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Rotavirus contamination of surface waters from

the northwest of Argentina

Verónica Emilse Prez, Hugo Ramiro Poma, Georgina Gisela Giordano,

Matías Victoria, Silvia Viviana Nates, Verónica Beatriz Rajal

and Patricia Angélica Barril
ABSTRACT
Fecal pollution of water is a serious concern because it is associated with the transmission of

pathogens. The aim of this study was to analyze the occurrence of group A rotavirus (RVA) in surface

waters from the Arias–Arenales River in Salta, a northern city in Argentina, and to define possible

sources of fecal viral pollution. A total of 116 water samples were analyzed and RVA was detected in

3.4% (95% CI: 0.1–7.0%), with concentrations ranging from 1.9 × 105 to 3.8 × 106 genome copies per

liter. RVA strains were characterized as G1P[8], G4P[8] and G9P[8], which are common genotypes

circulating in the local population. The Arias–Arenales River presented unusual and sporadic

contamination by RVA, originated from stormwater discharges and a variety of non-identified

sources, and support the essential need of viral indicators for enhanced monitoring of water quality.
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INTRODUCTION
Several kinds of enteric viruses causing water-related dis-

eases with impact on public health are present in fecally

contaminated water environments. Group A rotavirus

(RVA), which is the most important causative factor of

acute gastroenteritis in young children, is widespread world-

wide, and its presence in different aquatic matrices is well

documented (Prez et al. ; Elmahdy et al. ;

Mackowiak et al. ). High viral shedding in feces of infected

individuals, resistance to adverse environmental conditions

and a low minimal infective dose make RVA an important

environmental contaminant (Estes & Greenberg ).

Surface water bodies can be polluted by point-source

discharges which enter into the environment from commu-

nity sewage treatment plants, untreated sewage and

livestock concentrations derived from slaughterhouse dis-

charges (Jamieson et al. ; Collins et al. ). Also,

non-point sources leading to diffuse pollution of surface

waters may originate from direct fecal voiding by grazing

livestock, manure spreading or urban surface water runoff,

which can derive from roof and road surfaces contaminated

with avian, domestic and wild animal feces and also from

cross-connections to the urban sewerage system, all of

which can exhibit high microbial loads (Sercu et al. ;

Rusinol et al. ).

Since enteric viruses may be present at low concen-

trations in aqueous matrices, efficient concentration

methods coupled with sensitive detection assays should be

applied for viral recovery. Numerous studies have shown

that ultrafiltration is a reliable and consistent method for

sample concentration when applied to natural waters

(Winona et al. ; Poma et al. ). Unlike other filtration

systems, the recovery of viruses using ultrafiltration is largely

unaffected by complex chemical constituents found in natu-

ral water (Morales-Morales et al. ). For viral detection,

molecular methods allow the specific and fast detection of

a target viral sequence, and in the case of real-time polymer-

ase chain reaction (qPCR), it also allows the quantification

of the target sequences. For the detection of viral pathogens,

it is recommended the inclusion of an internal process con-

trol (IPC), like the bacteriophage PP7 of Pseudomonas

aeruginosa, to determine whether the concentration
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method or the presence of inhibitors affects viral recovery.

PP7 has the particularity of its similarity in size and physico-

chemical properties to poliovirus, the smallest member of

the Enterovirus family. Consequently, PP7 simulates a

worst-case scenario for the filtration of viruses, and also,

there are no reports of its occurrence in natural waters

(Rajal et al. ).

The present study aimed to assess RVA dissemination in

the Arias–Arenales River, located in the province of Salta,

northwest area of Argentina, and to identify possible sources

of fecal viral pollution.
METHODS

Background

The city of Salta is the capital of the province of Salta, in

northern Argentina. With a population of 783,323 inhabi-

tants, it is located at the east of the Andes Mountains, in

the Lerma Valley (INDEC ). The city is crossed by the

Arias–Arenales River, which belongs to the Juramento–

Salado watershed and runs west to east through a semi-

rural area where the main use is for water supply, agricul-

tural irrigation, recreational activities and livestock

maintenance. When the river crosses the city, it receives pol-

lution, such as illegal raw sewage, domestic and industrial

effluents, illegal solids (deposits of domestic waste on the

river banks) and many other untreated pollutants. Also,

this river is subjected to seasonal fluctuations in water

flow during the wet and dry seasons present in summer

and winter, respectively (Poma et al. ).

Environmental samples

A total of 116 water samples were collected during the

period February 2009–February 2010 from the Arias–Are-

nales River. Eleven collection points (P1–P11) were used

along the river where it runs through the city of Salta

(12.5 km) (Figure 1). Briefly, P1 and P2 were selected as

low-pollution controls on the Arias and Arenales rivers,



Figure 1 | Geographical representation of the area under study: (a) province of Salta in Argentina, (b) area of study in Salta City and (c) monitoring points (P1–P11) along the Arias–Arenales

River. The circles correspond to points on the river, while the rectangles correspond to points of discharges into the river. The main activities developed in them are also marked

with the indicated icons.
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respectively, before entering the city. Low thermotolerant

coliform levels were determined in these sampling points

all along the studied period (Poma et al. ). P3, P7, P8

and P9 are stormwater sources flowing into the river; P4 is

on the Isasmendi Creek at the confluence with the Arias

River, where a beef packing plant is located; P5 receives

untreated sewage; P6 corresponds to a recreational area

called Parque Los Sauces; and P10 and P11 are the

upstream and downstream of the wastewater treatment

plant and municipal landfill, respectively. One sample was

collected per sampling point the first week of each month,

during the morning. A 20 L water sample was collected

per sampling point. Some points could not be monitored

during the dry season because of the lack of flow. Therefore,

a total of 13 water samples were collected in the sampling

points P1, P2, P6, P7, P10 and P11; 12 samples in P8; 9

samples in P4; 6 samples in P3 and P5; and 5 samples in P9.
Viruses concentration in water samples

The concentration procedure described previously by Rajal

et al. () was followed with small modifications (Poma

et al. ). Briefly, water samples were spiked with PP7
s://iwaponline.com/jwh/article-pdf/doi/10.2166/wh.2020.005/691001/jwh2020005.pdf
(ATCC 15692-B2), bacteriophage of P. aeruginosa, to a

final concentration of 106 genome copies (gc)/mL. Then,

samples were concentrated 400× by ultrafiltration. The

water samples were filtered through stainless steel sieves

to remove solids, placed into the feed tank and pumped

through an ultrafiltration system using a peristaltic pump.

Two membrane units were used: Microza AHP 1010 (Pall

Life Sciences, Port Washington, NY, USA) and Polyflux

24R (Gambro, Deerfield, IL, USA). Elution was performed

using a 20 mL of a solution containing 0.05 M glycine/

sodium hydroxide (pH 7.0) and 0.1% Tween 80. The final

concentrated sample (approximately 50 mL) consisted of

the eluate from the ultrafiltration unit plus the final

retentate.
Extraction of RNA and cDNA synthesis

Viral nucleic acids were extracted using the QIAamp Viral

RNA Kit (Qiagen, Hilden, Germany), following the manu-

facturer’s instructions. Extracted RNA was reverse-

transcribed (RT) into cDNA using random hexamer primers

and avian myeloblastosis virus reverse transcriptase (Invitro-

gen, CA, USA).



Table 1 | Rotavirus detection in the Arias–Arenales River, in northwest Argentina

Monitoring site Month (season) RVA genotype RVA load (gc/L)

P2 May (dry season) G1P[8] 3.8 × 106

P6 April (wet season) G9P[8] 1.9 × 105

P7 April (wet season) G9P[8] 3.8 × 105

P8 March (wet season) G4P[8] NQ

NQ, not quantifiable.
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IPC detection

The detection of PP7 was performed by qPCR using the ABI

7500 Real-Time PCR System (Applied Biosystems, CA,

USA) and the Sequence Detection Software version 1.0

(Applied Biosystems). The qPCR reaction was performed

in a final volume of 25 μL by using TaqMan Universal

PCR Master Mix (Applied Biosystems) and primers and

probe designed by Rajal et al. ().

RVA detection and genotype characterization

cDNA products were used as templates for VP7 gene ampli-

fication with the Beg9/End9 pair of primers (Gouvea et al.

) and VP4 gene amplification with the Con2/Con3

primers (Gentsch et al. ). The amplified products of

the first RT-PCR rounds were used as templates for G

and P genotyping by multiplex heminested PCR. For G

genotyping, G1 to G4, G8 and G9-specific primers (Gouvea

et al. ) were used, and P[4], P[6], P[8], P[9] and P[10]-

specific primers were used for P genotyping (Gentsch et al.

; Iturriza-Gomara et al. ). The amplicons were

analyzed by electrophoresis on 10% polyacrylamide gels

and visualized after silver staining (Herring et al. ).

Quantification of RVA-positive samples

The rotavirus load was determined in RVA-positive water

samples in duplicate by qPCR using the ABI 7500 Real-

Time PCR System (Applied Biosystems) and the Sequence

Detection Software version 1.0 (Applied Biosystems). The

qPCR reaction was performed in a final volume of 25 μL

by using Environmental PCR Master Mix (Applied Biosys-

tems) and primers and probe designed by Zeng et al.

(). A standard curve (106–101 copies per reaction) was

generated using tenfold serial dilutions of a plasmid con-

struction of pCR® 2.1-TOPO® vector (Invitrogen, USA)

containing the NSP3 gene region of RVA that yield a slope

of �3.59 and a reaction efficiency of 0.90. All molecular pro-

cedures included non-template controls as well as positive

controls that were run simultaneously, and separated

rooms were used to avoid cross-contamination. A test

result was considered positive if a sigmoidal amplification

curve crossed the threshold before 40 cycles, and all positive
om https://iwaponline.com/jwh/article-pdf/doi/10.2166/wh.2020.005/691001/jwh2020005.pdf
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and negative control reactions gave expected results. Con-

centrations were defined as the average of the duplicate

data obtained. The limits of detection (LOD) and quantifi-

cation (LOQ) of the qPCR were five copies per reaction.
RESULTS AND DISCUSSION

The IPC PP7 was detected in all the water samples analyzed,

with a recovery range between 1.5% and 29.7%, revealing

that no sample showed total inhibition of PCR and that

there was no total loss of the viral particles at any point in

the process. RVA genome was detected in 4/116 samples

(3.4%, 95% CI: 0.1–7.0%), at a mean concentration of

6.51 × 105 gc/L (1.9 × 105–3.8 × 106). The viral load could

not be determined in one of the RVA-positive samples

(Table 1).

Previous studies of the Arias–Arenales River showed the

variable detection frequencies of enteric viruses: 45% ade-

novirus (concentration range: 2.6 × 104–2.6 × 107 gc/L), 9%

norovirus (3.1 × 104–6.9 × 105 gc/L), 8% enterovirus (5.1 ×

104–1.8 × 106 gc/L; Poma et al. ), 6% hepatitis A virus

(Blanco Fernandez et al. ) and 0.02% hepatitis E virus

(Pisano et al. ). In this sense, RVA showed similar detec-

tion frequencies and viral load to other enteric viruses, while

adenovirus revealed a pattern of pollution very different

from the other viruses. The occurrence of RVA in the

Arias–Arenales River was lower than in surface waters of

other cities from Argentina, such as Córdoba, where RVA

was detected in 18.7–100% of the surface waters tested,

with a viral load ranging from 1.9 × 103 to 8.6 × 106 gc/L

(Prez et al. ).

Also, RVA frequency in the Arias–Arenales River was

lower than in surface water from different countries. RVA

was detected in 90% of the river water samples tested in
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Germany, with viral loads ranging from 1.2 × 101 to 4.2 ×

104 gc/L (Hamza et al. ). In Amazonia, Brazil, RVA

was the most common enteric virus detected in 44.2% of

the river water samples analyzed (Miagostovich et al.

). In a river basin in Minas Gerais, Brazil, RVA was

detected in 62.5% of the water samples (Assis et al. ),

while it was detected in 17.5% of river water samples from

Slovenia (Steyer et al. ).

RVA strains from the Arias–Arenales River were charac-

terized as G1P[8], G4P[8] and G9P[8] (Table 1), which are

common genotypes circulating in the human population

(Durmaz et al. ; Collins et al. ). An epidemiological

study carried out in Argentina by Degiuseppe et al. ()

reported the detection of G1P[8], G3P[8] and G12P[8] geno-

types in the northern region of Argentina in 2009, while

G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8] were found in

2010 (Degiuseppe et al. ). These results indicate that

the viral variants detected in the surface waters of Salta

match with genotypes reported in clinical cases of the

region and the world (Santos et al. ; Tian et al. ;

Tapisiz et al. ), which infers that the RVA species

excreted by the infected people could be contaminating

the river waters and also the Arias–Arenales River would

be a potential water source of RVA infection.

Positive samples for RVA were collected from a

sampling point selected as low-pollution control on the Are-

nales River, before the river enters the city (P2), a river point

located on the Arias–Arenales River which is a recreational

area called Parque Los Sauces (P6) and from two storm-

water sources flowing into the river (P7 and P8) (Table 1).

The monitoring sites located downstream the discharges of

sewage water (treated and untreated) did not reveal RVA

contamination (P5 and P11). Neither P10, which is located

downstream the discharge of the channels P7 and P8 into

the river, showed rotavirus contamination. RVA was not

detected in the channels P3, P4 and P5, which discharge

their waters into the river, revealing that none of them

seemed to be the cause of rotavirus pollution of the monitor-

ing point P6, situated in the river course.

No seasonality in RVA detection was noted in the Arias–

Arenales River (Table 1). However, due to the small number

of samples that tested positive for RVA, the available data

does not warrant a discussion of seasonal variation in

RVA prevalence.
s://iwaponline.com/jwh/article-pdf/doi/10.2166/wh.2020.005/691001/jwh2020005.pdf
There is a growing concern about the levels of fecal con-

tamination in surface waters due to spills from point sources

of pollution (Rusinol et al. ). In the present study, two

stormwater discharges (P7 and P8) flowing into the river

resulted from point sources of RVA contamination. These

two stormwater sources run through the city, receiving the

impact of the populations settled on its banks, but suffer

little impact of agricultural activities. RVA was not detected

in the monitoring sites located downstream the discharge of

treated (P11) and untreated sewage water (P5), which in pre-

vious studies showed the worst microbiological quality

(Poma et al. ). This could be related to the number of

inhabitants of the city of Salta and the number of house-

holds that have access to sewers and also to the size and

flow of the river.

In addition to the identified point sources of contami-

nation, non-point sources or other non-identified sources

of pollution were present in the Arias–Arenales River (P2

and P6), which can originate from runoff from agricultural

areas that drain into rivers, urban surface runoff or waste

washed by the wind into bodies of surface water, all of

which can exhibit high microbial loads (Rusinol et al.

). The pollution from a non-point source can be the pro-

duct of the contribution of many different sources and

without a specific solution to solve the problem, making it

difficult to regulate.

The identification of monitoring points contaminated by

RVA alerts on the importance of maintaining environmental

sanitation in the city (in order to avoid RVA presence in

storm drains) and in recreational areas. In this sense,

environmental virology can contribute with the microbiolo-

gical care of surface waters still little impacted by

anthropogenic activities, helping with effective strategies

linked to the control and prevention of water-related dis-

eases and the preservation of the environment.
CONCLUSIONS

The Arias–Arenales River presented unusual and sporadic

contamination by RVA, originated from stormwater dis-

charges and a variety of non-identified sources, and

support the essential need of viral indicators for enhanced

monitoring of water quality.
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