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We have investigated the first stages of oxidation of the basal plane of MoS2 with O2. The different 

intermediates in the energy landscape were found at 0 K with nudged-elastic band calculations and their 

reactivity was evaluated at higher temperatures by performing ab-initio molecular dynamics simulations. 

We identified the intermediates and mechanisms leading to the desorption of both SO and SO2 species. 

The key intermediate consists of an O atom bound on top of an S atom with a second O atom inserted into 

the S−Mo bond, giving rise to a stable O=S−O−Mo moiety. The mechanisms leading to this intermediate 

upon adsorption of O2 on the basal plane of MoS2 are discussed. From the O=S−O−Mo intermediate, SO2 

may desorb directly generating a single sulfur vacancy on the surface while its decomposition leads to the 

desorption of SO and leaves substitutional oxygen on the surface. These etching mechanisms were also 

observed in the ab-initio molecular dynamics simulations in good agreement with energy profiles 

calculated along the reaction paths. Diffusion of O atoms on top of the sulfur layer and direct desorption 

of SO groups were never observed in the molecular dynamics simulations because these processes have 

high energy barriers (2.4 eV and 3.1 eV, respectively). However, subsurface diffusion of O atoms, 

involving the formation of both O−S and O–Mo bonds, is a competing process with lower energy barriers. 
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1. Introduction 

Two-dimensional (2D) molybdenum disulfide has received great attention as a potential material for 

fabricating ultrathin electronic devices owing to its semiconductor bandgap.1 The applications of MoS2 in 

electronic and optoelectronic devices require the material to be chemically stable. Understanding its 

stability in ambient conditions is crucial for the development of potential applications. The performance 

of MoS2 based Field-Effect Transistors, for example, can be significantly affected by environmental gases 

such as oxygen and water.2 CVD-grown sheets develop extensive cracking and show a severe quenching 

of the direct gap photoluminescence after exposure to the environment for several months.3 The oxidation 

induced etching observed originates from edges and grain boundaries and proceeds towards the interior 

of the flakes.3 The oxidation of thin MoS2 flakes begins along the flake boundary, forming beads of 

decomposed material along its edges which has been attributed to the desorption of sulfur dioxide and 

formation of MoO3.4 

Monolayers and multilayers rapidly oxidize upon exposure to elevated temperatures in an ambient 

atmosphere. Oxidative etching starts at defects on the basal planes and the edges.5 MoS2 edges tend to 

oxidize faster than the basal plane due to the lower coordination of the edge Mo atoms. Oxidative attack 

on the basal planes leads to the formation of triangular microscopic etch pits.6,7 Exfoliated MoS2 is shown 

to chemically oxidize in a layered manner upon exposure to a remote O2 plasma.8 Multilayer films can be 

thinned down to 1 or 2 layer patches at high temperatures in the presence of O2.9 The oxidation of MoS2 

usually produces areas covered by MoO3 that can subsequently volatilize and lead to etching.10

The mechanisms of MoS2 oxidative etching are not yet fully understood. Many processes are involved 

depending on the temperature and the environmental conditions. The surface diffusion of initially 

physisorbed oxygen has been pointed out as an important step in the MoS2 oxidation mechanism.11 S 

atoms on the basal plane of MoS2 can also exchange with O atoms upon exposure to the atmosphere either 
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at room temperature12 or elevated temperatures.13 However, at around 280 oC the oxidation mechanism 

changes from oxygen substitution to full MoO3 conversion.13 The basal plane oxygen exchange can be 

performed selectively without edge oxidation when the edges are fully sulfided.13 In the absence of O2, 

defective MoS2 can be formed under heat treatment by desorption of MoSx species.14 In the case of thick 

geological MoS2 crystals exposed to air, the heat-induced oxidative etching kinetics was characterized by 

the growth of triangular etch pits. It was concluded that the series of etching events taking place mainly 

proceed along zig-zag Mo edges.15 Monolayers and bilayers of MoS2 which were previously irradiated 

with low doses of He+ can be etched with high region specificity after heating in air.16 The selective 

functionalization of the basal plane of MoS2 with oxygen atoms allows tuning both the electronic 

properties and chemical reactivity of MoS2. Although the edges of the single-layer MoS2 are known to be 

highly active for catalysis,17 now there is also interest in activation of the basal plane by substitutional 

oxygen to promote the hydrogen evolution reaction.12,18,19 

Semiconductor device fabrication technology requires to easily control patterning and etching processes. 

The main products of MoS2 oxidation are SO2 and MoO3.20 Thus, in the oxidative etching process, the 

sample thins via evaporation of SO2 molecules as well as through the production of MoO3 oxides which 

can also be volatilized upon heating to the appropriate temperature. Before molybdenum oxides can be 

formed, SO2 desorption must occur to allow further reactions of Mo with oxygen species.21 In the case of 

edges, O2 binds to edge sulfur atoms and the detachment of SO2 leaves a sulfur vacancy into which oxygen 

atoms can bind to finally yield MoO3.21 SO2 desorption from the basal plane has been proposed to occur 

via an oxygen-induced single sulfur vacancy creation mechanism.12 Other oxidation mechanisms might 

also occur, for example, in a study of hyperthermal atomic oxygen interaction with MoS2, the main 

desorption product is SO rather than SO2.22 
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The reactivity of MoS2 towards O2 was investigated using DFT calculations. Two works inform an energy 

barrier of 1.59 eV23,24 for the dissociative adsorption of the oxygen molecule on the basal plane of MoS2 

whereas another work informs a smaller value of 1.1 eV.12 When the same process occurs on an S-

defective site, the energy barrier is halved.23 The edge sites are still more reactive with an O2 dissociation 

barrier as low as 0.31 eV.21

Previous theoretical investigations have only considered the initial steps in the reaction of O2 with the 

basal plane of MoS2 and these quantum mechanical calculations explored the potential energy 

hypersurface only at a temperature of 0 K.12,23,24  The detailed mechanistic steps and the molecular 

dynamics processes leading to the formation of sulfur oxides during the oxidative etching of the basal 

plane of MoS2 by O2 have not been investigated yet in detail. In this work, we identified the intermediates 

and the reaction mechanisms that lead to the desorption of SO and SO2 molecules. We first present the 

results of nudged elastic-band calculations which allowed us to characterize the potential energy surface 

along reaction paths at 0 K. We found that five intermediates are involved in the different elementary 

reaction steps. For each of them, we next performed extensive Ab-initio molecular dynamics simulations 

in order to follow decomposition mechanisms at higher temperatures. In this way, we present a complete 

picture of the oxidation of the basal plane of MoS2 by O2 in the absence of surface defects. The same 

reaction mechanisms were found at 0 K and high temperatures, indicating that the potential energy surface 

is not appreciably affected by temperature, as expected from the high mechanical stability of MoS2. 

2. Theoretical Methods and Surface Modelling

Density-functional theory (DFT) calculations were performed with the Perdew–Burke–Ernzerhof (PBE) 

exchange-correlation functional25 and norm-conserving ultrasoft pseudopotentials26 as implemented in the 

Quantum Espresso (QE) package.27 The electron wave functions were expanded in a plane-wave basis set 

up to a kinetic energy cutoff of 40 Ry (240 Ry for the density). All calculations involving the adsorption 
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of O2 were performed with spin polarization. Several test calculations performed with spin polarization 

showed that once  S−O and/or Mo−O bonds were formed, the cell had no net spin and therefore, spin 

polarization was not included in order to speed up the costly molecular dynamics calculations.  Dispersive 

forces were introduced using Grimme’s semiempirical DFT-D2 approach28 as implemented in the PWscf 

code29 of QE. Reaction pathways were calculated with the climbing-image nudged-elastic-band (CI-NEB) 

method as implemented in QE.30 

The CI-NEB calculations were performed using a (3×3) MoS2 superstructure and the integration in the 

first Brillouin zone was performed with a (4×4×1) Monkhorst−Pack mesh.31 In some test calculations, 

larger unit cells were employed as indicated in the text. For the ab initio molecular dynamics simulations 

(AIMD) we employed a 3√3×6 supercell with dimensions 16.71 Å × 19.30 Å. For this large cell, only one 

k point (gamma) was used for integration to obtain a good balance between the number of atoms used and 

the computational burden. All supercell dimensions were optimized using the “vc-relax” option of QE. A 

time step of 1 fs was used in the MD simulations and the temperature was controlled using a Berendsen 

thermostat at 100 K, 300 K, and 1500 K. The high temperature of 1500 K was used to speed up the MD 

simulations. The longest simulations were performed up to around 12 picoseconds, implying 12,000 

simulation steps. 

3. Results and Discussion 

The goal of this paper is to find the mechanisms that lead to the etching of the basal plane of MoS2 via the 

release of either SO or SO2 towards the gas phase. Consequently, we performed an extensive search of 

intermediates involved in these mechanisms. For that purpose, we used a combined approach employing 

both the NEB method and AIMD simulations at different temperatures. The NEB approach may suffer 

from the drawback that some chemical intuition is needed about possible mechanisms when defining the 

initial and final states. If the defined process does not correspond to an elementary reaction step, 
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intermediates (local minima in the potential energy surface) may be found in between and finally one must 

prove that a given energy path effectively connects two intermediates. To overcome these difficulties, we 

performed AIMD simulations with the first set of intermediates found from NEB calculations which 

allowed us to find new intermediates as well as to verify elementary reaction steps. In this way, we could 

identify a set of intermediates consistent with both NEB and AIMD calculations.

3.1 Minimum Energy Pathways from NEB calculations. Figure 1 shows side and top views of the 

structure of reactants (Figure 1a), products (Figure 1b) and intermediates (Figure 1c). Using the combined 

NEB + AIMD strategy, we found five intermediates (Figure 1c). Below each panel, we show the 

nomenclature used to identify each structure and the relative energy taking as the reference state the energy 

of the reactants (Figure 1a, an O2 molecule physisorbed ontop of a sulfur atom of the MoS2 layer).  Figure 

1b shows the SO2 (panel I) and SO (panel II) products adsorbed on the surface. Desorption of SO2 leaves 

a sulfur vacancy on the surface (Figure 1b, panel I) whereas desorption of SO leaves an O-doped surface 

in which an S atom of MoS2 is replaced by an O atom (Figure 1b, panel II). 

In the O2-S intermediate (Figure 1c, panel I) a distorted O2 molecule is chemisorbed on an S atom. The 

long O-O distance of 1.55 Å indicates that a single bond exists between the O atoms (the bond length is 

1.24 Å in the gas phase). The SO+SO intermediate (Figure 1c, panel II) corresponds to two O atoms bound 

on top of adjacent S atoms. In the OSOMo intermediate (Figure 1c, panel III) there is an O atom inserted 

into an S−Mo bond and a second O atom is bound to this S atom. The Mo−OSO intermediate (Figure 1c, 

panel IV) corresponds to an SO2 molecule with one of the O atoms bound to two adjacent Mo atoms 

whereas the S atom is above the plane of the remaining S atoms of the surface. In the SO+SOMo 

intermediate (Figure 1c, panel V) there is an O atom inserted into an S-Mo bond whereas the other O atom 

is bound on top of an adjacent sulfur atom. None of the intermediates in Figure 1c have a net spin density 

(no net spin was observed in the unit cell). 
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8

Figure 1. Side and top views of the structure of a) reactants, b) products and c) intermediates found in 
the reaction of O2 with the basal plane of MoS2. The ΔE values are calculated taking as reference the 
energy of the reactants. The labels below each panel show the nomenclature used to identify every 
structure. 

a) Reactants

b) Products

c) Intermediates
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The ΔE values for the products (Figure 1b) show that the release of SO is much more exothermic than the 

release of SO2 (-1.20 eV vs -0.05 eV, respectively). This is because an S atom of the surface is substituted 

by an O atom in the first case, whereas a reactive sulfur vacancy is left on the surface upon desorption of 

SO2. The calculations of Santosh et al. have shown that the substitution of sulfur by oxygen atoms is a 

thermodynamically competitive process in a wide range of oxygen pressures.23

The most stable intermediate is the SO+SO (Figure 1c, panel II) with ΔE=-1.08 eV, followed by the 

OSOMo (panel III) and Mo−OSO (panel IV) intermediates, with ΔE values of -0.71 eV and -0.54 eV, 

respectively. The O2-S intermediate lies 1.87 eV above the energy of the reactants (panel I) whereas the 

SO+SOMo intermediate (panel V) has ΔE=0.03eV. The intermediates in Figure 1c are true local minima 

in the potential energy surface. Their stability was checked by performing AIMD simulations during 1 ps 

at 100 K. Figure S1 shows that the total energy profile remains constant during this time window which 

allows for several S-O vibrations. The relative energy of intermediates shown in the profiles in Figure S1 

at 100 K has the same trend as that shown in Figure 1c, corresponding to a 0 K temperature. 

Figure 2 shows the energy profiles along the reaction path connecting the different intermediates. The 

numbers in the figure correspond to the energy barriers relative to the previous energy minimum. The 

reaction of O2 with the MoS2 surface may initiate with either the O2-S intermediate (Figure 1c, panel I) or 

the SO+SO intermediate (Figure 1c, panel II) and after the initial steps, both reaction branches converge 

to the OSOMo intermediate (Figure 1c, panel III). The energy profile of the series of reactions that proceed 

via the SO+SO intermediate is shown in Figure 2a, whereas Figure 2b shows the energy profile of the 

reactions that proceed via the O2-S intermediate. The energy pathway of the final reaction steps that initiate 

with the OSOMo intermediate and end with the release of either SO2 or SO species is shown in Figure 2c. 
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10

Figure 2. Energy profiles obtained from NEB calculations connecting reactants, intermediates, and 
products. The numbers correspond to activation energy values (in eV) calculated with respect to the 
previous local minimum. The panels on the right show the structure of representative points along the 
energy path. a) Reaction path proceeding along the SO+SO intermediate (panel III) and ending in the 
OSOMo intermediate (panel VII). b) Reaction path along the O2-S intermediate (panel III) ending in 
OSOMo intermediate (panel V). c) Energy profiles starting from OSOMo intermediate leading to the 
desorption of SO2 (panel III) or SO (panel VIII). 

a) 

b) 

c) 
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Figure 2a shows that the dissociative adsorption of O2 (panel I) yielding two adjacent SO groups (panel 

III) is exothermic with ΔE=-1.08 eV and has a high energy barrier of 2.16 eV. The next intermediate is 

obtained when one O atom of SO inserts into the S−Mo bond yielding the SO+SOMo intermediate (panel 

V of Figure 2a) after surpassing a barrier of 1.87 eV. Next the O atom in the SOMo moiety inserts into 

the Mo–S bond of the adjacent SO group yielding the OSOMo intermediate (Figure 2a, panel VII). This 

process has a barrier of 1.37 eV. The OSOMo intermediate has been reported in previous work.12 

However, the NEB calculations in ref. (12) failed to identify that the conversion from the SO+SO 

intermediate (Figure 2a, panel III) to the OSOMo intermediate (Figure 2a, panel VII) is not an elementary 

reaction step as the SO+SOMo intermediate is first observed (Figure 2a, panel V). 

The OSOMo intermediate can be reached straightforwardly via the pathway shown in Figure 2b. After the 

formation of the O2-S intermediate (Figure 2b, panel III) with an energy barrier of 1.93 eV, one of the O 

atoms inserts into the S–Mo bond, and the stable OSOMo intermediate is formed (Figure 2b, panel V) 

with ΔE = -0.71 eV. From the OSOMo intermediate, several reaction pathways are possible, as shown in 

Figure 2c. The direct desorption of SO2 leaving a vacancy on the surface has a high barrier of 1.49 eV. 

The breakage of S–Mo bonds of the S atom in the OSOMo intermediate yields the Mo−OSO intermediate 

(Panel V). The barrier to reaching this intermediate is 1.34 eV. Finally, from this intermediate two 

competing pathways are observed. In the first one, the SO2 molecule may desorb after breakage of Mo–O 

bonds with a barrier of 0.78 eV, leaving a sulfur vacancy on the surface (Panel III). In the second one, one 

O–S bond breaks leaving an adsorbed O atom and a desorbed SO molecule (Panel VIII). Desorption of 

SO has been reported experimentally as the main product in a study of hyperthermal atomic oxygen with 

MoS2 surfaces.22 

The ΔE value of -1.08 eV that we obtained for the dissociative adsorption of O2 yielding two SO moieties 

(Figure 2a) agrees with the values close to -1 eV reported in previous works.12,14 However, there is a large 
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12

discrepancy regarding the energy barrier informed in these works, with values of 1.1 eV12 and 1.6 eV24, 

with our value of 2.16 eV. It is known that the type of functional employed in DFT calculations may 

influence barrier heights.32 However, in this work as well as in refs. (12) and (24), the same PBE 

functional25 was used. Both in refs. (12) and (24) as well as in this work, the Climbing Image NEB 

method30 has been used to obtain the energy profile along the reaction path. Notably, the same 

computational program (VASP) was used in the previous works12,24 however, the informed energy barriers 

differ by 0.5 eV. We think that the discrepancies arise from the poor exploration of the total energy 

hypersurface during the search of the reaction path when using the CI-NEB method.30 Henkelman et at. 

outline that the shape of the energy profile along the reaction coordinate is often highly asymmetric in 

dissociative adsorption processes.30 Therefore they suggest using stronger spring constants connecting 

adjacent images near the saddle point and weaker ones for images with low energies. This produces an 

uneven distribution with more images closer to the saddle point. This guarantees that the climbing image 

will effectively converge to a saddle point.30 In Fig. S2a we show energy profiles calculated with 5 and 7 

images using both constant and variable springs. We obtained energy barriers between 0.88 eV and 2.08 

eV, with the lowest values for calculations with constant springs (which produce an even distribution of 

energy points along the reaction coordinate, see the profiles with open symbols in Fig. S2a). However, 

when 9 and 13 images are used together with variable spring constants, the energy barrier converges to 

the value of 2.16 eV. In ref. (12) the energy points along the reaction path are not presented and in ref. 

(24) only 7 images with equal spacing along the reaction coordinate were used, which indicates that 

constant springs were employed between the images. This does not guarantee the convergence of the 

climbing image to the saddle point.30 Therefore, we conclude that the energy barriers reported in refs. (12) 

and (24) are underestimated.   
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3.2 Stability of Intermediates: Ab-initio Molecular Dynamics. The mechanisms shown in Figure 2 

obtained from NEB calculations correspond to 0 K temperature. We now show that they are confirmed by 

AIMD simulations at higher temperatures. To get more statistical information from the simulations, we 

employed a large unit cell in which four intermediates of the same type could be accommodated. Figure 

3a shows the evolution of the energy profile during a simulation with four O2–S intermediates at 300 K. 

The insets show top and side views of the unit cell. The simulation was started with the unit cell previously 

equilibrated at 100 K (Figure S1). The short energy peak during the first 0.1 ps occurs during the 

thermostatization to the new temperature of 300 K. Each energy step in Figure 3a corresponds to the 

exothermic process in which an O2–S intermediate converts into the more stable OSOMo intermediate. 

The red curve in the energy profile corresponds to one such process. The panels in Figure 3b are snapshots 

of the simulation taken at the indicated time in the inset. Figure 3b shows that once the O–O breaks, one 

of the O atoms inserts into the S–Mo bond whereas the other O atom remains on top of the S atom, thus 

yielding the stable OSOMo intermediate (panels III-VI).  The simulation shows an energy jump of -2.6 

eV for this process (see inset in Figure 3a) in good agreement with the value of -2.59 eV which is obtained 

from the NEB calculation in Figure 2b. During the 1 ps simulation, 3 out of the 4 O2–S intermediates 

converted into the OSOMo intermediate. This is readily observed in the variation of the O–O bond 

distance shown in Figure 3c. The O atoms in the O2–S intermediate vibrate at around 1.56 Å and this 

distance sharply increases when the O atoms move away to form the OSOMo intermediate (black, red, 

and green curves in Figure 3b). The blue curve in Figure 3b corresponds to the O2–S intermediate that 

remained stable during the simulation time. 

Except for the O2–S intermediate, all the others are stable at 300 K within a few picoseconds of simulation 

time. Figure S3 compares the energy profiles of the five intermediates at 300 K during the first picosecond. 

To accelerate the simulations, the temperature was next raised to 1500 K. Figure 4a compares the energy 
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profiles for the OSOMo (black curve), Mo–OSO (red curve) and SO+SOMo (green curve) intermediates 

(see Figure 1c).

Figure 3. a) Total energy as a function of time for the AIMD simulation performed at 300 K in a MoS2 
cell initially containing four O2-S intermediates (see inset). b) Snapshots along the red curve in the 
energy profile showing the decomposition of the O2-S intermediate to yield the OSOMo intermediate 
(panel VI). c) O−O bond distance as a function of time for each of the four intermediates in the 
simulation cell. Three of them react to yield the OSOMo intermediate in which the O atoms are 
separated by 2.6 Å on average. 

a) 

b) 

c) 
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Figure 4. a) Evolution of total energy as a function of time for AIMD simulations performed at 1500 K 
for OSOMo (black curve), Mo−OSO (red curve) and SO+SOMo (green curve) intermediates. In all cases, 
there are four intermediates in the simulation box. b) Snapshots showing the conversion of an OSOMo 
intermediate into a Mo−OSO intermediate (2.766 ps) which decomposes releasing an SO molecule and 
leaving an O atom adsorbed on the surface (2.952 ps). c) Snapshots showing the conversion of a 
SO+SOMo intermediate into a SO+SO intermediate after the breakage of a Mo−O bond (3.626 ps, red 
circle). d) Snapshots showing the subsurface diffusion of an O atom around an S atom (red circle) after 
breaking a Mo−O bond and formation of a new one. 

a) 

b) 

c) d) 
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In each simulation, there are four intermediates in the unit cell. The arrows indicate the time when a 

specific structural rearrangement has occurred or when a species has desorbed. The large energy 

fluctuations at high temperatures mask, in general, the small ΔE values associated with the different 

reactions. In the case of the simulation with four OSOMo intermediates (Figure 4a, black curve), two of 

them yielded SO2 desorption (at 0.432 ps and 2.105 ps), one of them decomposed releasing SO (at 2.910 

ps) and the fourth remained stable during the 5 ps simulation time. Figure 4b illustrates the structural 

changes leading to the desorption of SO. The OSOMo intermediate shown at 2.426 ps converts into Mo–

OSO intermediate after breakage of S–Mo bonds (2.766 ps). In the last panel at 2.952 ps the O–S bond is 

broken, and SO is released to the gas phase. The OSOMo to Mo–OSO conversion before the desorption 

of SO shown in Figure 4b agrees with the reaction pathway in Figure 2c. The simulation with four 

Mo−OSO intermediates (Figure 4a, red curve) readily showed the release of four SO molecules to the gas 

phase as indicated by the arrow at 0.1 ps. This is consistent with the small energy barrier of this process 

(0.41 eV, Figure 2c). The decrease in the total energy observed in Figure 4a at 2.9 ps after desorption of 

the four SO molecules is due to further reactions among them in the gas phase yielding SO2 and SO species 

(Figure S4). 

The NEB calculation in Figure 2a shows that in the forward direction, the sequence of intermediates is 

SO+SO → SO+SOMo → OSOMo. This sequence, however, was never observed in the AIMD 

simulations. The SO+SO intermediate remained stable during the whole simulation time at 1500 K. Figure 

S5a shows that the energy remained stable and Mo−O bonds were not formed (Figure S5b). In the 

simulation with four SO+SOMo intermediates (Figure 4a, green curve) we only observed the backward 

reaction SO+SOMo → SO+SO as illustrated by the snapshots in Figure 4c. According to the energy profile 

in Figure 2a, this process has a barrier of 0.76 eV. However, we did not observe the forward reaction in 

which the SO+SOMo intermediate converts into the OSOMo moiety, with a barrier of 1.37 eV as shown 
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in Figure 2a. We remark that at 1500 K the system has enough potential energy to overcome such a barrier 

height. For example, as discussed above, we have observed processes with higher barriers such as the 

desorption of SO2 (1.49 eV barrier, Figure 2c) or the OSOMo → Mo–OSO conversion (1.34 eV barrier, 

Figure 2c). We, therefore, conclude that the forward reaction (SO+SOMo → OSOMo) corresponds to a 

path with a low probability. The snapshots in Figure 4c show that the SO+SOMo → SO+SO conversion 

is a straightforward process as it only involves the breakage of a Mo–O bond (panel at 3.626 ps in Figure 

4c, indicated by a circle) leading to the formation of a new SO group (panel at 3.857 ps in Figure 4c). On 

the contrary, the forward reaction SO+SOMo → OSOMo is a complex process that requires the breakage 

of the S–OMo bond and the insertion of the O atom into the S–Mo bond of the adjacent SO group to 

finally yield the OSOMo intermediate. Finally, the snapshots in Figure 4d show a different process 

occurring around the SOMo moiety. It is the diffusion of an O atom to an adjacent surface site, involving 

the breakage and formation of Mo−O bonds. We will refer to such a process as subsurface oxygen 

diffusion. In summary, after the first 5.0 ps of simulation time, we observed that one of the four SO+SOMo 

intermediates converted into the SO+SO intermediate (Figure 4c) whereas the O atom in a SOMo moiety 

diffused towards and adjacent position (Figure 4d). 

From the structure at 5.0 ps, the AIMD simulation was extended for another 12 picoseconds yielding the 

energy profile in Figure 5. At 2 and 11 ps we observed the formation of two new SO+SO intermediates. 

The energy profile averaged in the last picosecond of simulation is 2.55 eV lower than during the first 

picosecond, which is consistent with the formation of two SO+SO intermediates. From Figure 1c the 

energy difference for the conversion SO+SOMo → SO+SO is ΔE = -1.11 (Figure 2a), therefore yielding 

ΔE = - 2.22 eV for two intermediates, in agreement with the AIMD simulation. The final structure after 

12 ps is shown in Figure 5b and contains 3 SO+SO intermediates and one SOMo moiety. As outlined 

above, the SO+SOMo → OSOMo conversion was not observed either at these long simulation times. It 
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is important to remark that neither in the simulations containing SO+SO intermediates nor in simulations 

with SO+SOMo intermediates did we observe desorption of sulfur species. We, therefore, conclude that 

the mechanism leading to the formation of SO groups after O2 dissociation (Figure 2a) does not lead to 

desorption of SO2, because the SO+SO intermediate produced in this mechanism is very stable and does 

Figure 5. a) Total energy as a function of time for AIMD simulation of SO+SOMo intermediates showing 
the conversion to SO+SO intermediates. b) Snapshot of the cell structure at the end of the simulation, 
showing that only one SO+SOMo intermediate remained unreacted (red circle). 

a) 

b) 
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not lead to OSOMo due to the kinetics considerations outlined above. The fact that the direct desorption 

of SO was never observed from the SO+SO intermediate in the AIMD simulations is consistent with the 

large energy barrier of 3.13 eV for the desorption process as obtained from a NEB calculation (Figure S6). 

As the OSOMo is the key intermediate leading to the release of SO and SO2 species to the gas phase, we 

performed additional simulations at longer time to further verify the desorption mechanisms. Figure 6a 

shows the simulation cell with four OSOMo intermediates (previously thermalized at 1500 K for 1 ps). 

The desorption processes are indicated together with the energy profile in Figure 6b and relevant snapshots 

are shown in Figure 6c (side and top views, gas-phase molecules not shown in top views for clarity). 

Direct SO2 desorption from the OSOMo is observed at 1.835 ps and 2.406 ps (Figure 6c), leaving two S-

vacancies on the surface. At 6.5 ps an OSOMo → Mo–OSO conversion process occurs and upon breakage 

of the O−S bond of Mo–OSO at 7.1 ps, a SO molecule is released into the gas phase leaving an oxygen 

atom on the surface (Figure 6c at 8.505 ps). The last OSOMo intermediate remaining produces the 

desorption of another SO2 molecule at 10.503 ps. The snapshot at 11.078 ps in Figure 6c shows one SO 

and three SO2 molecules in the gas phase.  Finally, at around 12 ps there is a large decrease in the energy 

profile in Figure 6b. It is due to the adsorption of the SO molecule on an S-vacancy surface site (Figure 

6c at 12.733 ps). This process is very exothermic with ΔE = -3.13 eV (Figure S6).
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Figure 6. a) Top and side views of the simulation cell initially containing four OSOMo intermediates. b) 
Total energy vs time for AIMD simulation at 1500 K. The labels indicate the structural transformation 
taking place. c) Snapshots showing desorption of first SO2 molecule (1.835 ps), second SO2 molecule 
(2.406 ps), SO molecule (8.505 ps, red circle) and third SO2 molecule (11.078 ps). Adsorption of SO on a 
sulfur vacancy site is observed at 12.733 ps (blue circle). Gas phase molecules not shown in top view. 

a) 

b) 

c) 
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Figure 7. Summary of reaction mechanisms. Energy levels indicate the relative energy of each 

intermediate with respect to the reacting O2 molecule adsorbed ontop of an S atom of MoS2. The arrows 

correspond to elementary reaction steps and the number near each arrow is the activation energy barrier 

in eV. The green arrows correspond to processes that were observed in the AIMD simulations. 
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Figure 7 summarizes the most likely reaction mechanisms emerging from the calculations of the previous 

sections. The different species are located in the energy scale according to their relative energy with 

respect to the reactants (the O2 molecule adsorbed ontop of an S atom of MoS2). The number near the 

arrows indicates the activation energy barrier of a given elementary reaction step. The green arrows show 

the processes that were observed in the AIMD simulations. Figure 7 outlines the central role of the 

OSOMo intermediate. The reaction of O2 with MoS2 does lead to the OSOMo intermediate in a single 

elementary reaction step. It can be reached via the SO+SO or the O2-S intermediates, with high energy 

barriers of 2.16 and 1.93 eV, respectively. The OSOMo intermediate can directly lead to the release of 

SO2 (Ea=1.49 eV) or it may rearrange into the Mo-OSO intermediate (Ea=1.34 eV). From this intermediate 

both SO2 (Ea=0.78 eV) and SO (Ea=0.41 eV) can be liberated, generating a sulfur vacancy in the first case 

and a substitutional O atom in the second case. 

3.3 Top vs subsurface oxygen diffusion. The diffusion of O atoms is a competing process to those 

presented in Figure 2a. Therefore, we investigated the energetics of both the top and subsurface oxygen 

diffusion. The top diffusion of oxygen was never observed in the simulations, which is consistent with the 

high energy barrier of 2.38 eV shown in the NEB calculation of Figure 8a, which is in good agreement 

with the value of 2.53 eV reported in the literature.33 A process with a lower energy barrier (1.92 eV, red 

curve in Figure 8a) is the formation of a SOMo moiety which occurs when the O atom of SO becomes a 

subsurface O atom by forming a bond with a Mo atom. Therefore, for an O atom bound on top of an S 

atom of MoS2, it is more energetically favorable to insert into the surface giving rise to a a SOMo moiety, 

than to diffuse to an adjacent S atom forming a new SO moiety. Panels I-III in Figure 8b show the top 

diffusion process whereas panels I, IV, and V show the insertion of the O atom of SO into the surface to 

yield de SOMo moiety (panel V). 
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The O atom in the SOMo moiety may jump to an adjacent Mo atom while remaining bonded to the same 

S atom. The black curve in Figure 8c shows the corresponding energy profile and panels I-III in Figure 

8d show the initial structure, an intermediate (O atom bound to both Mo atoms), and the final state. This 

process has an energy barrier of 1.80 eV. Another possibility is the jump of the O atom of the SOMo 

moiety to an adjacent S atom while remaining bonded to the same Mo atom. This process is shown in 

pannels I, IV, and V of Figure 8d, and the corresponding energy profile (red filled circles in Figure 8c), 

shows an energy barrier of 1.80 eV. When this oxygen jump occurs towards the S atom of an adjacent SO 

group (panels I', VI and VII in Figure 8d), the energy profile (red open symbols in Figure 8c) has a lower 

barrier (1.30 eV) and the reaction becomes exothermic (ΔE = -0.79 eV ) as the stable OSOMo intermediate 

is formed (panel VII in Figure 8d) which, as discussed above, is the key intermediate leading to the 

desorption of both SO and SO2 species. 

Energy profiles comparing the top and subsurface diffusions of the oxygen atom are presented in Figure 

8e. In the case of top O diffusion, the energy profile corresponds to two successive oxygen jumps (with 

Ea=2.38 eV) as indicated by the black arrows in the inset. The subsurface diffusion (red arrows) has a 

lower energy barrier and a more complex profile as it involves the oxygen jump between adjacent S atoms 

(while bonded to the same Mo atom, Ea=1.8 eV) and next the jump to an adjacent Mo atom (while bonded 

to the same S atom, Ea=0.83 eV), as shown by the red arrows in the inset of Figure 8e. As expected, the 

breakage of the covalent and directional O–S bonds has a much higher energy barrier than the breakage 

of the more ionic and delocalized O–Mo bonds.
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Figure 8. a) Energy profiles obtained from NEB 

calculations for surface (black curve) and sub-surface (red 

curve) diffusion. The numbers show energy barriers. b) 

Structure of reactants, transition state and products for 

surface (panels I-III) and subsurface diffusion (panels I’, 

IV and V). c) Energy profiles for subsurface diffusion 

processes: O diffusion around an S atom (black curve), O 

diffusion towards adjacent S atom (red curve, filled 

circles) and O diffusion towards SO group (red curve, 

open circles). d) Panels showing oxygen diffusion along 

the different paths indicated in c). e) Summary of 

subsurface and top diffusion energy profiles along the 

surface sites indicated by the arrows in the inset. The 

numbers indicate energy barriers in eV with respect to the 

previous energy minimum. 

d) 

c) 

a) 

b) 

e) 
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4. Conclusions

The first steps in the oxidation of MoS2 with O2 occur along two branches in the reaction mechanism 

which are characterized by two stable intermediates. First, dissociative adsorption of O2 may produce two 

adjacent SO groups in an exothermic reaction with ΔE = -1.08 eV with a large energy barrier of 2.16 eV. 

The direct desorption of SO leaving a sulfur vacancy on the surface is very costly with ΔE = 3.13 eV. 

Although the NEB calculations show that from an energetic point of view other intermediates may be 

reached in the path towards SO2 desorption, the AIMDS simulation showed that this path is very unlikely 

and it was never observed even though high temperatures were employed. 

In the second reaction branch, the OSOMo intermediate is formed with ΔE = -0.71 eV and an energy 

barrier of 1.93 eV. It consists of one SO group with an O atom inserted into one of the three Mo−S bonds 

(O=S−O−Mo moiety). The AIMD simulations, in agreement with the NEB energy profiles, show that SO2 

can directly desorb from this intermediate. In turn, the rearrangement of the OSOMo intermediate 

produces a new intermediate (Mo−OSO) from which both SO and SO2 can desorb. The desorption of SO2 

leaves a sulfur vacancy, whereas the desorption of SO, leaves an O atom in replacement of the desorbed 

S atom. This reaction is the most exothermic with ΔE = -1.20 eV. Diffusion of oxygen atoms may also 

occur, with subsurface diffusion (involving O–S and O–Mo bonds) having lower energy barriers than O 

diffusion on top of surface S atoms (only O–S bond formation/breakage). 

In summary, our combined NEB and AIMD investigation has provided insights into the energetics and 

dynamics of the initial stages of MoS2 etching induced by O2 as well as on the mechanisms leading to the 

formation of substitutional oxygen, which has been recently recognized as prolific point defect in 

transition metal dichalcogenides13,34 which is responsible for the activation of the basal plane of 

MoS2.12,18,19,35 
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Associated Content

The Supporting Information is available free of charge on the ACS Publications website. Additional NEB 

and AIMD simulations. 
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