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Abstract

Merging operators represent a significant tool to extract a consistent and infor-
mative view from a set of agents. The consideration of practical scenarios where
some agents can be more credible than others has contributed to substantially
increase the interest in developing systems working with trust models. In this
context, we propose an approach to the problem of merging knowledge in a
multiagent scenario where every agent assigns to other agents a value reflecting
its perception on how credible each agent is. The focus of this paper is the in-
troduction of an operator for merging Datalog± ontologies considering agents’
credibility. We present a procedure to enhance a conflict resolution strategy by
exploiting the credibility attached to a set of formulas; the approach is based on
accrual functions that calculate the value of formulas according to the credibil-
ity of the agents that inform them. We show how our new operator can obtain
the best-valued knowledge base among consistent bases available, according to
the credibilities attached to the sources.

Keywords: Belief Revision, Ontologies Merging, Belief Accrual, Multi-agent
Systems, Trust

1. Introduction

Information sharing in practical applications is nowadays a common aspect
that may come in several different flavors, such as the creation of collective
knowledge in social environments (knowledge introduced and maintained by
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different members of the community), data repositories shared across organiza-
tions, news repositories receiving information from a multitude of sources, and
many other possible scenarios. While this design decision has several advan-
tages, like greater consensus and bias removal, the decentralization of knowledge
maintenance could also have disadvantages, in particular regarding conflicting
pieces of information leading to inconsistencies in the knowledge. Through the
years many proposals dealing with such issues were introduced, ranging from
the field of AI [6, 7, 11] and Belief Revision [1, 13, 24] to that of Databases
[5, 33, 38], to cite a few of an extensive literature.

Seeking generality, we will focus on multi-agent application domains where
agents of a community communicate with each other sharing their knowledge.
Each agent can act as the source of some piece of information (or as an in-
formant, in [48]’s terminology) to other agents, and some agents can be more
credible than others. In particular, we present a formalization where every
agent will store the credibility degree that it associates with other agents in the
community, and this value will reflect its perception of that agent’s credibility.

Our proposal introduces an approach to deal with the problem of merging
potentially conflicting knowledge in a multi-agent scenario, exploiting the cred-
ibility associated with the different agents in the community. Despite its direct
application to real-world problems, the mechanisms to deal with this problem
have not been extensively studied in the literature. For instance, some works
propose a formalization of merging operators [30], but they are not based on
trust models. The use of stratified belief bases [18] is another path taken by
researchers when dealing with these scenarios. Such approaches to multi-agent
merging propose to construct a stratified knowledge base from a set of input
knowledge bases; as an example, in [39], the authors introduce methods to as-
sign a particular value to formulas during a merging process. Nevertheless, such
approaches differ from ours in the importance we give to agents’ trust to guide
the merging of information.

The usefulness of defining a trust model has been widely accepted in the
knowledge representation and reasoning literature. As stated in [42], the evo-
lution of the multi-agent systems paradigm and e-commerce have contributed
substantially to an increasing interest in representing trust; many applications in
information and communication technologies have arisen as the result of works
on trust models [22]. Clearly, some form of trust requires to be modeled in
any multi-agent problem where critical decisions are made based on credibility
among those agents. On the other hand, the integration of different systems,
and the interaction resulting from this integration, may led to different practi-
cal problems. In this context, the management of conflicting information is an
important and challenging issue that has to be faced [6, 7]. Several significant
results aiming at dealing with such conflicts have been developed in the area
of Belief Revision, where the central contribution is the definition of merging
operators conducted by a set of rationality postulates.

In agent societies, consensus and unification of credibility criteria among its
members is an important characteristic that should be taken into account when
integrating local knowledge bases of the society. Following this direction, dif-
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ferent proposals from Belief Revision theory have been developed to define and
construct revision operators over an agent’s knowledge base [29, 36, 47, 48]. In
particular, these proposals focus on modeling the overall belief revision behavior
of a multi-agent society, where agents need to communicate, cooperate, coor-
dinate, and negotiate with each other to achieve a given goal. Even when our
proposal does not address multi-agent negotiation directly, it presents mecha-
nisms that contribute to the strengthening of capabilities of general multi-agent
systems. Liu and Williams in [36] introduced an analysis of Belief Revision in
this particular type of system.

The work in [30], which presented a formalization for merging propositional
knowledge bases, has inspired and established the foundations to numerous
works in Belief Revision. Several other works have also focused on defining
merging operators, such as [14, 27]. The formal account of merging operators
allows not only the representation of features intrinsically associate with pieces
of information but also provides a natural and easy way to represent other types
of domain information such as the identification of the sources from where in-
formation comes, as well as properties of such informants. [29].

Our novel approach represents a significant advance on the formalization of
the process of merging knowledge bases where formulas have values attached to
them measuring the credibility assigned to these formulas; then, these values are
employed to decide which formulas to keep and which ones should be removed to
solve conflicts. The procedure is based on the accrual of beliefs, that is, several
formulas collaboratively aggregate their respective credibility values attempting
to prevail in the resolution of conflicts; we will focus our research on exploring
the theoretical aspects of the proposed approach. Next, we will show a running
example that will also motivate our proposal’s main ideas.

Example 1. Consider a scenario where a group of colleagues is trying to decide
on which of the following two hotel construction projects they will invest in: 1)
the construction of a Hotel & Office complex in the downtown area of the city, or
2) the construction of a complex near the beach zone of the city. Each one of the
members of the group will put forward its personal preference over 1) and 2); the
goal is to find a final consensual decision on which project they will invest as a
group. This group decision will be directly influenced by the credibility (or trust)
that each group member has about the others. Suppose that the group is formed
by five colleagues A1,A2,A3,A4, and A5. We will assume that each member of
the group can assign a degree of credibility to other agents in the group, e.g.,
for A1, A2 is less credible than A3 and A4, while it does not say anything
about A5. As we are trying to obtain the most credible option as a group, we
can use the individual credibility orderings to evaluate each (conflicting) option’s
credibility. For example, assume option 1) is reported as the preferred option for
A1, A2, and A4, whereas A3 and A5 prefer option 2). From this perspective,
the credibility for option 1) can be obtained establishing how credible are A1,
A2, and A4, and the credibility for option 2) establishing how credible A1, A2

are. As the example shows, it seems very natural that the best group decision
is determined by comparing conflicting options’ credibility values. In the rest of
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the paper, we will show different alternatives to accomplish this type of task.

In this article, we are particularly interested in multi-agent settings where
agents need to reach a consensus on how conflicts among information pieces
will be handled. This consensus is expected to be in line with the credibility
associated with agents at the community level.

The applications in real-world scenarios for this particular context are nu-
merous, such as in medical or health care systems, industrial robots, or social
network platforms. A particular example could be the Twitter social network,
which can be seen as a complex network. In such a case, the interactions among
agents (users) such as retweets, replies, and mentions are part of the network’s
implicit dynamics and can be used to extract useful information. Nevertheless,
it is hard to evaluate the trustworthiness of such information effectively, so the
trustworthiness of shared contents and the reputation of agents play an essen-
tial part in such a platform. Another challenging application domain is that of
forecasting the stock market. Recent developments consider the monitoring of
Twitter content as a possible tool for enhancement, and several advances can
be considered in this regard [41]. For instance, one possible development is to
consider reciprocal retweets to calculate the degree of trust agents assign to
other agents; this credibility value could be used to give a final community pre-
diction based on the tweets reflecting stock market movements. The potential
exploitation of the integration of many data sources is vast and can be employed
in many application domains besides the few mentioned above.

Finally, knowledge bases in the form of ontologies are becoming a useful
device that provides a convenient way to deal with the massive amounts of data
we can encounter in real-world environments. Moreover, the expressive power
of ontologies allows us to perform essential tasks on data integration [33]. In
this context, Datalog± is an attractive language to represent the knowledge
bases of different agents, offering a significant tradeoff between expressibility
and decidability, which favors the applicability to various application domains.

Given these considerations, we will focus on merging knowledge bases rep-
resented as Datalog± ontologies to obtain a new ontology that incorporates,
as much as possible, the knowledge of the original bases, focusing on enforc-
ing consistency. Therefore, we present a multi-agent scenario where the agents’
knowledge is expressed as a Datalog± ontology; besides that ontology, each
agent may associate with other community agents a particular credibility value.
Our proposal is based on credibility accrual functions; these functions will as-
sign values to formulas based on the agents’ credibility value that inform them.
Then, to resolve information conflicts, we define incision functions based on ac-
crual functions [24, 13] that select which formulas should be removed from the
conflicting sets. The ontology resulting from this process is the set obtained by
integrating all formulas that are not removed by these incision functions.

The main contributions of this work are the following:

• We formalize a multi-agent setting where agents have their knowledge
expressed as Datalog± ontologies and assign values to other agents in the
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community, considering its particular opinion on how credible they are.
We also introduce conflicts in such a scenario.

• We formalize a framework for merging Datalog± ontology in the multi-
agent context presented, where conflicts arise in the process. In order to
achieve some consensus about how conflicts among pieces of information
should be solved, we devise a general way to use strategies based on the
credibility values that agents ascribe to each other.

• In this setting, credibilities are assigned to formulas through functions on
the credibilities associated with agents that inform them; for this calcu-
lation, we propose a family of distinct functions called credibility accrual
functions.

• We define merging operators based on accrual functions to integrate the
Datalog± ontologies (corresponding to members in a community) into
a new consistency preserving ontology; we also provide insights on such
operators’ behavior.

• Finally, we present particular examples of credibility accrual functions and
show for each the corresponding merging process.

The rest of the paper is structured as follows. Section 2 presents some pre-
liminary concepts. In Section 3, we introduce both credibility accrual functions
and merging operators based on them. Section 4 contains specializations of the
general credibility accrual functions previously introduced. Later, in Section 5,
we formally compare our approach with a related well-known Belief Revision
approach. Finally, Sections 6 and 7 further relate our work with the literature
and offer some conclusions.

2. Background

We begin by briefly recalling the research context of belief change theory,
focusing on particular in merging operators. Later in this section, we introduce
some basic notation that will be used throughout the paper.

2.1. Belief Change and Knowledge Merging

As it is usual in the development of research, how far one should go back to
find the origins of belief change theory is a matter of possibly heated discussion.
Nonetheless, it can be argued, that some of the first steps were given in Isaac
Levi’s work in [34], where the fundamental problems concerning this field of
research were discussed, and in the work of William Harper’s in [26], where
a rational way to interrelate belief change operators were proposed. Later,
essential developments in the field came from the work of Carlos Alchourrón and
David Makinson [2], and also by Peter Gärdenfors [21]. These works eventually
came together with the three authors laying the main building blocks of the
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AGM model in their seminal work [1], setting the foundations from where belief
change theory eventually evolved.

The work in Belief Revision may be divided into two main lines. On the one
hand, in the line known as the coherence model, we have those works focused
on changes in sets of formulas that are closed under some consequence relation,
called belief sets [1]. On the other hand, another line is referred to as the
foundational model, which involves those works formalizing changes on non-
closed sets, called belief bases [24, 25].

In the foundational model, kernel contraction [24] is based on the selection
among the minimal subsets of a belief base K that contribute to make K imply
α (α-kernels); kernel contraction is known to be more general than partial meet
contraction for belief bases [25, p. 88-92], and hence more general than the
AGM approach to contraction [24, 25]. The approach is based on the use of
incision functions, which define the formulas that are to be deleted from each
α-kernels. In this work, we will exploit this approach to attack a problem that is
inherently different from knowledge contraction/revision: knowledge merging.

The problem of merging knowledge is one that arises in several situations. In
particular, in fields outside of Computer Science, it is often needed to combine
several sources of information. Moreover, such a combination needs to be done in
a way that, when found, conflicts are taken care of. As discussed in [19], merging
multiple sources of information can be applied in many different scenarios like
distributed databases, multi-agent systems, data warehousing, etc., where it is
necessary to integrate multiple databases into a single and preferably consistent
database. One of the most relevant applications of merging is in the integration
of expert systems [50], where each one has a belief base representing its belief
state, which can be either knowledge expressed in a propositional language; or
(a subset of) a first-order logic.

As opposed to most revision approaches, merging opens the possibility that
new evidence is partially or even completely ignored if old information is suit-
ably well-entrenched. The merge operation joins old and new information in a
consistent set without giving undue precedence to one or the other. One of the
most prominent works on merging is that of [30], further research on the topic
has emerged from this foundational proposal [19].

2.2. Preliminaries

Here, we will deal with application environments where knowledge is ex-
pressed in an ontological language; several such languages were developed to
achieve such knowledge representation. In particular, we focus on a represen-
tation consisting of a database instance together with a set of existential rules,
also known as Datalog± [10]. Existential rules extend Datalog rules by allowing
existential quantification in the rule heads. We will now recall the basic no-
tions of Datalog± ontologies from [10], which further extends the language with
other types of rules and constraints (both syntactic and semantic) that limit
the expressive power in favor of computational tractability.

We will assume that the domain of discourse consists of a countable set of
data constants ∆, a countable set of nulls ∆N (as placeholders for unknown
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values), and a countable set of variables V. We also assume that different con-
stants represent different values (Unique Names Assumption). To distinguish
constants from variables, we adopt the standard notation from Logic Program-
ming, where variable names begin with uppercase letters, while constants and
predicate symbols begin with lowercase letters.

We assume a relational schema R, which is a finite set of predicate symbols
(or simply predicates). A term t is a constant, a null, or a variable. An atom
a has the form p(t1, . . . , tn), where p is an n-ary predicate and t1, . . . , tn are
terms; an atom is ground iff all terms in it are constants. Let L be a first-order
language such that R ⊂ L; then LR denotes the sublanguage generated by R. A
database (instance) of R is a finite set of atoms with predicates in R and terms
in ∆ ∪ ∆N . A homomorphism on constants, nulls and variables is a mapping
h : ∆ ∪ ∆N ∪ V −→ ∆ ∪ ∆N ∪ V such that (i) c ∈ ∆ implies h(c) = c, (ii)
c ∈ ∆N implies h(c) ∈ ∆∪∆N , and (iii) h is naturally extended to atoms, sets
of atoms, and conjunctions of atoms.

Given a relational schema R, a tuple-generating dependency (TGD) σ is
a first-order formula of the form ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z) where Φ(X,Y)
and Ψ(X,Z) are conjunctions of atoms over R called the body (denoted body(σ))
and the head (denoted head(σ)), respectively. Consider a database D for a
relational schema R, and a TGD σ on R of the form Φ(X,Y) → ∃ZΨ(X,
Z). Then, σ is applicable to D if there exists a homomorphism h that maps
the atoms of Φ(X,Y) to atoms in D. Let σ be applicable to D, and h′ be a
homomorphism that extends h as follows: for each Xi ∈ X, h′(Xi) = h(Xi); for
each Zj ∈ Z, h′(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ∆N , zj does not
occur in D, and zj lexicographically follows all other nulls already introduced.
The application of σ on D adds to D the atom h′(Ψ(X,Z)) if it is not already
in D. After the application we say that σ is satisfied by D. The Chase for
a database D and a set of TGDs Σ

T
, denoted chase(D,Σ

T
), is the exhaustive

application of the TGDs [10] in a breadth-first (level-saturating) fashion, which
leads to a (possibly infinite) chase for D and Σ. It is important to remark
that BCQs Q over D and Σ

T
can be evaluated on the chase for D and Σ

T
,

i.e., D ∪ Σ
T

|= Q is equivalent to chase(D,Σ
T
) |= Q [10]. We will also use

D ∪ Σ
T
⊢ Q when chase(D,Σ

T
) |= Q.

Negative constraints (NCs) are first-order formulas of the form ∀XΦ(X) → ⊥,
where Φ(X) is a conjunction of atoms (without nulls) and the head is the truth
constant false, denoted ⊥. A NC τ is satisfied by a database D under a set of
TGDs Σ

T
iff there does not exist a homomorphism h that maps the atoms of

Φ(X) to D, where D is such that every TGD in Σ
T
is satisfied, i.e., the atoms

in the body cannot all be true together.
Equality-generating dependencies (EGDs) are first-order formulas of the

form ∀XΦ(X) → Xi = Xj , where Φ(X) is a conjunction of atoms, and Xi and
Xj are variables from X. An EGD σ is satisfied in a database D for R iff,
whenever there exists a homomorphism h such that h(Φ(X)) ⊆ D, it holds that
h(Xi) = h(Xj).

NCs and EGDs play an important role in the matter of conflicts in Datalog±

ontologies. In fact, the approach that we present in this work ensures that
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neither NCs nor EGDs are violated in the resulting ontology.
As is the usual case in the literature, in general, the universal quantifiers

in TGDs, NCs, and EGDs are omitted, and both the sets of dependencies and
the set of constraints are assumed to be finite. Now that we have presented the
different ways of expressing knowledge in Datalog±, we are ready to formally
define Datalog± ontologies, which will serve as a means to represent both the
database instances and existential rules programs our merging operators will
deal with.

Definition 1 (Datalog± Ontology). A Datalog± ontology KB = (D,Σ),
where Σ = Σ

T
∪ Σ

E
∪ Σ

NC
, consists of a database instance D that is a fi-

nite set of ground atoms (without nulls), a set of TGDs Σ
T
, a set of separable

EGDs Σ
E
, and a set of NCs Σ

NC
.

Unless explicitly said, through the paper, when it is clear from the context,
we will refer to the component Σ in KB as the set of constraints in the ontology,
without distinguishing between dependencies and constraints. Given a database
D for R and a set of constraints Σ = Σ

T
∪ Σ

E
∪ Σ

NC
, the set of models of D

and Σ, denoted mods(D,Σ), is the set of all databases B such that D ⊆ B and
every formula in Σ is satisfied. The following example shows a simple Datalog±

ontology; the ontology describes knowledge about the scenario introduced in the
running example.

Example 2 (Datalog± Ontology).

KB2 =





D : {a1 : expST (p1 ), a2 : unemployment(p1 ),
a3 : incSBZ (p1 ), a4 : incOTB(p1 ),
a5 : fund(c1 , p1 ), a6 : fund(c1 , p2 )}

Σ
NC

: {τ1 : investDA(P) ∧ investBZ (P) → ⊥}

Σ
E
: {ν1 : fund(E ,P) ∧ fund(E ,P ′) → P = P ′}

Σ
T
: {σ1 : expST (P) ∧ incOTB(P) → investBZ (P),

σ2 : expST (P) → investDA(P),
σ3 : unemployment(P) ∧ incSBZ (P) → investBZ (P)}





Observe that the set KB has six ground atoms reflecting different things: that
p1 intends to exploit summer tourism (expST (p1 )), its goal of increasing occu-
pancy rate of hotels (incOTB(p1 )), that it aims to increase sales in beach zones
(incSBZ (p1 )), p1’s objective of reducing unemployment (unemployment(p1 )),
that project p1 is funded by company c1 (fund(c1 , p1 )), and that project p2 is
funded by company c1 fund(c1 , p2 ).

The set ΣT of TGDs expresses the following dependencies: TGDs σ1 and
σ3 state reasons to invest in beach zones, while TGD σ2 gives reasons to invest
in a Hotel & Office complex into downtown area. The only NC τ1 states that a
project can not promote investments into the downtown area and beach zones at
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the same time, and EGD ν1 states that every company can not fund more than
one project.

Following the classical notion of consistency, we say that a consistent Datalog±

ontology has a non-empty set of models.

Definition 2 (Consistency). A Datalog± ontology KB = (D,Σ) is consis-
tent iff mods(D,Σ) 6= ∅. Otherwise, we will say that KB is inconsistent.

Example 3 (Consistency). Consider the Datalog± ontology from the example
above; this ontology is clearly inconsistent. Database instance D is clearly not
a model in itself since at least the TGD σ2 is applicable to D, but there is no
superset of D such that it satisfies all TGDs and constraints in Σ at the same
time. For instance, the TGDs σ2 is applicable in D resulting in the new atom
investDA(p1 ), which together with investZB(p1 ), which is obtained from σ3,
violates the NC τ1.

For the rest of the paper, unless explicitly stated, KB = (D,Σ) will denote
a Datalog± ontology with Σ = Σ

T
∪Σ

E
∪Σ

NC
, where D is a database instance,

Σ
T
is the set of all TGDs, Σ

E
the set of all EGDs, and Σ

NC
is the set of all NCs

in Σ.

3. Merging ontologies in multi-agent settings

Merging processes aim to integrate several knowledge sources (in this work,
in the form of Datalog± ontologies) into a new knowledge base that represents
the original sources as much as possible (according to a certain measure) while
preserving certain characteristics, in particular consistency [30, 31].

Here, we define merging processes in a multi-agent scenario, where individ-
ual agents’ knowledge will be merged. In such scenario, it is possible to define
conflict resolution strategies that are influenced by the degrees of credibility
that agents associate to each other int he community. In this section we intro-
duce merging operators that account for the credibility of agents when dealing
with conflicts. We begin by establishing the multi-agent context in which the
operators work. Then, we move on to show how conflicts in the community of
agents may arise; and finally we look into how such conflicts are solved and the
properties of this general merging approach.

3.1. Context

As briefly explained before, in this work we aim to merge knowledge coming
from several different sources. In particular, we will express such knowledge as
Datalog± ontologies, and obtain as the merging result a new Datalog± ontology
reflecting the original ones as much as possible without violating the constraints
included in the result.

To do this we will define a multi-agent scenario, where the final merged
ontology obtained can be seen as the agreed knowledge of the community of

9



agents. These agents will then be constituted by two different components.
On the one hand, we have the agent’s knowledge expressed by the Datalog±

ontology. On the other hand, each agent will establish a credibility degree with
respect to other agents in the community, reflecting how much it is willing to
accept information coming from those others agents. We will then exploit the
different credibilities that agents in the community associate to each other in
order to define how conflicts should be solved. To do this, we will link formulas
to certain values calculated from the credibilities associated in the community
to the agents that are the informants of such formulas. This calculation will be
made by exploiting particular accrual functions [13] tailored to our multiagent
scenario.

As said, agents will attach to other agents in a community a measure of how
much they are willing to accept a formula coming from that other agent. We
call this measure a credibility degree, which is a pair of an agent (the one that
is being associated the credibility) and a value. Formally this definition is as
follows.

Definition 3 (Credibility degree). Let A = {A1,A2, . . . ,An} be a set of
agents, a credibility degree associated to A ∈ A is a real number c ∈ [0, 1]. We
denote this as the pair (A,c).

Each agent will include a set of credibility degrees, that will reflect how
much trust the agent grants to agents in the community. This set of credibility
degrees are known as the agent’s credibility vector.

Definition 4 (Agent’s credibility vector). Let A = {A1,A2, . . . ,An} be a
set of agents, n > 1, the credibility vector of agent A ∈ A, denoted VA , is the
set {(A1, c1), (A2, c2), . . . , (Am, cm)},m ≤ n−1, of credibility degrees such that:

1. there is no (Aj , cj) ∈ VA such that Aj = A, i.e., there is no credibility
degree about the agent A itself, and

2. there is no (Aj , c), (Ak, c
′) ∈ VA such that j = k, i.e., the credibility degree

associated to an agent is unique in VA .

The set VA could be empty when the agent A has no credibility degree to any
other agent.

As can be seen in Definition 4, there are some considerations regarding
the credibility degrees that an agent can store in its credibility vector. These
considerations are made because we plan to use credibilities as the basis of a
conflict resolution strategy. The strategy will obtain a credibility degree for each
agent, and this degree can be seen as the credibility degree assigned to every
agent by the community as a whole. Thus, we want to prevent some improper
influences in the calculation of such an agreed degree. To begin with, an agent
should not influence how the community regards it by giving itself any credibility
degree, that in extreme cases could be maximal or minimal; therefore, we impose
the restriction that the credibility vector of an agent cannot include a credibility
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degree for the agent itself. Additionally, another form of unfair influence on the
credibility degree associated with an agent by the community as a whole may
arise if some other agent assigns to it more than one credibility degree, that is,
an agent A could intentionally assign to agent B several credibility degrees with
values close to 1 or 0 to promote or demote the credibility of agent B. Finally,
it may be the case that agent A has no reason to assign a credibility degree
to agent B; for instance, if they have had no interactions in the past. Thus,
we define credibility vectors as partial assignations of credibility to agents in
the community, instead of total ones, although the assignment may be total in
particular cases. Nevertheless, we will assume throughout the paper that every
agent A has at least one credibility assigned to it by some other agent B in the
community.

Example 4 (Credibility Vector). Consider the application domain introduced
in Example 1. Suppose that we have a set of agents A = {A1,A2,A3,A4,A5},
and that agent A1 assigns to agent A2 a credibility of 0.3 and both A3 and A4

a credibility of 0.7, while it does not assign a credibility degree for agent A5.
Then, for that agent we have that

VA1
= {(A2, 0.3), (A3, 0.7), (A4, 0.7)}.

We are now ready to refine the definition of agents and to introduce the no-
tion of communities in our framework. As explained, agents have their knowl-
edge expressed as a Datalog± ontology, and they maintain a credibility vector
where they state how much they trust other agents in the community. A com-
munity of agents, or just a community, is a collection of agents such as the ones
just described.

Definition 5 (Agents and Communities). An agent A is a pair (KBA ,VA),
where KBA is a Datalog± ontology and VA is the agent’s credibility vector. A
community of agents is a set of agents A = {A1,A2, . . . ,An}. We will refer to
every A ∈ A as an agent of the community.

Without loss of generality, we will assume that for all A ∈ A the Datalog±

knowledge base KBA is defined over a common relational schema R. Although
this may not be the case in practice, there exist effective tools for ontology
alignment that can integrate heterogeneous schemas [3, 4].

Example 5 (Agents and Communities). Consider the example illustrated in
Figure 1. In the figure, we can see a community of agents with five members
A5 = {A1,A2,A3,A4,A5}, where

• A1 = (KBA1 ,VA1) such that

KBA1
= {a4, a5, a6, τ1, ν1} and VA1

= {(A2, 0.3), (A3, 0.7), (A4, 0.7)}.

• A2 = (KBA2
,VA2

) such that

KBA2 = {a1, a4, σ1} and VA1 = {(A1, 0.5), (A3, 0.4), (A4, 0.4), (A4, 0.6)}.
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• A3 = (KBA3 ,VA3) such that

KBA3
= {a2, a3, σ3} and VA1

= {(A1, 0.6), (A2, 0.2), (A4, 0.7), (A5, 0.8)}.

• A4 = (KBA4
,VA4

) such that

KBA4 = {a1, a3, a5, σ2} and VA1 = {(A1, 0.6), (A2, 0.9), (A5, 0.8)}.

• A5 = (KBA5
,VA5

) such that

KBA5
= {a2, a3, a6, σ3} and VA1

= {(A1, 0.8), (A2, 0.3), (A, 0.7), (A4, 0.3)}.

Figure 1: Agents and Communities

3.2. Conflicts in the community

Knowledge dynamics is a problem widely studied in the literature of Belief
Revision. Several constructions for revision, contraction, or merging opera-
tors have been developed over the years. A particularly interesting perspective
regarding our approach in this work is [24], which shows how a contraction oper-
ation on belief bases can be modeled employing incision functions. The authors
in [24] utilize incision functions to perform contractions over belief bases by
some formula α considering minimal sets, or α-kernels, entailing that formula
and then performing “incisions” on these sets. Since the α-kernels are minimal
sets, the sets resulting from incisions no longer entail α. Finally, the result-
ing belief base is settled as the union of all formulas that are not removed by
the incisions. This approach is known as kernel contraction; the task of restor-
ing consistency is also known in the belief revision literature as contraction by
falsum [23].

Instead of defining contraction processes, in this work we aim to perform
merging processes over several Datalog± ontologies. Nevertheless, Kernel Con-
traction does provide the foundations for how our approach deals with conflicts,
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since we define the merging process as the application of incision functions on
the union of Datalog± ontologies while still considering the different sources of
the formulas by means of accrual functions. In particular, instead of directly
considering minimal inconsistent subsets of formulas in the ontology (which are
equivalent to ⊥-kernels), in this work we consider incisions over structures called
clusters [37, 12, 13] that groups together related kernels.

Thus, we begin by defining kernels, the fundamental conflicts that can arise
in the community. As explained, kernels are conflictive sets of formulas that are
minimal from a set inclusion perspective; that is, sets that lead to a violation of
some of the restrictions and, because of their minimality, every subset of them
does not produce a violation. In [12], a kernel, and thus also a cluster, is defined
as either a set of atoms or a set of TGDs, depending on whether conflicts in the
database instance or the set of TGDs are to be solved, respectively. We will not
follow such an approach here; instead, we will consider kernels formed together
by both atoms from the database instance and TGDs. Additionally, we will
examine conflicts at a community level; therefore, we will look for conflicts in
the agents’ cumulative knowledge at once (instead of looking into each particular
ontology).

Definition 6 (Kernels). Let A = {A1,A2, . . . ,An} be a community of agents
on the form A = (KBA ,VA) such that KBA = (DA ,ΣA) is the knowledge base
and VA is the credibility vector for agent A. Also, for some S ⊆ ∪1≤i≤nKBAi

,
let SD = S ∩ ∪1≤i≤nDAi

and SΣ = S ∩ ∪1≤i≤nΣAi
be the set of atoms and the

set of rules, respectively.
The set of kernels for A, denoted with

∐
A
, is the set of all X such that

• X ⊆
⋃

1≤i≤n

KBAi
,

• mods(XD, XΣ) = ∅, and

• for every X ′ ( X it holds that mods(X ′
D, X ′

Σ) 6= ∅.

Example 6 (Kernels). Let A5 = {A1,A2,A3,A4,A5} be community of agents
introduced in Example 5, and

∐
A5

the set of kernels for A5. Then, we can obtain

from
∐

A5
the following kernels:

• X1 = {a1, a2, a3, σ2, σ3, τ1}

• X2 = {a1, a4, σ1, σ2, τ1}

• X3 = {a5, a6, ν1}

We will identify relations among minimal conflicts in the knowledge of the
community if any such relations exist. To do this, we group related kernels
together in a new structure called a cluster, by means of an overlapping relation.
We now recall the definition of overlapping from [12].
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Definition 7 (Overlapping, Equivalence [12]). Let L be a first order lan-
guage, R ⊂ L be a relational schema, and LR the sublanguage generated by R.
Given A ⊂ LR and B ⊂ LR, we say they overlap, denoted A θ B, iff A∩B 6= ∅.
Furthermore, given a multi-set of first order formulas M ⊂ 2LR we denote as
θ∗M the equivalence relation obtained over M through the transitive closure of
θ.

Based on the overlapping relation, we transitively obtain clusters as the
union of those kernels that do overlap. We now adapt the definition of clus-
ters in [12] to our setting where kernels are obtained based on the community
knowledge as a whole.

Definition 8 (Clusters). Let A = {A1,A2, . . . ,An} be a community of agents,
and

∐
A
be the set of kernels for A. Let θ be the overlapping relation, and

K =
∐

A
/θ∗∐

A

the quotient set for the equivalence relation obtained over
∐

A
.

A cluster is a set ς =
⋃

κ∈[κ] κ, where [κ] ∈ K. We denote by
∐∐

A
the set of

all clusters for A.

Example 7 (Clusters). Consider for instance the set of kernels
∐

A
=

{{a1, a2, a3, σ2, σ3, τ1}, {a1, a4, σ1, σ2, τ1}, {a5, a6, ν1}} for our running example
introduced above in Example 6. Then, we see that there are two clusters based in
these kernels,

∐∐
A
= {C1, C2} such that C1 = {a1, a2, a3, a4, σ1, σ2, σ3, τ1} and

C2 = {a5, a6, ν1}.

3.3. Conflict Resolution

Up to this point, we have looked into the nature of the conflicts that can
arise in a merging scenario where beliefs come from different agents with different
epistemic states. Once we have found the conflicts, the next logical step is to
solve them somehow. To do so, as explained in Section 2 in this work, we
will exploit the findings in [13], defining accrual functions as a way to measure
the credibility associated with a particular formula, based on the credibilities
attached to those agents that claim said formula.

In [13], accrual functions are defined for revision processes in a general way,
considering a particular context; that is, a particular knowledge base under
revision (the epistemic state), and a particular formula that triggers the revision
(the epistemic input). Also, they consider that we can have different features
that represent different dimensions we want to consider when choosing how
to deal with some conflict. However, in this work, we will directly consider
accrual functions that are particular for our goal. As such, we will define them
directly under the light of the conflicts found in the knowledge of the community
as a whole and will consider only the particular feature we want to exploit
(agent’s credibility). However, it should be noted that should we ever want to
include other aspects in our calculation (e.g., authority degree, cost or benefits
associated to formulas) then to enhance our model to consider several different
aspects (i.e., features) is pretty straightforward, assuming that we can establish
an order of importance among those features. In such a scenario, we can simply
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use accrual functions such as the ones we will introduce here for the different
features and then use orders à la [13] to establish our conflict resolution strategy.

Next, we will adapt the definition of accrual functions introduced in [13]
to our multi-agent knowledge merging scenario, where the selection of which
formulas will be deleted from the community knowledge when solving conflicts
depends on the credibility attached to those agents that have the formulas men-
tioned earlier in their particular knowledge.

Definition 9 (Credibility Accrual Function). Let A = {A1,A2, . . . ,An}
be a community of agents where each A ∈ A is described as A = (KBA ,VA)
such that KBA is the knowledge base and VA is the credibility vector for agent
A, KB = ∪1≤i≤nKBAi

,
∐

A
be the set of Kernels for A, and

∐∐
A
be the set of

clusters obtained from
∐

A
. Let S = {A,B,C, . . . , Z} be such that for all X ∈ S

it holds that X ⊆ KB.
A function V : 2KB 7→ R is a credibility accrual function iff all of the

following conditions hold:

• Transitivity: if V[cred]({A}) ≤ V[cred]({B}) and V[cred]({B}) ≤ V[cred]({C}),
then V[cred]({A}) ≤ V[cred]({C}).

• Domination: Let P(A) = {A1, A2, . . . , An} be a partition of A, if for all
Ai (1 ≤ i ≤ n) it holds that V[cred]({Ai \ B}) ≤ V[cred]({Ai \ C}) then we
have that V[cred]({A \B}) ≤ V[cred]({A \ C}).

• Pertinence: for all A ⊆
⋃

1≤i≤n

KBAi
and β ∈ A it holds that if β /∈

∐
A

then V[cred]({A}) = V[cred]({A ∪ {β}}).

When originally introduced in [13], accrual functions were devised to work
on multi-dimensionally valued knowledge bases, and thus they were able to
account for several distinct features. In this work, we only consider a single
feature, that is, the credibility of agents in the community; therefore, we often
use V (omitting the index) instead of V[cred].

As can be seen, Definition 9 does not introduce a particular, constructive
way of obtaining the credibility associated with some set of formulas, but rather
define a family of such functions. The introduction of particular accrual func-
tions is reserved for future work, but it should be noted that for any function
considered, we aim to define a behavior that is consistent no matter the partic-
ular accrual function used. Thus, when dealing with theoretical developments
we will consider an arbitrary V defined as in definition 9.

An additional property of credibility accrual functions follows from Defini-
tion 9, that of Neutrality. This property states that, when evaluating sets of
formulas that do not include any conflicting formulas, then accrual functions
gracefully degrade to the neutral case; that is, they evaluate such sets as equals
to the empty one; therefore, they do not influence the conflict resolution process
in any way.
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Lemma 1. Let A = {A1,A2, . . . ,An} be a community of agents where for
A ∈ A, A = (KBA ,VA) such that KBA is the knowledge base and VA is the
credibility vector for agent A,

∐
A
be the set of kernels for A, and

∐∐
A
be the set

of clusters obtained from
∐

A
. Let A ⊆ ∪1≤i≤nKBAi

and let V be a credibility
accrual function. Then, V satisfies

• Neutrality: if A is such that A∩
∐

A
= ∅, then it holds that V(A) = V(∅).

Proof Neutrality follows from Pertinence. Let A ⊆ ∪1≤i≤nKBAi
be such

that A ∩
∐

A
= ∅. Then, for all α ∈ A it holds that α /∈

∐
A
, and thus by

Pertinence V({A}) = V({A ∪ {α}}). Since α /∈
∐

A
holds for any arbitrary

α ∈ A, then we have that V(∅) = V(∅ ∪ A). This last equality is equivalent to
V(∅) = V(A). �

The Neutrality property will help to simplify the formalization of the par-
ticular accrual functions that we shall introduce later in the paper. Accrual
functions then will be used to establish the value of a set of formulas in order
to define which formulas should be deleted to solve conflicts. Based on accrual
functions we will define a variety of incision functions.

Definition 10 (Cluster Incision functions). Let A = {A1,A2, . . . ,An} be
a community of agents where for A ∈ A, A = (KBA ,VA) such that KBA is the
knowledge base and VA is the credibility vector for agent A, KB = ∪1≤i≤nKBAi

,∐
A
be the set of Kernels for A,

∐∐
A
be the set of clusters obtained from

∐
A
, and

V be a credibility accrual function for A.
Then, if R is a relational schema for KB, L is a first-order language such

that R ⊂ L, and LR is the sublanguage generated by R, an Incision Function
for A is a function ̺ : 2LR −→ LR such that all of the following conditions
hold:

– ̺(
∐∐

A
) ⊆

⋃
(
∐∐

A
).

– For all ς ∈
∐∐

A
and κ ∈

∐
A
such that κ ⊆ ς it holds that κ ∩ ̺(

∐∐
A
) 6= ∅.

– For all ς ∈
∐∐

A
it holds that if ς ∩ ̺(

∐∐
A
) = I, then for all F ⊂ ς where F

satisfies the two previous conditions it holds that V(ς \ F ) ≤ V(ς \ I).

Example 8 (Incision functions). Assume that we are using V as an accrual
function already defined, and ̺ takes clusters and selects sets of formulas in them
that has the smallest credibility value to be deleted. Consider the clusters C1 =
{a1, a2, a3, a4, σ1, σ2, σ3, τ1} and C2 = {a5, a6, ν1} from Example 7. For every
cluster we could use V to compute credibility values of each set of formulas in
them. Following this idea, for cluster C1 we assume {a1, a3, a4} has the smallest
value, and {ν1} for cluster C2. Thus, {a1, a3, a4, ν1} is the set of formulas to
be deleted in order to restore consistency. Note that we are assuming that all
conditions of ̺ hold. Later in the paper we will introduce some particular accrual
functions achieving the behavior specified by such conditions.
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Finally, we define the merging operator that obtains a conflict-free knowl-
edge base by solving all conflicts that arise when considering the community
knowledge as a whole.

Definition 11 (ck-Merging Operator). Let A = {A1,A2, . . . ,An} be a com-
munity of agents, where for each A ∈ A, A = (KBA ,VA) such that KBA is the
knowledge base and VA is the credibility vector for agent A,

∐
A
be the set of

Kernels for A,
∐∐

A
be the set of clusters obtained from

∐
A
, and ̺ be an incision

function.
A community-knowledge merging operator Υ is defined as

Υ(A) =
⋃

(KBAi
,VAi

)∈A

KBAi
\ ̺(

∐∐
A
)

We will use ck-merging operator for this operator and ck-merging when no
confusion my arise.

Example 9 (ck-Merging). Consider the Datalog± ontology KB2 presented in
Example 2 which is the union of the particular knowledge bases of the agents in
the community A5 presented in Example 5. Consider also the set {a1, a3, a4, ν1}
obtained from incision function ̺ in Example 8. If we remove this set from
KB2, then the following consistent Datalog± ontology can be obtained:

KB2 =





D : {a2 : unemployment(p1 ), a5 : fund(c1 , p1 ),
a6 : fund(c1 , p2 )}

Σ
NC

: {τ1 : investDA(P) ∧ investBZ (P) → ⊥}

Σ
E

: {}

Σ
T

: {σ1 : expTS (P) ∧ incOTB(P) → investBZ (P),
σ2 : expTS (P) → investDA(P),
σ3 : unemployment(P) ∧ incSBZ (P) → investBZ (P)}





3.4. Properties of the operator

We will now look into some properties of our ck-merging operator. One of
the most important properties we expect from this operator is that the final
merged belief base always reaches a consensus regarding conflicts among the
pieces of knowledge provided by the different agents, i.e., that the obtained
knowledge base is always consistent.

Proposition 1 (Consistency). Let Υ be ck-merging operator.Then, Υ satis-
fies

• Consistency: mods(Υ(A)D,Υ(A)Σ) 6= ∅.

17



Proof Let A = {A1,A2, . . . ,An} be a community of agents, where for each
A ∈ A, A = (KBA ,VA) such that KBA is the knowledge base and VA is the
credibility vector for agent A,

∐
A
be the set of kernels for A,

∐∐
A
be the set of

clusters obtained from
∐

A
, and ̺ be an incision function. Let Υ be defined as

in Definition 11.
Suppose by reductio ad absurdum that mods(Υ(A)D,Υ(A)Σ) = ∅. Then,

there must exists X ⊆ Υ(A) such that mods(XD, XΣ) = ∅, and for every possi-
ble X ′ ( X it holds that mods(X ′

D, X ′
Σ) 6= ∅ (since mods(∅) 6= ∅).

Let KB = (∪Ai∈AKBAi
) Since Υ(A) = KB \ ̺(

∐∐
A
) and X ⊆ Υ(A), then

it holds that X ∩ ̺(
∐∐

A
) = ∅. However, since Υ(A) = KB \ ̺(

∐∐
A
), then it

holds that X ⊆ KB . Thus, we have that X ⊆ KB , mods(XD, XΣ) = ∅, and for
every X ′ ( X it holds that mods(X ′

D, X ′
Σ) 6= ∅. By Definition 6 this results in

X ∈
∐

A
. Since X ∈

∐
A
, then from Definition 10 it follows that X ∩ ̺(

∐∐
A
) 6= ∅.

Therefore, we have that X ∩ ̺(
∐∐

A
) = ∅ and that X ∩ ̺(

∐∐
A
) 6= ∅, a contra-

diction coming from our initial supposition that mods(Υ(A)D,Υ(A)Σ) = ∅, and
it holds that mods(Υ(A)D,Υ(A)Σ) 6= ∅.

�

Now that we have proven that the knowledge base obtained by the ck-
merging operator is conflict-free, it remains to be seen how the operator behaves
regarding the accrual function used to perform the incisions. It can be shown
that the operator is indeed optimal in this aspect; i.e., it obtains the best-valued
knowledge base among the consistent ones.

Proposition 2 (Optimality). Let Υ be defined as in Definition 11. Then, Υ
satisfies

• Optimality: if KB = ∪Ai∈AKBAi
is inconsistent and KB ′ ⊂ K is con-

sistent then it holds that V(KB ′) ≤ V(Υ(A)).

Proof Let A = {A1,A2, . . . ,An} be a community of agents, where for each
A ∈ A, A = (KBA ,VA) such that KBA is the knowledge base and VA is
the credibility vector for agent A,

∐
A
be the set of kernels for A,

∐∐
A

=
{ς1, ς2, . . . , ςn} be the set of clusters obtained from

∐
A
, and ̺ be an inci-

sion function. Let Υ be defined as in Definition 11, and let A be such that
KB = ∪Ai∈AKBAi

is inconsistent.
This proof is analogous to the one provided for contraction operators in [13].

It is based on the fact that the choice in every cluster is optimal, and that such
result can be expanded to the entire knowledge base by means of Domination.

Let F = KB \
∐∐

A
be the set of formulas that are not included in any conflict.

We have then that {ς1, ς2, . . . , ςn, F} is a partition of KB .
Consider an arbitrary K ′ ⊆ KB such that KB ′ is consistent. From Neu-

trality in Lemma 1 it follows that set F does not influence in the credibility
value of the final knowledge base obtained, and thus there is no need to consider
it here. We do need to show, however, that the removal in each cluster retains a
more credible subset of the original ontologies than the resolution used to obtain
KB ′.
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To do this consider an arbitrary ςi ∈
∐∐

A
. Let Rςi = (KB ∩ ςi) \KB ′ be the

sets of formulas removed from ςi to build KB ′. Rςi satisfies the first condition on
Definition 10: since Rςi ⊆ KB∩ςi and ςi ∈

∐∐
A
, then it holds that Rςi ⊆

⋃
(
∐∐

A
).

Moreover, Rςi also satisfies the second condition: since KB ′ is consistent then
for every kernel κ ∈

∐
A
such that κ ⊆ ς it holds that κ ∩ Rςi 6= ∅ (otherwise

KB ′ will be rendered inconsistent, see proof of Proposition 1). Since Rςi satisfies
those conditions then by Definition 10 we have that Iςi = ςi ∩ ̺(

∐∐
A
) (that is,

the incision made over ςi by the function ̺) is such that V(ςi \Rςi) ≤ V(ςi \ Iςi).
This holds for any arbitrary ςi ∈

∐∐
A
. Now, we have that {ς1, ς2, . . . , ςn, F}

is a partition of K , and that for any part ςi (1 ≤ i ≤ n) it holds that V(ςi \
Rςi) ≤ V(ςi \ Iςi), and also by Neutrality V(KB) = V(KB \ F ). Finally, from
Domination it holds that

V(KB \ (
⋃

ςi∈
∐∐

A

Rςi ∪ F )) ≤ V(KB \ (
⋃

ςi∈
∐∐

A

Iςi ∪ F ).

This is equivalent to V(KB ′) ≤ V(Υ(A)).
�

Note that the optimality of the ck-merging operator is inherently connected
to the credibility of the knowledge bases, rather than following an approach
based on the number of removed formulas. That is, it can be the case that
the operator removes more formulas than required from a quantitative point of
view, thus making some “superfluous” removals. For instance, we can have a
kernel {a1, a2, a3, τ1} without overlapping with any other kernel (so it is also a
cluster), and the incision function choose to remove the set {a1, a2}, while the
removal of any singleton subset of the kernel is sufficient to solve the conflict.
Nevertheless, this is our purpose since we aim to maximize credibility instead
of minimizing the number of formulas removed.

4. Specialized semantics for credibility-based merging

So far, in our work, we have introduced a general credibility-based approach
to merge a community’s knowledge. To do this, we rely on a formal definition
of credibility accrual functions. This definition does not entail a particular
way to solve the conflicts but rather an entire family of functions satisfying
properties that ensure that the knowledge base obtained by performing incisions
based on them result to be the most credible ones, taking into consideration the
community’s consensus.

Since Definition 9 is a general characterization of these functions, it is pos-
sible to consider many options to describe particular subsets of the mentioned
family of functions. Therefore, we can define different functions that are tai-
lored to particular application environments, thus entailing diverse semantics
that can impact on the merging process. Nevertheless, to discuss different func-
tions is out of the scope of this work. However, in this section, we will introduce
some particular credibility accrual functions, along with a complete example
that illustrates how they work.
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Next, we begin by establishing how we measure the credibility of a particular
formula. Then, we introduce a proper credibility accrual function that will
calculate the credibility of a set of formulas.

4.1. Credibility of a single formula

We will introduce some definitions concerning the way the credibility of
particular agents in a community is measured and how that affects the credibility
associated with particular pieces of knowledge.

To do that, we introduce some auxiliary definitions that will be used on the
rest of the paper. The set of sources for a certain formula is the set of those
agents that have said formula in their knowledge base. Formally,

Definition 12 (Source set of a formula). Let A = {A1,A2, . . . ,An} be a
community of agents on the form Ai = (KBAi

,VAi
) such that KBAi

is the
Datalog± ontology and VAi

is the credibility vector for agent Ai. Let α ∈ KL be
a formula. The source set of α over A is SA(α) = {Ai|Ai ∈ A and α ∈ KBAi

}.

Example 10 (Source set of a formula). Consider the formula fund(c1 , p1 )
and our community of agents A5 introduced in Example 5. We can see that two
agents have fund(c1 , p1 ) in their ontologies. Then, they both are a source of
this formula, SA5

(fund(c1 , p1 )) = {A1,A4}.

The credibility set of a particular agent in the community is the set of those
credibilities associated to that agent in the credibility vectors of other agents in
the community.

Definition 13 (Credibility set of an agent). Let A = {A1,A2, . . . ,An} be
a community of agents on the form Ai = (KBAi

,VAi
) such that KBAi

is the
Datalog± ontology and VAi

is the credibility vector for agent Ai. The set of
credibilities for agent Ai over A is

Ĉ(Ai) = {(Aj , ci) | (Ai, ci) ∈ VAj
for some Aj ∈ A}.

In what follows, when stating the credibility set of an agent Ai we will often
omit the Agent Aj that associate the credibility to Ai, unless it is deemed as
necessary for clarity reasons.

Note that by definition the credibility set of an agent may be empty, that is,
it may not have any credibility associated to it. Nevertheless, as stated before in
the rest of the paper given a set of agents A we assume that there is no Ai ∈ A
such that Ĉ(Ai) = ∅.

Example 11 (Credibility set of an agent). Consider the community of agents
A5 depicted in Figure 1. We have that the credibilities for every agent in A5 are
defined as follows,

• Ĉ(A1) = {(A2, 0.5), (A3, 0.6), (A4, 0.6), (A5, 0.8)}

• Ĉ(A2) = {(A1, 0.3), (A3, 0.2), (A4, 0.9), (A5, 0.3)}
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• Ĉ(A3) = {(A1, 0.7), (A2, 0.4), (A5, 0.7)}

• Ĉ(A4) = {(A1, 0.7), (A2, 0.4), (A3, 0.7), (A5, 0.3)}

• Ĉ(A5) = {(A2, 0.6), (A3, 0.8), (A4, 0.8)}

When assessing the credibility associated with formulas in the community’s
knowledge, we will need to consider the credibility of several agents (those that
claim such formula) as a whole.

We begin by establishing that the credibility associated to a particular agent
in the community will be the minimal among those credibilities that other agents
in the community associate to it. Formally,

Definition 14 (Credibility of an agent). Let A = {A1,A2, . . . ,An} be a
community of agents on the form Ai = (KBAi

,VAi
) such that KBAi

is the
Datalog± ontology and VAi

is the credibility vector for agent Ai, and let Ai ∈ A.
The agent credibility function C̃ : A 7→ [0, 1] is defined as

C̃(Ai) = min({ci | (Aj , ci) ∈ Ĉ(Ai)})

Then, in this work the credibility of a set of agents is established as the
credibility of the most credible of the agents in it.

Definition 15 (Credibility of a set of agents). Let A = {A1,A2, . . . ,An}
be a community of agents on the form Ai = (KBAi

,VAi
) such that KBAi

is
the Datalog± ontology and VAi

is the credibility vector for agent Ai, and let
A′ ⊆ A. The agent set credibility function C : 2A 7→ [0, 1] is defined as

C(A′) = max
Ai∈A′

({ci|ci = C̃(Ai)})

Example 12 (Credibility of a set of agents). For instance, consider the for-
mula fund(c1 , p1 ), and its sources SA5(fund(c1 , p1 )) = {A1,A4} introduced
above in Example 10. The credibility of this set is computed as follows. First,
we identify the minimal value in the credibility set for agents A1 and A4, that
is 0.5 and 0.3, respectively. Then, we obtain the maximal value among these
values and the resulting credibility is C(SA5

(fund(c1 , p1 ))) = 0.5.

Based on the credibility of a set of agents, we can define the credibility
attached to a particular formula in the community knowledge. The value of
a particular formula is established as the credibility associated with the set of
agents that are the source of the formula.

Definition 16 (Credibility of a formula). Let A = {A1,A2, . . . ,An} be a
community of agents on the form Ai = (KBAi

,VAi
) such that KBAi

is the
Datalog± ontology and VAi

is the credibility vector for agent Ai, and α ∈ KL.
The formula credibility function ν : KL 7→ [0, 1] is defined as

ν(α) = C(SA(α))
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Example 13 (Credibility of a formula). Consider the community of agents
introduced in Example 5, and also cluster {a5, a6, ν1} from Example 7. Then,
for the formulas in the cluster we have

ν(a5) = max(min(0.5, 0.6, 0.6, 0.8),min(0.7, 0.4, 0.7, 0.3)) = max(0.5, 0.3) = 0.5

ν(a6) = max(min(0.5, 0.6, 0.6, 0.8),min(0.6, 0.8, 0.8)) = max(0.5, 0.6) = 0.6

ν(ν1) = max(min(0.5, 0.6, 0.6, 0.8)) = max(0.5) = 0.5

4.2. Enhancing the credibility of a formula to sets of formulas: accumulation
and absorption semantics

The previous definition gives us a way to measure the credibility of a partic-
ular formula; however, to accurately define our conflict resolution strategies, we
need to measure the credibility attached to a set of formulas. As we previously
observed, to present several examples of such functions is out of the scope of this
work; nevertheless, we will now introduce some specialized credibility accrual
functions that will serve as particular examples of the general credibility accrual
functions defined earlier.

WhenNeutrality was introduced, we noticed that this property implies that
sets of formulas that do not have any conflicting formulas in it are evaluated
as the empty set. For our particular semantics, we will impose the additional
restriction that the value assigned to the empty set is zero; that is, in what
follows, we assume that V(∅) = 0.

Different options arise when it becomes necessary to define a particular cred-
ibility accrual function. An approach that it is reasonable is to define particu-
larizations of Definition 9 that are based on the accumulation of the different
values for formulas in a set.

Definition 17 (Accumulation Credibility Accrual Functions). Let A =
{A1,A2, . . . ,An} be a community of agents on the form Ai = (KBAi

,VAi
) such

that KBAi
is the Datalog± ontology and VAi

is the credibility vector for agent
Ai, and

∐
A
be the set of Kernels for A. Also, let K =

⋃
K∈

∐
A

K the set of every

formula in some kernel in
∐

A
. The Accumulation credibility accrual function

V⇈ : 2KL 7→ R is defined as

V⇈(A) =
∑

α∈A∩K

(ν(α))

Example 14 (Accumulation Accrual Function). Consider the set of clus-
ters

∐∐
A
= {C1, C2} where

C1 = {a1, a2, a3, a4, σ1, σ2, σ3, τ1} and C2 = {a5, a6, ν1}.

For instance, take cluster C2 = {a5, a6, ν1}, and the credibility formulas in it
shown in Example 13. The accumulation accrual function returns the following
results for its subsets:

• V⇈({a5, a6, ν1}) = V({a5}) + V({a6}) + V({ν1}) = 0.5 + 0.6 + 0.5 = 1.6
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• V⇈({a5}) = V({a5}) = 0.5

• V⇈({a6}) = V({a6}) = 0.6

• V⇈({ν1}) = V({ν1}) = 0.5

• V⇈({a5, a6}) = V({a5}) + V({a6}) = 0.5 + 0.6 = 1.1

• V⇈({a5, ν1}) = V({a5}) + V({ν1}) = 0.5 + 0.5 = 1

• V⇈({a6, ν1}) = V({a6}) + V({ν1}) = 0.6 + 0.5 = 1.1

For space reasons we omit the calculations for the subsets of cluster C1, which
will proceed in similar manner.

A different option could be, for instance, to associate the credibility of a set
of formulas to some specific formula in it (with most/least credible formulas
being the natural choices). We call such semantics as absorption semantics.
Next, we formally define such a semantics, tailored to our framework.

Definition 18 (Maximality Credibility Accrual Functions). Let
A = {A1,A2, . . . ,An} be a community of agents on the form Ai = (KBAi

,VAi
)

such that KBAi
is the Datalog± ontology and VAi

is the credibility vector for
agent Ai, and

∐
A
be the set of Kernels for A. Also, let K =

⋃

K∈
∐

A

K the set of

every formula in some kernel in
∐

A
.

The Maximality credibility accrual function Vmax : 2KL 7→ [0, 1] is such
that Vmax(A) = ν(α) iff α ∈ A ∩ K and there not exists β ∈ A ∩ K such that
ν(α) < ν(β)

For space reasons we will not define and present results for Minimality cred-
ibility accrual functions, but it is fairly easy to extrapolate them from the ones
for Maximality credibility accrual functions.

Example 15 (Maximality Credibility Accrual Functions). Consider again
the set of clusters

∐∐
A
= {C1, C2} where C1 = {a1, a2, a3, a4, σ1, σ2, σ3, τ1} and

C2 = {a5, a6, ν1}.

• Vmax({a5, a6, ν1}) = max({V({a5}),V({a6}),V({ν1})}) = 0.6

• Vmax({a5}) = max({V({a5})}) = 0.5

• Vmax({a6}) = max({V({a6})}) = 0.6

• Vmax({ν1}) = max({V({ν1})}) = 0.5

• Vmax({a5, a6}) = max({V({a5}),V({a6})}) = 0.6

• Vmax({a5, ν1}) = max({V({a5}),V({ν1})}) = 0.5

• Vmax({a6, ν1}) = max({V({a6}),V({ν1})}) = 0.6
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For space reasons we omit the calculations for the subsets of cluster C1, which
will proceed in similar manner.

The following result shows that the functions introduced in Definition 17 and
Definition 18 are indeed proper accrual functions with respect to Definition 9.

Proposition 3. Let V⇈ be an accumulation accrual function. Then, V⇈ is a
credibility accrual function; that is to say, V⇈ satisfies

• Transitivity: if V⇈({A}) ≤ V⇈({B}) and V⇈({B}) ≤ V⇈({C}), then
V⇈({A}) ≤ V⇈({C}).

• Domination: if P(A) = {A1, A2, . . . , An} is a partition of A and for all
Ai, (1 ≤ i ≤ n), it holds that V⇈({Ai \B}) ≤ V⇈({Ai \C}), then we have
that V⇈({A \B}) ≤ V⇈({A \ C}).

• Pertinence: for all A ⊆
⋃

1≤i≤nKBAi
and β ∈ A it holds that if β /∈

∐
A
,

then V⇈({A}) = V⇈({A ∪ {β}}).

Proof
Let A = {A1,A2, . . . ,An} be a community of agents of the form Ai =

(KBAi
,VAi

) such that KBAi
is the Datalog± ontology and VAi

is the credibility
vector for agent Ai, and

∐
A
be the set of Kernels for A. Also, let K =

⋃
K∈

∐
A

K

the set of every formula in some kernel in
∐

A
.

• Transitivity: if V⇈({A}) ≤ V⇈({B}) and V⇈({B}) ≤ V⇈({C}), then
V⇈({A}) ≤ V⇈({C}).

Follows directly from the fact that the function is defined over R.

• Domination: if P(A) = {A1, A2, . . . , An} is a partition of A and for all
Ai (1 ≤ i ≤ n) it holds that V⇈({Ai \B}) ≤ V⇈({Ai \ C}) then we have
that V⇈({A \B}) ≤ V⇈({A \ C}).

Let A be such that P(A) = {A1, A2, . . . , An} is a partition of A and for
all Ai (1 ≤ i ≤ n) it holds that V⇈({Ai \B}) ≤ V⇈({Ai \ C}).

From Definition 17 we have that this is

(1)
∑

α∈{Ai\B}∩K

(ν(α)) <
∑

α∈{Ai\C}∩K

(ν(α))

for every Ai ∈ P(A).

Since P(A) is a partition of A, then for every Ai, Aj ∈ P(A) we have that
Ai ∩ Aj = ∅. Then, since no formula belongs to more than one subset no
interaction between parts is possible. From this and (1) we have that
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(2)
∑

α∈{A1\B}∩K

(ν(α)) +
∑

α∈{A2\B}∩K

(ν(α)) + · · ·+
∑

α∈{An\B}∩K

(ν(α))

<
∑

α∈{A1\C}∩K

(ν(α)) +
∑

α∈{A2\C}∩K

(ν(α)) + · · ·+
∑

α∈{An\C}∩K

(ν(α)).

Also, since P(A) is a partition of A, then A1∪A2∪· · ·∪An = A. Then, it
holds that {A1 \B ∩K}∪{A2 \B ∩K}∪ · · · ∪ {An \B ∩K} = {A \B ∩K}.
Since every factor in the first member of equation (2) is smaller than its
correspondent in the second member, Ai∩Aj = ∅, and A1∪A2∪· · ·∪An =
A then from (1) and (2) we have that

∑

α∈{A\B}∩K

(ν(α)) <
∑

α∈{A\C}∩K

(ν(α)).

From Definition 17 this is V⇈({A \B}) ≤ V⇈({A \ C}).

• Pertinence: for all A ⊆
⋃

1≤i≤n

KBAi
and β ∈ A it holds that if β /∈

∐
A

then V⇈({A}) = V⇈({A ∪ {β}}).

From Definition 17 we have that

V⇈({A ∪ {β}}) =
∑

α∈{A∪{β}}∩K

(ν(α)).

Since β /∈
∐

A
, then β /∈ K, and by extension β /∈ {A ∪ {β}} ∩ K. Thus, it

holds that {A ∪ {β}} ∩ K = {A} ∩ K, and

∑

α∈{A∪{β}}∩K

(ν(α)) =
∑

α∈{A}∩K

(ν(α)).

From Definition 17 this is V⇈({A}) = V⇈({A ∪ {β}}).

�

Proposition 4. Let Vmax be a maximality credibility accrual function. Then,
Vmax is a credibility accrual function, that is, it satisfies

• Transitivity: if Vmax({A}) ≤ Vmax({B}) and Vmax({B}) ≤ Vmax({C}),
then Vmax({A}) ≤ Vmax({C}).

• Domination: if P(A) = {A1, A2, . . . , An} is a partition of A and for all
Ai (1 ≤ i ≤ n) it holds that Vmax({Ai \ B}) ≤ Vmax({Ai \ C}) then we
have that Vmax({A \B}) ≤ Vmax({A \ C}).
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• Pertinence: for all A ⊆
⋃

1≤i≤n

KBAi
and β ∈ A it holds that if β /∈

∐
A

then Vmax({A}) = Vmax({A ∪ {β}}).

Proof Let A = {A1,A2, . . . ,An} be a community of agents on the form
Ai = (KBAi

,VAi
) such that KBAi

is the Datalog± ontology and VAi
is the

credibility vector for agent Ai, and
∐

A
be the set of Kernels for A. Also, let

K =
⋃

K∈
∐

A

K the set of every formula in some kernel in
∐

A
.

• Transitivity: if Vmax({A}) ≤ Vmax({B}) and Vmax({B}) ≤ Vmax({C}),
then Vmax({A}) ≤ Vmax({C}).

Follows directly from the fact that the function is defined over R.

• Domination: if P(A) = {A1, A2, . . . , An} is a partition of A and for all
Ai (1 ≤ i ≤ n) it holds that Vmax({Ai \ B}) ≤ Vmax({Ai \ C}) then we
have that Vmax({A \B}) ≤ Vmax({A \ C}).

Let A be such that P(A) = {A1, A2, . . . , An} is a partition of A and for
all Ai (1 ≤ i ≤ n) it holds that Vmax({Ai \B}) ≤ Vmax({Ai \ C}).

By Definition 18 we have that if for every Ai it holds that Vmax({Ai \
B}) ≤ Vmax({Ai \ C}) then there exists γ ∈ {{Ai \ B} ∩ K} such that
(ν(γ)) ≤ (ν(β)) for every β ∈ {Ai\C}∩K. This holds for every Ai ∈ P(A),
and thus there exists γ′ ∈ {{

⋃
1≤i≤n

(Ai)\B}∩K} such that (ν(γ′)) ≤ (ν(β′))

for every β′ ∈ {{
⋃

1≤i≤n

(Ai) \ C} ∩ K}.

Since
⋃

1≤i≤n

(Ai) = A because P(A) is a partition of A, then by replacing
⋃

1≤i≤n

(Ai) with A in the previous statement we have that there exists

γ′ ∈ {{A\B}∩K} such that (ν(γ′)) ≤ (ν(γ′)) for every β′ ∈ {{A\C}∩K}.
By definition of Vmax this is Vmax({A \B}) ≤ Vmax({A \ C}).

• Pertinence: for all A ⊆
⋃

1≤i≤n

KBAi
and β ∈ A it holds that if β /∈

∐
A

then Vmax({A}) = Vmax({A ∪ {β}}).

From Definition 18 we have that

Vmax({A ∪ {β}}) = (ν(α))α∈{A∪{β}}∩K

Since β /∈
∐

A
, then β /∈ K, and by extension β /∈ {A ∪ {β}} ∩ K. Thus, it

holds that {A ∪ {β}} ∩ K = {A} ∩ K, and

(ν(α))α∈{A∪{β}}∩K = (ν(α))α∈{A}∩K.

From Definition 18 this is Vmax({A}) = Vmax({A ∪ {β}}).
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To sum up, we will introduce an example of particular incision functions
based on the semantics introduced in this section, and the merging operators
that arise from their use.

Example 16 (Particular Incision functions and Merging operators).
Consider the Datalog± ontology KB2 presented in Example 2, which is the union
of the particular knowledge bases of the agents in the community A5 presented
in Example 5.

To see how incision functions based on accumulation and absorption accrual
functions behave, we will once again focus on cluster C2. First, it is easy to
see that every subset of C2 satisfies the first two conditions in the definition of
incision functions. Then, all that remains is to search for a subset such that its
removal preserves the most credibility, according to the chosen semantics. To
do this, incision functions should calculate the values of every possible solution
for the cluster (that is, every subset that intersects all kernels in it) and find
out which one retains the most value once removed. Looking into Example 14
we can see that such sets can be as follows:

• V⇈(C2 \ {ν1}) = V({a5}) + V({a6}) = 0.5 + 0.6 = 1.1

• V⇈(C1 \ {a1}) = V({a2}) + V({a3}) + V({a4}) + V({τ1}) + V({σ1}) +
V({σ2}) + V({σ3}) = 0.6 + 0.6 + 0.5 + 0.5 + 0.2 + 0.3 + 0.6 = 3.3

• Vmax(C2 \ {a5}) = max({V({ν1}),V({a6})}) = 0.6

• Vmax(C1 \ {σ2}) = max({V({a1}),V({a2}),V({a3}),V({a4}),V({τ1}),
V({σ1}),V({σ3})}) = 0.6

Finally we have that formulas chosen for removal are

• Iaccum = {a1, ν1}.

• Imax = {a5, σ2}.

Note that there exists other possibilities as well, particularly for Maximality,
that arise different merging operators.

If we remove these formulas from KB2, then a consistent merged Datalog±

ontology is obtained. By applying Υ, the result is the following merged knowledge
base:

KB2 \ Iaccum =































































D : {a2 : unemployment(p1 ), a3 : incSBZ (p1 ),
a4 : incOTB(p1 ), a5 : fund(c1 , p1 ), a6 : fund(c1 , p2 )}

Σ
NC

: {τ1 : investDA(P) ∧ investBZ (P) → ⊥}

Σ
E
: {}

Σ
T
: {σ1 : expST (P) ∧ incOTB(P) → investBZ (P),

σ2 : expST (P) → investDA(P),
σ3 : unemployment(P) ∧ incSBZ (P) → investBZ (P)}
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KB2\Imax =























































D : {a1 : expST (p1 ), a2 : unemployment(p1 ), a3 : incSBZ (p1 ),
a4 : incOTB(p1 ), a6 : fund(c1 , p2 )}

Σ
NC

: {τ1 : investDA(P) ∧ investBZ (P) → ⊥}

Σ
E
: {ν1 : fund(E ,P) ∧ fund(E ,P ′) → P = P ′}

Σ
T
: {σ1 : expST (P) ∧ incOTB(P) → investBZ (P),

σ3 : unemployment(P) ∧ incSBZ (P) → investBZ (P)}























































Note that these knowledge bases are different among them. Nevertheless this
is clearly intended since we aim to maximize credibility with respect to different
particular credibility accrual functions.

In closing this section, it is interesting to analyze if, according to the chosen
accumulation semantics, the resultingKB is the most credible one, and to verify
this fact, it is necessary to check whether the merging operators based on incision
functions arising from the use of this particular semantics satisfy Optimality.
To do that we begin by considering the result of Υ(A) = KB2 \Iaccum and every
KB ′ that is a superset of the merged KB, i.e., KB2 \ Iaccum ( KB ′ ( KB2.
However, the only way to get a superset of the resulting merged knowledge base
is to include some of the removed formulas. Nevertheless, if that is the case,
then KB ′ is clearly inconsistent. So, we do not need to account for it, since it
is of no interest as it falls out of the hypothesis in Optimality.

On the other hand, every KB ′ ( KB2 such that KB ′ is consistent (and
KB ′ 6= Υ(A)) implies that KB ′ ( Υ(A) since the only way to obtain another
consistent knowledge base will be to remove additional formulas from the orig-
inal community knowledge. Let us consider any such set; since accumulation
functions aggregate the credibility of the formulas in a set, it is easy to see
that it cannot be the case that V(Υ(A)) < V(KB ′), which goes to show that a
ck-merging operator using an accumulation accrual function as the basis of its
incision function will indeed satisfy Optimality.

Now, we move on to the case of the merging operator using Maximality
credibility accrual functions. It is easy to show that indeed the operator satisfies
Optimality by design, since for every cluster at least the most valued formula
is retained. Then, such formula is part of the merged KB. Plus, every formula
that is in the original knowledge and is not part of a kernel ( i.e., is not involved
in any conflict) is also retained in the merged knowledge. Given that scenario,
to assume that there may be another subset of the original knowledge that is
both consistent and has more credibility is an absurd, because that will imply
that the selection in a cluster was not optimal, which is clearly not the case.
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5. Formal comparison with Kernel Merge [19]

We have formally introduced up to this point a general approach to merge
ontologies, where each of these ontologies represents the knowledge of an agent
in the community. Moreover, each agent explicitly states how much it trusts
another agent (when it has that information available about that other agent),
and this trust degree is the cornerstone in our conflict resolution strategy.

We will now look into some formal properties of our approach. In particular,
we will formally relate it with the work of Falappa et al. [19] that presented the
Kernel Merge operator approach. We will adapt to our multi-agent, ontology-
based approach, the notions introduced in [19].

Among the numerous works on knowledge merging in the literature, one
that is particularly interesting to us is that of [19]. The rationale behind this
focus is that in there, the authors also present merging operators based on
Hansson’s incision functions called Kernel Merge operators. For reasons of
space, we will skip now the formal definition of Kernel Merge operators, and
directly explore into their properties and how they relate to our approach, by
exploiting the kernel merge operators’ representation theorem introduced in [19].
Before that, however, we will give an intuitive presentation of the operator’s
behavior, referring the reader to the source for further clarification. Succinctly,
the process used by kernel merge operators is as follows. To begin with, the
operators consider as their epistemic input two belief bases K and A. The
applied mechanism is then to perform a set union of K and A, and then proceed
to eliminate from the result all possible inconsistencies in it, which is known in
the Belief Revision literature as external revision [25]. To solve such conflicts
kernel merge operators use incision functions over each minimally inconsistent
subset of K ∪A.

We now move on to a formal analysis of the relation between our approach
and Falappa et al.’s. We can show that operators defined in definition 11 satisfy
some of the postulates in Theorem 3 in [19], adapted to our scenario; this result
is formalized next.

Proposition 5. Let A1 = (KBA1
,VA1

) and A2 = (KBA2
,VA2

) be two agents
such that KBA1

,KBA2
are the Datalog± ontologies for agents A1 and A2, re-

spectively; and VA1 ,VA2 are the credibility vectors for agents A1 and A2, re-
spectively. Also, let Υ be a merging operator defined as in Definition 11. Then,
Υ satisfies the following postulates:

• Inclusion: Υ({A1,A2}) ⊆ KBA1
∪KBA2

.

• Strong Consistency: Υ({A1,A2}) is consistent.

• Global Core Retainment: If α ∈ (KBA1 ∪ KBA2) \ Υ({A1,A2}) then
there exists a set C such that C ⊆ (KBA1 ∪ KBA2), C is consistent and
C ∪ {α} is inconsistent.

Proof Let A1 = (KBA1
,VA1

) and A2 = (KBA2
,VA2

) be two agents, then
KBA1 ,KBA2 are the Datalog± ontologies for agents A1 and A2 and VA1 ,VA2
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are the credibility vectors for agents A1 and A2, respectively. Also, for some
S ⊆ (KBA1 ∪KBA2). Let SD = S ∩ (DA1 ∪DA2) and SΣ = S ∩ (ΣA1 ∪ΣA2) be
the set of atoms and the set of rules, respectively. Finally, let Υ be a ck-merging
operator defined as in Definition 11.

• Inclusion: Υ({A1,A2}) ⊆ KBA1
∪KBA2

.

Follows from Definition 11, since

Υ({A1,A2}) = (KBA1 ∪KBA2) \ ̺(
∐∐

{A1 ,A2 }
)

• Strong Consistency: Υ({A1,A2}) is consistent.

To prove that Υ is strongly consistent it is enough to show that all minimal
conflicts are attended to; i.e., that there is no X ∈

∐
{A1 ,A2 }

such that

X ⊆ Υ({A1,A2}).

Consider any arbitrary X ∈
∐

{A1 ,A2 }
. From Definition 8 it follows that

there exists Y ∈
∐∐

{A1 ,A2 }
such that X ⊆ Y (see Proposition 2 in [12]).

From the definition of ̺ it follows that ̺(
∐∐

{A1 ,A2 }
) ∩ X 6= ∅. Thus,

since Υ({A1,A2}) = (KBA1
∪ KBA2

) \ ̺(
∐∐

{A1 ,A2 }
) we have that X *

Υ({A1,A2}). Since this holds for any arbitrary X ∈
∐

{A1 ,A2 }
then there

is no A ⊆ Υ({A1,A2}) such that mods(AD, AΣ) = ∅. Thus, it holds that
mods(Υ({A1,A2})D,Υ({A1,A2})Σ) 6= ∅, i.e., Υ({A1,A2}) is consistent.

• Global Core Retainment: If α ∈ (KBA1 ∪KBA2) \Υ({A1,A2}) then
there exists a set C such that C ⊆ (KBA1

∪ KBA2
), C is consistent and

C ∪ {α} is inconsistent.

Let α ∈ (KBA1
∪ KBA2

) \ Υ({A1,A2}). Then, α /∈ Υ({A1,A2}). From
Definition 11 we have then that α ∈ ̺(

∐∐
{A1 ,A2 }

), and from Definition 10

follows that α ∈ X for some X ∈
∐

{A1 ,A2 }
. Let C = X \ {α}. From

Definition 6 we have C ⊆ (KBA1
∪KBA2

) (since X ⊆ (KBA1
∪KBA2

)).
Also, since C ⊂ X then mods(CD, CΣ) 6= ∅ and C is consistent. Finally,
mods(XD, XΣ) = ∅, and since C ∪ {α} = X then C ∪ {α} is inconsistent.

�

It is important to remark that, following Hansson’s original paper’s spirit,
the definition of incision functions in [19] are left as general, not providing thus
any particular way to define what the functions choose for deletion. As we have
shown, we provide further conditionings over the incision functions to exploit
the credibility associated with agents in the community, thus refining operators
to perform deletions informed under that light. This characteristic becomes
essential since it is the trigger behind the following result, which states that our
operators do not satisfy the Reversion postulate in Theorem 3 in [19], thus
separating the approaches.

Observation 1. Let A1 = (KBA1
,VA1

), A2 = (KBA2
,VA2

), A3 = (KBA3
,VA3

)
and A4 = (KBA4 ,VA4) be agents such that KBAi

is the Datalog± ontology for
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agent Ai; and VAi
is the credibility vector for agent Ai (1 ≤ i ≤ 4). Also, let

Υ be a ck-merging operator defined as in Definition 11. Υ does not generally
satisfy the following postulate:

• Reversion: If KBA1
∪ KBA2

and KBA3
∪ KBA4

have the same set of
minimal inconsistent subsets then:

(KBA1
∪KBA2

) \Υ({A1,A2}) = (KBA3
∪KBA4

) \Υ({A3,A4}).

The proof for the statement in Observation 1 comes from the fact that, even
if the conflicts in the knowledge bases for agents A1 and A2 are the same than
those for agents A3 and A4, it can be the case that the credibility vectors of
the agents differ in such a way that different resolutions for the conflicts are
triggered, thus deleting different formulas.

However, it is clear that if credibilities associated with agents are such that
conflicting formulas are valued in a way such that the order is considered, then
the approaches do coincide. In the light of that last statement, we can establish
a stronger version of Reversion tailored for our scenario, asking that not only
the minimal conflicts coincide but also the credibility associated with agents.

We first need to define when credibility vectors in some community of agents
are equivalent. Intuitively, sets of credibility vectors (and thus so communities)
are equivalent with respect to some particular accrual function when they induce
the same order among formulas for the particular accrual function in consider-
ation.

Definition 19 (Communities’ equivalence). Let A = {A1,A2, . . . ,An} and
B = {B1,B2, . . . ,Bn} be communities of agents on the form Ai = (KBAi

,VAi
)

(respectively, Bi = (KBBi
,VBi

)) such that KBAi
(respectively, KBBi

) is the
Datalog± ontology and VAi

(respectively, VBi
) is the credibility vector for agent

Ai (respectively, Bi), be such that
∐

A
=

∐
B
, and V be a credibility accrual

function.
We say that A and B are equivalent with respect to V, denoted

A ∼=V B, iff for all B,C ⊆
∐

A
and B′, C ′ ⊆

∐
B
such that B = B′ and C = C ′

it holds that V(B) ≤ V(C) iff V(B′) ≤ V(C ′).

Note that because of Neutrality, we only need to be concerned with con-
flicting formulas instead of asking for the complete ontologies to coincide. If two
communities are equivalent with respect to some accrual function V, then they
both will induce the same V-based incision functions, and thus the deletions
will coincide. That is, even if agents in the community does not have the exact
same credibility vectors if they are equivalent then some set A that is deemed
as less valuable than another set B in a community will be also less valuable in
the other one (even if the values for A and B are not precisely the same for both
communities). This fact helps us to propose the following property of Strong
Reversion. Then, we can show that operators defined in our approach belong
to this strong kernel merge class of operators.
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Proposition 6. Let A = {A1,A2} and A′ = {A3,A4} be such that A1 =
(KBA1 ,VA1), A2 = (KBA2 ,VA2), A3 = (KBA3 ,VA3) and A4 = (KBA4 ,VA4)
are agents such that KBAi

is the Datalog± ontology for agent Ai; and VAi
is

the credibility vector for agent Ai (1 ≤ i ≤ 4). Also, let Υ be a merging operator
defined as in Definition 11. Then, Υ satisfies the following postulate:

• Strong Reversion: If KBA1 ∪KBA2 and KBA3 ∪KBA4 have the same
set of minimal inconsistent subsets and A ∼=V A′ then (KBA1

∪ KBA2
) \

Υ({A1,A2}) = (KBA3
∪KBA4

) \Υ({A3,A4}).

Proof Let A1 = (KBA1 ,VA1), A2 = (KBA2 ,VA2), A3 = (KBA3 ,VA3) and
A4 = (KBA4

,VA4
) be agents such that KBAi

is the Datalog± ontology for
agent Ai; and VA1

is the credibility vector for agent Ai (1 ≤ i ≤ 4). Also, let
Υ be a merging operator defined as in Definition 11.

• Strong Reversion: If KBA1 ∪KBA2 and KBA3 ∪KBA4 have the same
set of minimal inconsistent subsets and A ∼=V A′ then

(KBA1
∪KBA2

) \Υ({A1,A2}) = (KBA3
∪KBA4

) \Υ({A3,A4}).

Let KBA1
∪ KBA2

and KBA3
∪ KBA4

be such that they have the same
set of minimal inconsistent subsets and A ∼=V A′.

Consider I ⊂ ((KBA1 ∪ KBA2) \ Υ({A1,A2})). Then, I * Υ({A1,A2}).
From Definition 11 we have then that I ⊂ ̺(

∐∐
{A1 ,A2 }

).

Consider any arbitrary ς ∈
∐∐

{A1 ,A2 }
, and let I ′ ⊂ ̺(

∐∐
{A1 ,A2 }

) be such

that I ′ = I ∩ ς, i.e., the set of formulas removed from ς by ̺. From
Definition 10 we have that for all F ⊂ ς where F satisfies the two first
conditions in Definition 10 it holds that V(ς \ F ) ≤ V(ς \ I ′) (and we do
not need to be concerned with those sets that do not satisfy the conditions
because of Strong Consistency, since their deletion does not solve the
conflict).

Since KBA1
∪ KBA2

and KBA3
∪ KBA4

are such that they have the
same set of minimal inconsistent subsets, then from Definition 6 we have
that

∐
{A1 ,A2 }

=
∐

{A3 ,A4 }
, and then from Definition 8 that

∐∐
{A1 ,A2 }

=∐∐
{A3 ,A4 }

. Thus, ς ∈
∐∐

{A3 ,A4 }
, and I ′ ⊂ ς. Also, since A ∼=V A′ then it

holds that for all F ⊂ ς where F satisfies the two previous conditions in
the definition it holds that V(ς \ F ) ≤ V(ς \ I ′) for A′ as well. Then, it
holds that I ′ ⊂ ̺(

∐∐
{A3 ,A4 }

).

So, we have that for ς ∈
∐∐

{A1 ,A2 }
(and hence ς ∈

∐∐
{A3 ,A4 }

) it holds that

if I ′ ⊂ ̺(
∐∐

{A1 ,A2 }
) then I ′ ⊂ ̺(

∐∐
{A3 ,A4 }

), i.e., the conflict resolution

for the cluster coincides. Since this holds for any arbitrary ς ∈
∐∐

{A1 ,A2 }

and
∐∐

{A1 ,A2 }
=

∐∐
{A3 ,A4 }

then we have that ̺(
∐∐

{A1 ,A2 }
) = ̺(

∐∐
{A3 ,A4 }

).

From Definition 11 follows then that (KBA1 ∪ KBA2) \ Υ({A1,A2}) =
(KBA3 ∪KBA4) \Υ({A3,A4}).

�
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6. Related work

In Section 5, we have already presented a formal comparison between our
work and some related works that are particularly close. We will now take a
more comprehensive look into the relation of our approach with the literature of
both Belief Revision (especially knowledge merging) and Social Choice Theory.

6.1. Merging knowledge bases

Many significant works have contributed to the study the problem of merg-
ing potentially conflicting knowledge coming from multiple sources (see, for
instance, [35, 30, 28, 31, 47, 19, 17, 44, 45]) which have provided inspiration and
interesting foundations for further efforts on belief revision. We will look closer
into similarities and differences between those works and our approach.

One of the cornerstones in the area of knowledge merging is the work pre-
sented by Konieczny and Pino-Pérez in [30]. Although we follow the same
motivations by studying the problem of merging conflicting information, there
are some differences between their work and ours. Unlike our approach, they
state that the merged knowledge base will be consistent if the set of integrity
constraints used to “guide” the merging process is consistent, and they do not
study the alternative case. In our work, however, we do not impose assumptions
over these “integrity constraints”, that is, NCs and EGDs whose semantics in
some way restrict the knowledge. As a result, we can have an incoherent set
of constraints, which is somehow equivalent to constraints inconsistency in on-
tological settings (see [12]), and the merged knowledge base will be consistent.
Another difference is that they focus on proposing a logical characterization
of merging operators and do not consider in their formalisms a model of trust
defined over the knowledge bases. In contrast, we propose an approach for
multi-agent scenarios where every agent attaches to the rest of the agents in the
community a credibility value, defining in this manner a preference order over
these agents.

Meyer, Lee, and Booth [39] use two well-known strategies for knowledge
integration for propositional inconsistency management, adapting them to a
Description Logic setting. The proposed approach takes knowledge bases and
generates a disjunctive knowledge base (DKB) as the result of the integration.
We propose some strategies to deal with inconsistency when integrating knowl-
edge, but the resulting merged knowledge base is a regular Datalog± ontology
instead of a disjunctive knowledge base. Also, while not explicitly stated here
for reasons of space, in our approach is possible to deal with incoherent ontolo-
gies: it will simply render new incoherence-related kernels. Then, the conflict
resolution machinery will take them and solve them, either by removing atoms,
TGDs, or constraints. On the contrary, Meyer et al. set aside problems related
to incoherence in the integration process as further research.

In [28], Hunter and Liu propose an approach for generating a stratified
knowledge base from a set of input knowledge bases that is based on the support
degree a formula receives. Following this, they propose some merging operators.
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They also define the notion of most primed formulas and the most entailed for-
mulas introducing methods to select them. In a development that keeps some
similarity to these, we establish different methods to calculate the value at-
tached to a particular formula in the merging process. However, in contrast,
the main difference with their approach, besides the goal (degree of support vs.
credibility accrual), is that they focused on how to obtain information from the
original sources from which formula gathered more support, and we centered on
agent credibilities to deal with the problem of pieces of conflicting information
from different source of information in a multi-agent context. In fact, we use
accrual functions to decide which formula needs to be removed to solve conflicts,
which clearly provides a useful tool that goes further the work [28].

In the Logic Programming area, a number of relevant research works also
have focused on dealing with the problem of knowledge merging. In [27], Hué
et al. have introduced a merging approach based on stable model semantics
using the logic of Here-and-There introduced in [49]. The authors consider a
merging strategy based on the method of Removed Sets Fusion to decide the set
of formulas to remove in order to restore inconsistency. To achieve this, they
assume a pre-order among the candidates for deletion that are obtained by a
given strategy. Although it falls outside of the goals of our work, it would be
reasonably easy to adapt our approach to using a preference criterion over sets
of formulas selected from conflicting information sets arising from the use of
accrual functions, similarly as to how it is done on [13].

Delgrande et al. [14] introduced another important work in the Logic Pro-
gramming area. In there, the authors propose two different operators for merg-
ing logic programs under answer set semantics. The first one follows the ap-
proach of arbitration, selecting those models of the programs that depart the
least from the models of the other programs. They study unsatisfiable logic
programs, and their strategy to solve the unsatisfiability leaves the unsatisfiable
program out of consideration for the merging process without trying to solve the
arising conflicts as we propose. The second operator can be seen as an instance
of the approach introduced in [30], and it selects those models of a program P0

that are closest to the models of the programs to be merged P1, . . . , Pn, where
P0 is a particular program that can be considered analogous to a set of integrity
constraints. Certainly, integrating our approach to [14] would add several at-
tractive characteristics to this work. A significant benefit of introducing our
trust model does not only favor to resolve conflicts using accrual functions but
also the use of different types of information associated with the sources that
will be merged, e.g., the account of sources supporting pieces of information, or
credibility assigned to such sources as we proposed.

A closely related work is the one reported in [17], where the authors present
a proposal of new merging operators that can be defined from existing ones,
and also study under which conditions IC merging operators can be composed
in such a way that the resulting operation preserves rationality postulates. In
particular, since this work does not consider in the formalization of the proposal
any mechanism to deal with problems related to the set of integrity constraints
(ICs), they start with the approach proposed in [30] where sources of informa-
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tion are assumed consistent. Unlike them in our work, we do not make the
assumption that the set of ICs should be conflict-free when considering multi-
agent scenarios. Therefore, a significant advantage of our approach is that it
allows us to cover cases where it is possible to join two or more bases without
worrying about the possible conflicts that may arise.

In [44], Schwind et al. have studied the merging process taking into account
rationalized belief bases with respect to integrity constraints. More precisely,
they consider the merging operators presented in [30] extending them by the in-
troduction of a class of rationalization-based merging operators where physically
infeasible scenarios that are preferable to discard are considered, i.e., “repair-
ing” the input bases by discarding the models of them which do not satisfy the
integrity constraints. Three types of rationalizations are considered for comput-
ing the merged result; merging operators are then applied to the rationalized
sources of information to obtain the merged result. As in this research, we pro-
pose several methods to deal with the inconsistency problem. However, besides
the difference in the research focus between that work and ours, it is important
to remark that we also provide a complete inconsistency resolution process ex-
ploiting the credibility relation between agents in the community to define how
the consistency should be restored. This process obtains the best-valued among
the consistent bases by employing optimal incision functions, which represents
one of the main benefits of applying our credibility approach.

In collaborative multi-agent scenarios where every agent plays a role of a
source of information to others, the credibility assigned by each agent to its
peers is an interesting aspect that has been studied in the literature [47, 46].
For instance, in [47], Tamargo et al. have introduced an approach to deal with
the knowledge dynamics of a multi-agent system where the weigh of beliefs is
established by using a credibility order among agents. This order is especially
important when agents can obtain new information from other agents. Four
change operators were introduced: expansion, contraction, prioritized revision,
and nonprioritized revision. A belief is then revised when new contradictory
incoming information arrives from a highly credible informant. Likewise, in our
proposal, we introduce a credibility relation between agents; however, here, we
intend to use this relation to associate a (computed) credibility degree to each
piece of information.

Following the intuitions of [47], the authors in [46] present a formalism of
multi-source multiple belief revision where the credibility attached to informant
agents is considered in the revision process. Given that the trust the agent
assigns to each source may differ, every agent establishes its own credibility
partial order among its informants. In this work, a change operator considering
information sources to decide which information should be accepted when per-
forming a belief revision is presented. Indeed, using a partial order defined over
the set of sources is a more general approach than ours since it gives the ability
to represent the case where some sources are incomparable to others. However,
the main difference with our work is that we use the credibility relation between
agents to deal with the problem of conflicting information arising when merging
knowledge bases. A significant advantage of using accrual functions is that they
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provide us a useful computational device to define different conflict resolution
strategies.

Finally, Schwind et al.’s work [43] is more closely related to our approach,
where a formalization for modeling the belief dynamics of a group of agents
called Belief Revision Games (BRGs) is introduced. In this approach, each
agent iteratively updates its beliefs by applying a revision policy-based belief
merging operators that take into account its current belief states and the belief
states of its neighbors. Thought the idea of interacting agents is similar to our
approach, we do not focus on belief dynamics, i.e., we do not study how the
beliefs of a group of agents evolve depending on how agents share their beliefs.
An attractive characteristic of our proposal is that the framework proposed
in [43] could be extended incorporating our credibility model based on accrual
functions.

6.2. Social Choice

Social Choice Theory is a scientific inquiry in an interdisciplinary area that
studies the aggregation of individual preferences towards a collective choice [8].
In particular, the design and theoretical evaluation of voting rules and questions
originally stemming from social choice have motivated interesting developments
in different contexts [9].

Although coming from a different area, the notion of belief accrual shares a
lot with methods for collective decision making studied in Social Choice The-
ory [8]. Computational social choice is concerned with the application of mech-
anisms developed in Computer Science for solving questions stemming from
social choice. For instance, to determine how preferences of individual agents
can be aggregated into collective preference relations is a question that is ut-
terly important in many research fields; in particular, in multi-agent systems, it
allows us to study how a community of agents can be treated as a single rational
decision-maker. Preferences are not only a characteristic that members of an
agent society may want to aggregate, but different methods of the social choice
theory have also been applied to other types of information, such as private
members’ beliefs that, when considered together, could be inconsistent.

Although social choice theory studies and belief merging operators belong
to distinct areas, there are several similarities between them, as discussed in [8].
Several merging operators proposed in the literature were inspired by voting
methods studied in social choice theory. For instance, in [20], the authors study
the voting problem under the perspective of belief revision and belief merging.
They introduce a form of encoding a voting scenario in a belief revision-based
logical framework. To resolve the conciliation problem of contradictory vot-
ing interests, they introduce a model-based belief merging operator. Other
approaches have been proposed to use a merging operator in order to define
judgment aggregation methods (e.g., see [16]). The aggregation of individual
judgments regarding the truth (or falsehood) of a given set of related state-
ments is called judgment aggregation. In [16], the notion of distance is showed
to relate judgment aggregation, belief merging, and social choice theory. The
authors maintain that the use of a distance notion establishes a link between
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belief merging and social choice theory, and show how a distance-based merging
operator can be applied to deal with classic social choice problems, providing
a link between distance-based approaches and social choice theory. Several im-
portant works in the literature have focused on dealing typical social choice
problems employing a distance-based merging operator [31]. Links between the
areas of belief merging and social choice have also been studied in [16].

As we shall see, several aspects of our approach provide benefits and useful
advantages in comparison with other formalisms. For instance, accrual function-
based merging operators can be related to those works mentioned; however, in
there, they are used with a different purpose. It is interesting to note that these
operators aggregate knowledge coming from equally reliable sources, in our ap-
proach the sources of a piece of information have different reliability, and this
characteristic is exploited to define a measure of the strength of the piece of in-
formation itself. Here, this additional information plays an essential role in our
formalization, allowing us to define different conflict resolution strategies when
all information sources are considered at once during the merging process. An
important point to note is the possibility of dealing with the problem addressed
in this paper as a preference aggregation problem importing positive results
from social choice theory. For this, two different types of approaches could be
adopted. On the one hand, a qualitative approach could be used, where the dif-
ferent degrees of credibility assigned by each agent is mapped into a preference
relation, and a collective preference relation is obtained from these individual re-
lations. From this resulting relation, it is possible to identify the most desirable
formulas. On the other hand, several social choice-based qualitative mechanisms
could also be applied in our proposal, such as scoring rules [15] or weighted goals
[32] among others. Despite being similar in spirit to aggregation functions tra-
ditionally studied in social choice theory, a significant advantage of introducing
accrual functions for merging knowledge bases is to provide a natural way to
identify agents, which are the sources of conflicting information. This character-
istic does not only favor the use of features attached to that information but also
the use of other types of information associated with the sources. Besides the
credibility that each agent assigns to each other in our multi-agent scenario, the
merging process could use, for instance, the availability, the satisfaction, or the
number of informant agents in the community. Our research focus has been set
in taking advantage of the accrual functions to better exploit the additionally
available information for scenarios with multiple informants. Particularly, we
propose to integrate different knowledge bases focusing on enforcing consistency,
applying different credibility criteria.

7. Conclusions and Future Work

Over the years, a handful of important contributions have been advanced
to merge information coming from different knowledge bases [35, 30, 31, 19,
44, 45, 27]. In these works, it is customary to consider just the formulas in
the knowledge bases as all the information that is available for such a process;
nevertheless, some of them also consider additional information that represents
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the preference relation among formulas in the knowledge base. As pointed out
in Section 1, having computational tools to define how much particular pieces
of information are desirable based on trust models, and using such desirability
is a useful advantage in collaborative multi-agent scenarios since it effectively
increases the capacity of these agents to establish which formulas need to be
removed to resolve conflicts in an agreed, consensual manner.

In this research, we have addressed the issue of merging in a single knowledge
base the distributed knowledge of a community of agents. In this scenario, every
agent has its knowledge (i.e., its epistemic state) represented as a Datalog±

ontology; then, a final ontology is assembled representing (as much as it is
feasible) the knowledge of the community as a whole. The main contribution of
this work is a formalization that characterizes a framework where every member
of the community assigns a credibility value to its peers, and these values are
used to compute the best-valued knowledge during the merging process. To
measure the credibility of a particular set of formulas, we exploited the notion
of accrual functions, tailoring them to our particular multi-agent credibility
scenario defining in this manner a general credibility accrual functions that
use the general contexts introduced in [13] specializing them to conflicts in
the community. In particular, the formalizations introduced in Section 3, and
theoretical results in Section 5, are two of the main strengths of this proposal.

Credibility represents a crucial part of our framework. An essential advan-
tage of introducing credibility accrual functions to multi-agent settings is to
provide more flexibility to define different conflict information strategies when
all agents are considered at once, obtaining the most significant benefit. As we
have explained before, different trust models that could be adopted have been
proposed in the literature; for instance, one possibility is to consider an ap-
proach based on the number of removed formulas. Nevertheless, and as we have
shown in Section 3, the optimality in our proposal is inherently connected to the
credibility of agents. In this sense, our proposed accrual functions contribute to
maximizing credibility instead of minimizing the number of formulas removed.

Regarding the merging operation per se, our approach adapts several defi-
nitions introduced in [12] to our setting in order to define a merging operator
capable of returning a knowledge base that represents as much as possible the
original ones, focusing on resolving inconsistency. This consistency solving is
based on the formalization of credibility based incision functions, which handle
inconsistencies through grouping related conflicts through clusters. The main
idea behind incision functions presented here is to resolve conflicts using a cred-
ibility accrual function to determine which formulas can be deleted for every
cluster considered. We have characterized our merging operator through two
properties, showing that the merged knowledge base is always consistent and
optimal (regarding the particular accrual functions being considered by the op-
erator). As another formal result, we compared our approach with Falappa
et al.’s Kernel Merge approach [19].

The introduction of a general mechanism for calculating the credibility value
of a set of formulas allowed us to explore different particularizations of our gen-
eral credibility accrual function. In Section 4, we presented particular strategies
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to measure the credibility attached to a set of formulas. We also showed that
these functions satisfy the properties of the general credibility accrual functions:
Transitivity, Domination, and Pertinence. These properties are of particular in-
terest in our formalism because they are directly involved in the optimality of
the conflict resolution (see [13]). Although an analysis of the computational
complexity of the approach is out of the scope of this work, we would like to
point out that a naive approach to conflict resolution based on a comparison of
every subset of a cluster is indeed computationally expensive. Nevertheless, it
is worth noting that we can exploit particular semantics to reduce the search
space, greatly lowering the complexity.

As for future work, there are several research lines that we are currently pur-
suing. On the other hand, we are also interested in studying new developments
to tackle the limitations that we discuss in the following paragraphs.

Several works from the literature of Belief Revision and Merging (e.g., [40])
have adopted for their proposals an approach based on additional information
concerning the formulas in the knowledge base, such as a preference relation
defined by domain experts that can be used to decide over conflicts. In this
direction, we want to explore constructions based on exploiting preference re-
lations among the formulas and credibility degrees assigned by every agent to
other agents in order to define different strategies to choose which formulas to
delete. Mainly, our future goal is to study two different situations: the relation
between merging operators based on preference relations with respect to the
one presented in this work, and how different semantics defined here affect their
behavior.

As we have mentioned, our proposal corresponds to a multi-agent systems
scenario; however, here, we have focused on exploring the theoretical aspects
of the presented approach. Thus, computational aspects such as time efficiency
optimization are of great importance for our long-term goal, but they fall out
of this work scope since we have focused on exploring the presented approach’s
theoretical aspects. A line of work that we are already working on is the defini-
tion of different particular accrual strategies to measure the credibility attached
to a set of formulas, such as the ones introduced in Section 4. In particular, as
explained before, we aim to explore the computational aspects of the strategies
presented here and to investigate those that will enable a computationally effi-
cient conflict resolution since they can be calculated over a subset of the space
of possible solutions. While we expect that the full, general credibility approach
to be rather costly regarding execution time since it needs to look into every
subset of a cluster, we also expect that some particularizations may prove to be
more easily computed because there are significantly fewer possible solutions.
An example of such a function would be absorption credibility accrual functions
such as the one introduced in this work; that is, those that evaluate sets of
formulas as equal to the most/least credible one in them. It is clear that in such
a case, we only need to check on singleton subsets of the solution space, which
could be done in linear time.

In [13], information about the application domain related to formulas is
modeled through values that account for interesting features. In the formalism
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we have introduced it is possible to define a feature to model those aspects that
are to be considered in a merging process that can be seen as a combination
of two or more features; however, our framework does not provide a systematic
way to deal with information conflicts handling more than one feature. For this
reason, another line of work that we are particularly interested in is to extend
the approach presented here to include multiple features representing different
dimensions, besides credibility, which can be considered to choose how to deal
with conflicts. In this context, it will be of interest in studying the impact of
different kinds of features in the merging process.

Finally, we are currently in the process of developing an implementation
of our merging operator to produce an efficient application using Datalog±

ontologies. We intend to perform analysis of both the computational complexity
aspects over the defined accrual functions in order to determine which one are
the most suitable to develop, and also we will analyze the execution time under
different conditions.
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Appendix A. Notations

The notation used throughout the paper is summarized in the following
table.

Name Notation Meaning
Relational schema R A relational schema

Sublanguage LR the sublanguage generated by R
Chase chase(D,Σ

T
) the chase for a database D

and a set of TGDs Σ
T

Models mods(D,Σ) the set of models of D and Σ
Credibility degree (A,c) a credibility c

associated to agent A
Agent’s credibility Vector VA the credibilities that

agent A assigns to
other agents in the community

Kernels
∐

A
the set of kernels in the union

of knowledge bases of all
agents in community A
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Name Notation Meaning
Clusters

∐∐
A

the set of clusters in the union
of knowledge bases of all
agents in community A

Credibility accrual V[cred]({A}) An accrual function that
function assigns a value to

the set of formulas A
Cluster incision ̺(

∐∐
A
) An incision function selecting

function formulas from clusters
in

∐∐
A
for deletion

ck-Merging Operator Υ(A) a merge operator
for the community A

Source SA(α) the set of agents that has
formula α in their KB

Credibility Set Ĉ(Ai) the set of credibilities assigned
to an agent

Credibility of a C̃ the minimal credibility
particular agent associated to an agent
Credibility of a C(A) the credibility associated
set of agents to a set of agents

Credibility of a formula ν(α) the credibility associated to α
Accumulation V⇈(A) accumulation-based

Accrual function accrual of credibilities
Maximality Vmax(A) maximality-based

Accrual function accrual of credibilities
Communities’ equivalence A ∼=V B Two equivalent communities

w.r.t. formula ordering
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[27] Hué, J., Papini, O., Würbel, E., 2009. Merging belief bases represented by
logic programs. In: ECSQARU. pp. 371–382.

[28] Hunter, A., Liu, W., 2009. Knowledge base stratification and merging based
on degree of support. In: Sossai, C., Chemello, G. (Eds.), Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, 10th European
Conference, ECSQARU. Proceedings. Vol. 5590 of Lecture Notes in Com-
puter Science. Springer, Italy, pp. 383–395.

[29] Kfir-Dahav, N. E., Tennenholtz, M., 1996. Multi-agent belief revision. In:
Proceedings of the Sixth Conference on Theoretical Aspects of Rationality
and Knowledge, De Zeeuwse Stromen, The Netherlands, March 17-20 1996.
pp. 175–194.
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