is
used, but a truncated version of it, i.e.

ò
p

p p
p p

=
´
´

x
x x

x x dx
. 11

X
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true Gauss Uniform

true Gauss Uniform

( ) ( ) ( )
( ) ( )
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It must be pointed out that it is possible to perform
model selection using a Kullback-Leibler basis
through the Akaike Information Criterion (AIC)
[42, 43]. However, in this work we will use the more
general approach which allows for arbitrary likelihood
and prior distributions which models the measure-
ment process and our prior knowledge appropriately.
We are interested in studying the effects on
equation (9) due to qp Mk k( ∣ ). We use this formalism
because it allows us to explore certain characteristics
which might be hidden in Akaike’s method. Specifi-
cally, the resulting distributions may have multiple
local minima due to the ill-posedness of the original
problem. Akaike’s method relies on knowledge of the
maximum of the likelihood, but it can be hard to find
due to the existence of many local minima. To avoid
this problem, we also incorporate prior information
on the parameter prior distributions. The formalism
described above together with the corresponding
results will be considered in section 4.

3. Experiments on phantoms

Time-resolved reflectance measurements were per-
formed on a three-layered agarose phantom which
represents a simplification of the human head. As it is
shown in the following, the phantom was constructed
in such a way as to include both models described
above in section 2.1.

3.1. Construction and characterization of the
phantoms
Phantoms were constructed inside a rectangular
mould, using the following ingredients: distilled water
(as carrier), milk (as scattering agent), ink (as absorp-
tion agent) and 2% in volume of agarose as solidifying
agent. In a first step, agarose is added to the water and
this mixture is heated up to about 98 °Cwhile steering
to achieve complete dissolution. Then, the milk
containing the desired volume of ink, and pre-heated
to 60 °C is added to the solution of water and agarose
(preheating the milk/ink solution avoids the forma-
tion of solid lumps when getting in contact with the
hot water/agarose mixture). Finally, after this mixture
containing all four ingredients cools down to approxi-
mately 60 °C, it is ready to be poured into the mould.
The desired structure of the (deep) interface, shown in
figure 3, was previously made of plastic using a 3D
printer, with lateral dimensions fitting exactly those of
the mould. It contains both, a planar sector and a
structured zone presenting a sinusoidal pattern. The
zero of this pattern coincides with the height of the
plane surface.

The structure in figure 3 was placed at the bottom
of the mould, with the sinusoidal pattern facing up,
and the solution with agarose was poured into it.

Table 1.Optical properties of the three layers used in both, the
FEMcalculations and the experimental phantom.

Optical Properties

Layer Thickness [cm] m -cma
1[ ] m¢ -cms

1[ ]

1 0.9 0.13±0.01 10.90±0.1
2 1.1 0.054±0.01 9.11±0.1
3 5 0.24±0.01 17.80±0.1

5
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Following this procedure, half of the phantom con-
tains planar interfaces and the other half contains the
corrugated interface; this ensures that both, the planar
and non-planar layers result with exactly the same
optical properties, thus disregarding any differences
but those resulting from geometry.

The volume of agarose solution was calculated
such as to obtain a thickness of about 5 cm when
poured into the mould, emulating a semi-infinite
medium. After this deep layer has completely solidi-
fied, it was carefully removed from the mould and
placed once again inside of it, with the sinusoidal
structure facing up. Finally, two layers were added on
top of it. Each of these top layers was also made of a
similar agarose solution as the one described above,
but containing different amounts of ink, to achieve the
desired absorption coefficient of the corresponding
layers.

A photograph of the resulting structured interface
in the agarose phantom and the layer on it is shown in
figure 4, for the particular case inwhich the absorption
coefficient of one layer is higher than that of the other.
Note that both layers fit perfectly into each other, leav-
ing no bubbles or void regions which couldmodify the
temporal profile of themeasuredDTOF.

To characterize the phantoms, the optical para-
meters, μa and m¢s of each layer were measured. To this
end, homogeneous agarose slab phantomswere simulta-
neously prepared using the same mixture as that of the
corresponding layer. Their lateral dimensions were
10 cm×10 cm and their thickness was 3 cm. Using
these slabs, time-resolved diffuse transmittance DTOF
were measured independently on each homogeneous
phantom, and used in a Levenberg-Marquardt fitting
routine written in Python to recover the values of the
optical properties [44]. For the fitting routine, the theor-
etical model from Contini et al [5] was used. The actual
Instrument Response Function (IRF) of the measuring
equipment was convolved with the theoretical DTOF
produced by several sets of optical parameters (which
were varied within proper intervals) and compared with
the measured DTOF until the desired convergence was
achieved. The values of these measured optical proper-
ties for the three layers are given in table 1.

3.2. Experimental setup
The experimental setup is sketched in figure 5, show-
ing a schema of the transverse cut of a three layers
phantom constructed using the procedure described
in section 3.1. Note that, depending on the location of

Figure 3.Photographs of the top and lateral views of the 3D-printed structure used to simultaneously elaborate the planar and non-
planar interfaces of the agarose phantom. The flat surface is at a height equal to the zero line of the sinusoidal pattern. All dimensions
in cm.Not to scale.

Figure 4.Photograph of a transverse cut of the deepest two layers of the phantomwithin before adding the third layer on top,
illustrating the result of the elaboration procedure described in the text. In this picture, the absorption coefficient of the upper layer is
lower than the other one.

6
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the input and output fibers, either the structured or the
planar region is considered. For carrying on the
experiments it was used a NIR pulsed laser source
(Becker&Hickl, model BHLP 700) operating at
λ=785 nm and emitting 70 ps pulses at a repetition
rate of 50MHz. Its average power was set to 5 mW. The
laser pulses, guided by a 600 μm core, NA=0.22
optical fiber, impinged onto the upper layer of the
phantom, labelled as the ‘Superficial Layer’ in figure 5.
The collection of the diffusely reflected photons, after
they have travelled inside the medium, was achieved by
a fiber bundle f =  =NA1 8 , 0.33( ) also in contact
with this superficial layer but at a distance ρ from the
input pulse. The photons collected by this bundle were
detected by a Time Correlated Single Photon Counting
system (TCSPC) consisting on a photomultiplier tube
(Becker&Hickl, model PMC-100-20) and a TCSPC
card (Becker&Hickl SPC-130), which builds up the
desired DTOF. In figure 6 a typical DTOF obtained at a
region of the phantom containing the structured layer
and for ρ=4.5 cm, together with the corresponding
IRFof themeasurement equipment is shown.

4. Results and discussion

In this section we will describe the results of imple-
menting the BMS methodology over 2D and 3D data.
For the 2Ddatawe analyzed the following situations:

• A simulated DTOF obtained by convolution of a
numerical DTOF with the actual IRF of our
equipment.

And, in the 3D case:

• Using a DTOF obtained from a medium with a
sinusoidal interface, we first applied the BMS

approach to decide if it is worth to consider this kind
of structure against the planar one.

• As a second illustration of the approach we used a
DTOF resulting from a medium with three planar
layers, in order to decide if variations in the
absorption coefficient of the superficial layer and or
in the scalp and skull thickness need to be taken into
account.

In all cases the optical properties used are those
given in table 1. Note that in this work it is not inten-
ded to emulate the actual properties of the brain,
which are still matter of discussion [6, 13, 19,
20, 45, 46]. Thus, optical and geometrical properties
used in 2D and 3D simulations were those obtained
experimentally, using as a guide those given by Wu
et al [19] but considering a higher value for the
reduced scattering coefficient of the second layer, such
that all calculations could be made within the DA.
Geometrical parameters were taken as a guide from
associated neuroscience literature [32, 47].

4.1. Considerations about the optodes orientation
To explore the influence of the optode orientation, the
KL approach, described in section 2, was implemen-
ted. Calculations were carried out for a source located
at m= ¢r 0, 0, 1s s( ) [48], and a set of 45 detectors
radially distributed, placed at a distance ρ from the
source and on the top surface of the medium. In this
way, while light propagates from the source to
the detector through the medium, it encounters the
sinusoidal boundary differently, depending on the
orientation. This procedure was repeated by changing
the optodes orientation in a range from 0 to π/2
radians, and for ρ=2.5cm, ρ=3.5 cm and
ρ=4.5 cm. For the numerical simulation three
layeredmedium already described andwith the optical

Figure 5.Experimental setup formeasuring the diffusely reflectedDTOF in a three layers phantom containing both, a structured layer
and a planar one. A picosecond (ps) laser pulse is injected via an opticalfiber on the top surface of the phantomand a fiber bundle
collects the diffusely reflected photons at a distance ρ. The schema also shows themost probable photons path, also called banana, and
the geometrical parameters of the phantom, namely L, themean depth of the structured region andA andλ, the amplitude and the
wavelength of the sinusoidal structure, respectively.
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properties of table 1 was used. Results can be seen in
figure 7 for ρ=2.5 cm. For the other two cases
considered, namely ρ=3.5 cm and ρ=4.5 cm,
results show KL divergence values much lower than
for ρ=2.5 cm, and they are thus not shown in
figure 7. Additionally, to verify these results, we
measured the diffuse reflectance DTOF by using the
constructed phantom, considering all source—detec-
tor distances and only three angles, at θ=0, π/4 and
π/2 radians as shown infigure 8.

Results for these experiments can be seen in
table 2. For the evaluation, the DTOF corresponding
to the orientation perpendicular to the interface wave-
front was left fixed (p(x) in equation (6)) while the
DTOF of the remaining orientations were left to vary
(r(x) in equation (6)).

The information gained by using the actual orien-
tation instead of a fixed one is, at most, of order 10−3

of bit, suggesting that there is a negligible gain in con-
sidering the orientation. These results are consistent
with the fact that diffusion makes the most probable
photon paths (banana) to be spread in comparison to
the structure of the interface.

In summary, the effect of the source-detector
orientation relative to the interface wavefront is almost
negligible according to our results. For this reason, for
the rest of this work, the orientation considered will be
the one that is perpendicular to the interface wave-
front (θ=0, figure 8) and we shall make no further
considerations on this subject.

4.2. 2D Simulations
Although it is an obvious statement that light propaga-
tion in tissue is a 3D phenomenon (as it is every
physical process), given the complexity and vastness of
the parameters space, and the huge computational cost
of the 3D calculations, we have first implemented a set
of 2D simulations. This allowed us to better visualize
the geometrical aspects of the mesh selection and to
test the whole algorithm. Of course results of this
subsection are of relative value, but they are useful to
gain some insight about the entire process. The reader
can skip this section and proceed directly to section 4.3
if not interested. The simulated bidimensional experi-
ment was performed in a spaceΩwhich consisted of a

rectangle of height h=4 cm and width w=16 cm.
An isotropic source was placed at m= ¢r 0, 1s s,1[ ] cm
and the detector was placed at rd=[4.5, 0] cm. The
unstructured mesh consisted of 19 831 nodes and
39 397 triangular elements. The optical properties
were defined for each layer. Let the index i=1, 2, 3
refer to layer i, μa,i and m¢s i, stands for the absorption
coefficient and reduced scattering coefficient for layer
i, respectively. In figure 9 the used mesh is presented,
whose statistics are the following:

The mesh statistics were the following: the mini-
mum element quality was 0.1998, average element
quality 0.8472, the mesh area was 64 cm2. The max-
imum and minimum element size were 0.18 cm and
0.008 cm.

4.2.1. Bayesmodel selection in 2Dmedium
The complete simulation of 2D data is composed by a
set of 16 000 DTOF for medium M2, one for each
different geometrical configuration considered.
Every DTOF was simulated using a configuration

lL A, ,i j k{ }, for 0.6<Li�1.6 cm in 40 steps;
0<Aj�1.2 cm in 20 steps, and 0.3�λk�2 cm in
20 steps that generated it after passing through the
numerical model. For model M1, 40 DTOF were
considered for parameter L. The parameter space was

=Li i 1
40{ } , where 0.6<L�1.6 cm in 40 steps. The first

case of study was to compute the Bayes factor for
simulation data, Ksim, for 200 DTOF of the modelM2

that were selected randomly (taken as Y in
equation (10)). In the second case of study, a randomly
chosen noisy DTOF was obtained by performing a
convolution between the simulation data and the
experimental IRF. This procedure is repeated with the
entire samples for both models (by convolution with
another experimental IRF). In this way, the data is
comparable and is possible to proceed onto KIRF

calculations.
There are three elements whichmust be defined in

order to estimate K, say, qp y M,k k( ∣ ) for the data like-
lihood, qp Mk k( ∣ ) for the prior parameter distribution,
and p(Mk) for the model prior distribution. For the
likelihood, a normal distribution is used

q qµ - -p y M y M, exp
1

2
. 12k k k k R

2⎜ ⎟⎛
⎝

⎞
⎠( ∣ ) ( ) ( ) 

which is a reasonable choice given that the measure-
ment noise can be approximated with a Gaussian
distribution (using the Central Limit theorem after
averaging themeasurements). Note that the likelihood
is written in terms of the norm of the discrepancy
between the measurement and the model
( q- =y M xk k R R( )    ). It states how likely is to
replace the data with the model once the parameters
are set. For the prior parameter distribution, which
models the knowledge about the parameters of the
respective model, two different cases were studied,
namely, a Uniform prior distribution and a Gaussian
prior distribution. The former is a case of a non-

Table 2.KL entropy values (G[p, r]), for each source-
detector distance, computed from experimental data,
varying optodes orientation, for a three layered
agarosemedium.When θ=π/4, the optodes are
placed obliques to the interface wavefront, and for
θ=π/2, the optodes are placed parallel to it.

Kullback-Leibler divergence

ρ

Angle θ 2.5 cm 3.5 cm 4.5 cm

θ=π/4 0.006 88 0.001 23 0.000 71

θ=π/2 0.000 31 0.000 82 0.000 54
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informative distribution in the sense that there is no
preference among the support of the distribution; the
latter is a case of an informative one because values in
the support, i.e. the region where the distribution is
not zero, have different weight. In equation (12),

= -x x R xR
T2 1  where =-R diag y11 ( ) because we

are considering a Poisson process with uncorrelated
noise [49]. Both cases represent different states of
information that may be considered according to the
situation. For example, in the presence of another
imaging modality such as a MRI, a Gaussian prior is
suitable given that it is possible to estimate the
geometrical parameters from the image. Finally, for
the model prior distribution, a Uniform distribution
was chosen, i.e. p(M1)=p(M2)=1/2.

The Bayes factor for the three-layered medium
described by model M2 was computed fixing
L1=0.9 cm. The geometrical variables were L=L2
for model M1 and L2, λ and A, for model M2. Results
are shown in table 3, and the corresponding histo-
grams in figure 10 for 200 random DTOF, where the
orange lines corresponds to the kernel density estima-
tion [50]. Whenwe let the standard deviation increase,
the possible values of K are less spread than when the
standard deviation is small. The prior knowledge
increases the certainty thus increasing the pragm-
ability of M2 as our knowledge is more precise. In
table 3, results are presented in intervals which con-
tains 200 random DTOF computed using a Uniform
or a Gaussian prior pdf. For the latter, the standard
deviations considered were σ=0.2, 0.5, 0.8 cm. K
values DTOF tend to increase for greater deviation
values when the Gaussian prior is chosen. For

σ=0.5 cm and σ=0.8 cm, K indicates that is barely
worth mentioning the plausibility of a more complex
modelM2. As expected, the Uniform prior acts as the
limiting case for increasing deviations on the Gaussian
prior. On the other hand, for σ=0.2 cm the Bayes
factor grows up indicating that having a good initial
guess of the geometrical properties of the medium
makes the likelihood of M2 much higher, suggesting
that thismodel is the preferred one.

4.3. 3Dmedium: experiments and simulations
4.3.1. Study of the structured interface
A three-layered phantom with layers structure as the
one shown in the scheme of figure 6 was elaborated.
The optical and geometrical properties obtained are
shown in table 1. The simulations on the 3Dmedium
were performed in similar fashion as the 2D case. The
mesh statistics are the following: the minimum and
mean element quality were 0.04 and 0.645, respec-
tively, with a number of elements of 84 253. The
minimum and maximum volume size were 0.003 cm3

and 16.37 cm3, respectively. The total number of
nodes was 15 844. Due to its high computational cost,
only ´ ´ =21 15 20 6300 computations were per-
formed. In table 4 the values taken by each parameter
aswell as the number of steps for all them are shown.

Experimental data was compared against simula-
tions taking two different prior pdf for the parameters:
Uniform and Gaussian. First, taking a Uniform dis-
tribution as prior means that every geometrical para-
meter, L, A and λ, has the same probability of
occurring (p(L)=c1 for the planar case, and p(L, A,
λ)=c2, where c1 and c2 are positive constants). As
there are no preferences for any value in the domain,
this is a good representation of ignorance [51] due to
the bounded domain, as long as there is no need of a
change of parameters. This situation can be inter-
preted as the user not knowing a prioriwhether there is
a sinusoidal or planar boundary layer, nor which
values describe the geometry appropriately. This is the
fairest comparison between the models before adding
some prior knowledge, because the prior knowledge
(either it is correct or incorrect) adds a bias towards it.
Results are shown in table 5. The value of K is an

Figure 6.The actual IRF of themeasurement equipment and aDTOFmeasured for ρ=4.5 cm.

Table 3.Kvalues for simulation data for three-layeredmedium;
computed for aUniform andGaussian prior distribution, for
different standard deviations.

Bayes factorK

Uniform
Gaussian

s  ¥ σ=0.8 cm σ=0.5 cm σ=0.2 cm

[1.0025;
2.6716]

[1.0009; 2.9139] [1.0141 ;
3.3027]

[1.0022;
10.0956]
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indicator of which underlying model is the most plau-
sible after have seen the data. To get the idea behind
the indicator, let us recall the definition ofK :

ò
ò

q q q

q q q
= =K

p M y

p M y

p y M p M d

p y M p M d

,

,
. 131

2

1 1 1 1 1

2 2 2 2 2

( ∣ )
( ∣ )

( ∣ ) ( ∣ )

( ∣ ) ( ∣ )
( )

By exploring the right hand side of equation (13) it is
possible to note that the integrand evaluates mainly
two components. Namely, the replace-ability of the
data by themodelMi ( qp y M ,1 1( ∣ )) and the complexity
of that model ( qp M1 1( ∣ )). The term complexity is used
here as the amount and quality of the model para-
meters. The amount is obtained from the dimension
of θi, and the quality from the shape and uncertainty of
the random variable θi. In the particular case shown
here, the prior parameter distributionswere:

• Formodel 1, q =
-

p M1 1
1

1.6 0.6
( ∣ ) .

• For model 2, q =
-

p M
1

1.6 0.6

1

1.2

1

1.7
2 2( ∣ ) =

q

<

p M1 1
1

1.2

1

1.7

1

( ∣ ).

which corresponds to the Uniform distribution with
bounds as stated in table 4. The uncertainty in the
parameters ofM2 that are not part ofM1 decreases the
plausibility ofM2. This means thatM2 should describe
the data better in order to be chosen as the selected
model. This will happen as well in the Gaussian
analysis.

A value of K near 1 means that both models are
almost equally likely, meaning that one can choose the
model with lower complexity. That is, M2 may
describe the data better than M1 but the increased
complexity of considering three parameters instead of
one gives M1 a more pragmatical advantage. As the
results suggest, M1 compensates model description
with reduced complexity and both are comparable, i.e
M2 is not as a good descriptor as it should be when
considering this information.

The reason behind this lies in the fact that the geo-
metrical estimation is an ill-posed problem because of
its non-unicity. Any inverse solver (a technique that
recovers geometrical parameters) that depends on gra-
dient estimationwill converge to the nearest localmini-
mum,making the inverse problem hard to approach in
this conditions. To tackle this ill-posedness, here we
performan analysis usingGaussian prior information.

In the second case, an experimental DTOF was
compared to simulations considering a Gaussian pdf
as prior information, in order to determine what
model is convenient when one has knowledge about
medium characteristics. To translate this knowledge
to a Gaussian distribution, consider the expected (or
most likely) value using any available source of infor-
mation (i.e. bibliography, results of imaging techni-
ques, etc.) and the uncertainty can be modeled using

Figure 7.Kullback-Leibler divergence values in function of angle of orientation. The pdf taken as p corresponds to theDTOF
(normalized by area) obtained considering the optodes orientation perpendicular to the interface wavefront, and r represents the 45
different orientations for increasing θ in the range from0 toπ/2 radians.Here, ρ=2.5 cm.

Table 4. Set of parameters chosen for the 3D slab simulations
including a sinusoidal interface.

Planar versus sinusoidal interface.Bayes factorK. Uniformprior

Parameter Values

Number of

steps Step size

L (0.6�L�1.6) cm 21 0.05 cm

A (0�A�1.2 ) cm 15 0.085 715 cm

λ (0.3�λ�2) cm 20 0.089 475 cm

Table 5.Kvalue forUniformprior. A value close to 1means that is
almost the same to considerModel 1 orModel 2, that is, is barely
worthmentioning the difference between two plausiblemodels.

Planar versus sinusoidal interface.Bayes factorK. Uniformprior

Prior pdf K Selectedmodel Conclusion

Uniform 1.05 Model 2 Barely worthmentioning
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the variance. Here, it is assumed that the parameters
are mutually independent. A useful guideline to pro-
vide the standard deviation is to consider the 99% per-
cent probability interval as μ±3σ and derive σ from
it. Once the user chooses this approach, a bias is added
to the distribution which means that higher prob-
ability is assigned to regions nearby the chosen mean.
The higher the variance the higher the uncertainty
and, in the limit as σ tends to infinity the normal dis-
tribution tends to an improper Uniform distribution
(i.e. its area is infinity). There is a special condition that
must be observed, that is, the selection of the mean is
critical. A good mean is one that approaches the real

values and, conversely, an incorrect mean may lead to
incorrect results. Here, both situations are addressed.
Also, when considering the correct mean but increas-
ing the standard deviation, it is possible to observe
how the value of K approaches to that obtained when
using Uniform prior information. Results of K using
correct and incorrect means are shown in table 6. An
incorrect information results in values of K close to
unity and returns Model 1 as the suggested one. The
effect of increasing standard deviation for the correct
one can be seen in table 7, where it can be seen that for
small deviation values (greater certainty), K tends to
increase. For higher deviations (greater uncertainty)K
approximates to the result obtained considering the
Uniformprior.

To compare our results, we also performed the so-
called Akaike information criterion (AIC) [43] which,
using a KL divergence criterion, performsmodel selec-
tion based on the optimized log-likelihood (the max-
imum of the log-likelihood estimated) and the
number of parameters. It is similar to themethod used
here -in fact, both come from the same formalism- but
BMS allows for prior information in a sense that AIC
does not. The explicit formula is:

n= - +AIC k2 log 2 14( ) ( )

where ν is the maximum of the log-likelihood accord-
ing to equation (12) and k is the number of parameters.
This formula is applied to each model against exper-
imental data resulting in AIC1=3.86 for model M1

Figure 8.The three different source-detector orientations relative to the sinusoidal structure used to determine their influence on the
measured pulse.

Table 6.Kvalues taking aGaussian prior for different geometrical guesses, i.e. varying themean value.

Bayes factorK. Gaussian prior, variablemean. non-planar layers

Guess μL,μA,μλ [cm] σL,σA,σλ [cm] K Model

Experimental set up 1.1, 0.75, 1 0.1, 0.1, 0.1 2.70 Model 2

Incorrect 1 0.7, 0.085, 1.11 0.1, 0.1, 0.1 1.20 Model 1

Incorrect 2 0.6, 0.43, 0.3 0.1, 0.1, 0.1 1.73 Model 1

Incorrect 3 1.6, 0, 0.3 0.1, 0.1, 0.1 1.22 Model 1

Table 7.Kvalues taking aGaussian prior for the true geometrical
parameters using varying standard deviation, butmaintaining the
initial guessfixed.

Planar versus sinusoidal interface.Bayes factorK. Gaussian prior

s s sl cm, ,L A( )[ ] K Model Conclusion

(0.025, 0.025, 0.025) 4.03 Model 2 Substantial

(0.05, 0.05, 0.05) 3.22 Model 2 Substantial

(0.1, 0.1, 0.1) 2.70 Model 2 Barely worth

mentioning

(0.2, 0.2, 0.2) 1.73 Model 2 Barely worth

mentioning

(0.4, 0.4, 0.4) 1.22 Model 2 Barely worth

mentioning

(0.8, 0.8, 0.8) 1.09 Model 2 Barely worth

mentioning
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and AIC2=7.84 for model M2. The model with
lowest AIC value is the chosen one according to this
framework. Akaike’s method penalizes more for the
amount of parameters than our method and chooses
directly Model 1 because of its simplicity. Note that in
equation (14) the optimized likelihood and the
amount of parameters are considered. The parameter
k is fixed depending on the model, but the likelihood
must be found through optimizationmethods or, as in
this work, by exploring the parameter space. The
reason behind that both criteria suggest that it is better
to useM1 instead ofM2 can be found by exploring the
likelihood, given that both frameworks use it. The
optimized log-likelihood for the experiment usingM1

is n = -0.9286M1
and using M2 is n = -0.9246M2

,
suggesting that the optimized likelihoods corresponds
to very similar DTOF according to the square norm
criteria,figure 11 shows that this is the case, indeed.

This suggests that, in this particular case, it is pos-
sible to replace M2 with geometrical parameters in
table 6, which are the values predetermined in the
experimental setup, with a specific planar setup. In this
case this corresponds to L=0.7 cm, which would be
the planar equivalent configuration that replaces the
sinusoidal configuration.

4.3.2. Study of changes in absorption properties and
thickness of the first layer
As an additional illustration of how the BMS approach
can be used, we present in this section the case of a
three layers geometry, with planar boundaries, and
with the deepest layer being semi-infinite (seefigure 1).
For this new situation, BMS is used to decide between
the following twomodels:

Figure 9.Mesh used for the 2D simulations. The red point inside themedium corresponds to the source and the superficial one
corresponds to the detector. Layer boundaries are drawn for bettermesh visualization.

Figure 10.Histograms resulting from the 200 simulations forUniformdistribution andGaussian distributionwith three different
variances.
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(i) Model 1, mM a1 ,1( ), is a model for which only
variations in the absorption coefficient of the
most superficial layer can occur.

(ii) Model 2, mM a2 ,1( , m L,a,2 1), for which variations
are allowed for the absorption coefficients of the
first two layers, aswell as as well as for the thickness
of thefirst one.

Please note that, as in the analysis of the previous
sections, we have chosen M1 to be the simpler model
andM2 the one that depends onmore parameters.

The data consisted of a DTOF, obtained from a
simulated experiment using the optical and geome-
trical properties of table 1. It was compared to a set of
8000 simulations resulted of varying each of the three
parameters ma,1, ma,2 and L1, and for a fixed source-
detector distance, ρ=2.5 cm; details are shown in
table 8. The goal is to determine if Model M1 is both,
descriptive and simple enough, to be able to replace
Model M2, which is more precise (by construction)
but computationallymore expensive.

Similarly as in the previous sections, we studied
two different initial situations, namely: (i) using non
informative prior information, i.e. a Uniform dis-
tribution for the parameters, representing complete
ignorance of them and (ii) using a Gaussian initial dis-
tributionwhich is considered informative since it gives
more weight to a given set of parameters, and its rele-
vance can be adjusted by its deviation (uncertainty of
the analyst). For the first, Uniform case (table 9) it is

observed that the simpler model,M1, dominates, what
is indicated by a Bayes factorK=3.04.

This means that the simpler model M1 is precise
enough to represent the data considering its low cost,
but slightly underestimating the absorption of the first
layer, as it can be seen from the maximum likelihood
DTOF found with this model, shown in figure 12.
Figure 13 shows the likelihood values obtained using
modelM1 as function of m ;a,1 as can be seen, the max-
imum likelihood occurs for m = 0.12a,1 cm−1.

For the case of the Gaussian prior, two situations
were considered:

• when the prior information is reliable, meaning that
the deviation of the distribution is small, even if its
mean is not exactly known.

• when the deviation increases, meaning that there is
greater uncertainty about the optical or geometrical
properties.

Results are summarized in tables 10 and 11, for a
correct initial guess and an incorrect one, respectively.
The former case, correct guess, leads to the result that

Figure 11.Comparison of theDTOFwith optimized likelihood according to the square norm criteria.

Table 8. Set of parameters chosen for the 3D slab simulations considering only planar
interfaces.

Planar layers

Parameter Values Number of steps Step size

μa,1 (0.02�μa,1�0.26) cm−1 20 0.013 cm−1

μa,2 (0.02�μa,2�0.108) cm−1 20 0.004 cm−1

L1 (0.15�L1�1.5) cm 20 0.0711cm

Table 9.Bayes Factor,K for the planar structure using a uniform
prior.

Planar layers.Bayes factorK. Uniformprior

Prior pdf K Selectedmodel Conclusion

Uniform 3.04 Model 1 Barely worthmentioning
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model M1 is substantially preferred when the devia-
tion tends to decrease. This is reasonable because, if
there is some knowledge about the correct and fixed
parameters ma,2 and L1, the only property that can vary
is ma,1, and thus, the data can be represented by a
DTOF obtained using the simpler model at a very low
cost. Conversely, when the initial guess is incorrect,

the simpler model, M1, is not capable of representing
the datawith its only variable, ma,1.

So it is necessary to combine the three parameters
in order to find a DTOF that fits the data best. Note
that this DTOF is not necessarily the one corresp-
onding to the underlying optical properties because of
the non-uniqueness of the light-propagation with lim-
ited perspectives. Moreover, this is a problematic
situation, because it could be misinterpreted by the
inexperienced operator who may think that those
parameters are correct; this situation is illustrated in
figure 14. It should be noted, again, that the BMS is
able to show multiple local minima, i.e. several para-
meters can be used to reconstruct the simulated
experiment in a quite good manner, but it is not a
reconstructionmethod but an exploratory one.

5. Conclusions

In this work we implemented a Bayesian Model
Selection methodology for selecting between

Figure 12.Maximum likelihoodDTOF found by using aUniformprior distribution.ModelM1 dominates, but the absorption
coefficient of the superficial layer results underestimated.

Figure 13. Likelihood values versus ma,1 obtained using the simplermodel,M1. Themaximum likelihood occurs for
m = 0.12a,1 cm−1, but the true value inμa,1=0.13 cm−1 (vertical red line).

Table 10.K values taking aGaussian prior for the parameters, with a
correct guess and varying standard deviation. Results suggest that
when the initial guess is near the true values ofμa,2 and L1,M1

dominates, specially for decreasing deviations.

Planar layers.Bayes factorK. Gaussian prior, correct guess

Correct guess.μa,1=0.13 cm−1,μa,2=0,054 cm−1, L1=0.9 cm

s cmL1( ( ), sm -cm 1
a,1

( ),
sm -cm 1

a,2
( )) K Model Conclusion

(0.8, 0.13, 0.054) 2.30 Model 1 Barely worth

mentioning

(0.8, 0.065, 0.027) 4.06 Model 1 Substantial

(0.8, 0.043, 0.018) 5.99 Model 1 Substantial
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competitive models, based on a Bayesian scheme.
Particularly, it was applied to a three-layered turbid
medium with one non-planar interface which is
intended to introduce, in a simplified and more
accurate way, some geometrical aspects of the struc-
ture of a human head than the usual planar boundaries
medium. Simulations were carried on 2D and 3D
turbid media, and time-resolved reflectance measure-
ments were performed on a three layered agarose
phantom for the experimental validation. The Kull-
back-Leibler divergence was employed to quantify
how reflectance changes when optodes orientation is
changed. This was necessary to reduce complexity
when analyzing the BMS methodology by reducing to
a single orientation. The results obtained show that the
information lost using different optode orientations,
in this configuration, is negligible. This analysis was
repeated through simulations, supporting these
results.

In the simulations, the analysis of Bayes factor
shows the capabilities of the method used, and sug-
gests that it is not worth to consider a non-planar
boundaries medium when using a Uniform prior dis-
tribution which can be seen as a representation of
ignorance when the distribution is bounded and there
is no need to perform transformations to the para-
meter space. When there is available information, a

Gaussian prior distribution is used and, when the
information regarding the geometrical parameters is
more precise, BMS suggests to use the more complex
model depending on the quality of our prior
information.

In the experimental case, it was shown that the
model M2 is a good approach only if there is a good
knowledge about the medium geometry, i.e. using a
Gaussian prior distribution with mean near the true
configuration and small variance. When a Uniform
prior distribution is preferred, bothmodels are equally
likely to replace the given data. Even when the precise
model is capable of reproducing the data correctly, the
uncertainty increases with more number of para-
meters, resulting in preferring a simplifiedmodel or to
consider it equally appropriate. Using a Gaussian prior
distribution with a wrong knowledge leads to the pre-
ference of the simpler model M1 as the appropriate
one. On the other hand, if the knowledge is appro-
priate, i.e. the mean closer to the real model and
decreasing variance, the value of K tends to increase
towardsM2. The use of Bayesian model selection ana-
lysis supports that it is not worth to replace the more
used planar boundary media model by a sophisticated
sinusoidal approach unless the information is highly
precise.

Table 11.K values taking aGaussian prior with an incorrect guess and varying standard deviation. Results suggest that when the initial guess
is far away from the true values,M2 dominates.

Planar layers.Bayes factorK. Gaussian prior, incorrect guess.

Incorrect guess.μa,1=0.08 cm−1,μa,2=0,108 cm−1, L1=0.12 cm

s cmL1( ( ), sm -cm 1
a,1

( ), sm -cm 1
a,2

( )) K Model Conclusion

(0.4, 0.04, 0.054) 1.03 Model 2 Barely worthmentioning

(0.4, 0.027, 0.036) 1.26 Model 2 Barely worthmentioning

(0.4, 0.02, 0.027) 1.41 Model 2 Barely worthmentioning

Figure 14.DTOF generated withModelM2 comparedwith the simulated experiment. Although it is possible to find a new set of
optical and geometrical properties that generate aDTOF thatfits the simulated experiment, the parameters considered formodelM2

are not the same as the real ones.
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To compare our results with existing model selec-
tion methods the Akaike information criteria (AIC),
which is based on a Kullback-Leibler criterion and
uses the optimized likelihood and the number of para-
meters tomake a recommendation, was used. It agrees
with our results even after penalizing for the increased
amount of parameters, though BMS is more flexible
because it allows for different prior distributions for
the parameters. This is particularly useful when the
user has some knowledge about the underlying para-
meters of themodels.

Given the results presented above for the geome-
trical aspects of the interfaces, we employed the same
BMS formalism to decide between two three-layered
models with planar boundaries, considering variations
on the absorption coefficient of the first layer on the
simpler case, and changes on layers one and two aswell
as in the thickness of the first layer of the complex one.
It turns out that, when the fixed parameters are cor-
rectly guessed, the simpler model results representa-
tive enough of the data at a very low cost, and thus, it is
worth to use it. Conversely, if the initial guess is wrong,
the complex model results in a best representation
of the data. Should the more complex model not be
used, the simplermodel could lead to a sub-estimation
of the absorption in the superficial layer.

The methodology presented here has the poten-
tial of becoming a useful tool for choosing between
different models to decide whether or not it is worth
replacing complexity for precision. In this work, first
results suggest that a planar model is a fairly good
approximation of a brain structure, in a light propa-
gation sense. As additional result, it is shown that a
simple model with variable absorption of the first
layer describes the data correctly and at a low cost,
but only when the fixed initial parameters are cor-
rectly guessed. It is important to note that, although
the BMS analysis was applied to two particular situa-
tions that relates only two pairs of models, it can be
used in more general ways, including more sophisti-
cated approaches. For example, cerebrospinal fluid is
a critical component of the brain structure, and thus,
using models that allows for void, or non-scattering
regions, it could be considered using this same
formalism.
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