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Unveiling the genetic basis of Sclerotinia
head rot resistance in sunflower
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Abstract

Background: Sclerotinia sclerotiorum is a necrotrophic fungus that causes Sclerotinia head rot (SHR) in sunflower,
with epidemics leading to severe yield losses. In this work, we present an association mapping (AM) approach to
investigate the genetic basis of natural resistance to SHR in cultivated sunflower, the fourth most widely grown
oilseed crop in the world.

Results: Our association mapping population (AMP), which comprises 135 inbred breeding lines (ILs), was
genotyped using 27 candidate genes, a panel of 9 Simple Sequence Repeat (SSR) markers previously associated
with SHR resistance via bi-parental mapping, and a set of 384 SNPs located in genes with molecular functions
related to stress responses. Moreover, given the complexity of the trait, we evaluated four disease descriptors (i.e,
disease incidence, disease severity, area under the disease progress curve for disease incidence, and incubation
period). As a result, this work constitutes the most exhaustive AM study of disease resistance in sunflower
performed to date.
Mixed linear models accounting for population structure and kinship relatedness were used for the statistical analysis of
phenotype-genotype associations, allowing the identification of 13 markers associated with disease reduction. The
number of favourable alleles was negatively correlated to disease incidence, disease severity and area under the
disease progress curve for disease incidence, whereas it was positevily correlated to the incubation period.

Conclusions: Four of the markers identified here as associated with SHR resistance (HA1848, HaCOI_1, G33 and G34)
validate previous research, while other four novel markers (SNP117, SNP136, SNP44, SNP128) were consistently
associated with SHR resistance, emerging as promising candidates for marker-assisted breeding. From the germplasm
point of view, the five ILs carrying the largest combination of resistance alleles provide a valuable resource for
sunflower breeding programs worldwide.
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Background
Sunflower (Helianthus annuus L.) is the fourth most
widely grown oilseed crop in the world, with an annual
production estimated at 36 million metric tons
(www.sunflowernsa.com). Unlike other vegetable oils,
about 90% of the total production of sunflower oil is
used for human consumption, and only 10% is used for
biodiesel and industrial applications [1–3].
Sclerotinia sclerotiorum causes Sclerotinia head rot

(SHR), which is one of the main diseases in sunflower
growing areas of Europe, Argentina, and the USA, with
epidemics resulting in severe yield losses [4]. This necro-
trophic ascomycete poses a considerable problem to
agriculture as it attacks more than 400 plant species,
including many economically important crops such as
rapeseed, soybean, and tomato.
SHR resistance is a complex trait because it is controlled

by a polygenic architecture, (i.e. quantitative inheritance
with predominance of additive gene action) and has moder-
ate heritability, being greatly affected by different environ-
mental conditions of temperature, humidity, and rainfall,
among others [5–9]. During the last two decades, intensive
efforts on bi-parental QTL-mapping have led to the identi-
fication of ca. 50 quantitative trait loci (QTL) for SHR
resistance, with the most robust regions identified in link-
age group (LG) 10, followed by LGs 1 and 15 [7, 9–14].
However, the large size of these regions, which often span
five or more cM, has precluded the dissection of individual
genes, being low resolution capacity one of the main draw-
backs of the classical biparental mapping approach. In con-
trast, association mapping (AM), which relies on the use of
a diverse set of germplasm as mapping population, can pro-
vide higher-resolution while having the potential to evaluate
a wider range of natural variation, without recurrent devel-
opment of mapping populations [15, 16]. In the earliest
implementations of AM, candidate gene approaches, based
on prior knowledge of the pathway controlling the trait of
interest, dominated the literature. These approaches have
been successfully applied to study sunflower resistance to S.
sclerotiorum in both SHR [17] and stem rot [18]. More
recently, new genomic tools made possible the evolution of
candidate gene strategies into genomic scans, allowing
many SNPs to be queried simultaneously. Although a
number of genome-wide association studies resulted in the
identification of loci related to flowering time and plant
architecture in sunflower [19–21], their power to detect
associations for more complex traits, such as quantitative
disease resistance, has not been exploited yet. In this
context, the use of a larger number of candidate genes by
means of medium to high-throughput technologies may
serve as a suitable stepping-stone for future large-scale
exploration of defense responses to fungal pathogens. In
spite of the availability of a reference genome for the species
[22], there is still little knowledge about the abundance and

distribution of the genes associated with disease resistance.
According to Neupane et al. [23], sunflower chromosome
13, followed by chromosomes 9, 4 and 2, contains the high-
est number of nucleotide Binding Site—Leucine-Rich Re-
peat (NBS-LRR) genes, which encode disease resistance
proteins involved in plant defense .
The goal of the present work was to identify genetic

variants associated with SHR resistance. For this pur-
pose, we expanded our initial AM study [17] to include
a larger germplasm set, four additional field trials, three
additional resistance proxies (i.e. disease severity, area
under the disease progress curve for disease incidence
and incubation period) and 420 novel stress-related
molecular markers.

Results
Candidate gene selection, SNP identification and
genotyping
Candidate genes (CGs) for SHR resistance were selected
from four different data sources (Table 1, see Methods
section for details). A total of 27 CGs were suitable for
amplification and direct sequencing in the eight sun-
flower ILs used as a core set (CS) for initial polymorph-
ism discovery. These CGs encompassed 16,441 bp of
aligned sequence per individual ( 9,760 bp of coding and
6,681 bp of non-coding regions). The fragment size of
each CG ranged from 189 to 1,762 bp including indels.
Inspection of Table S1 shows a total of 228 nucleotide
changes in the CS, with at least one polymorphic pos-
ition in 25 of the 27 CGs evaluated. The mean number
of SNPs/CG was 8.33, with an average frequency of
1SNP/ 73 bp (excluding indels). The ratio between syn-
onymous (85) and non-synonymous substitutions (50)
was 1.7.
Twenty of 27 CGs were successfully genotyped in the

AMP: eight CGs were genotyped by dHPLC (G22, G26,
G30, G34, HaCP, HaDRP, HaPAL, and HaGLP3), two by
enzymatic cleavage (CEL1CH) (HeAn_315 and HaGLP5),
seven by fluorescent capillary electrophoresis (G33,
HaGLP4, HaTRP, HaWP, HaWRKY5, HaWRKY7, and
HaRhoBp) and three were typified by direct sequencing
(HeAn_41021, HeAn_12562, and HaCOI_1) (Table S1).
The number of haplotypes ranged from two to eight, with
an average of 3.29 haplotypes per gene.
The 384-SNP Sunflower Oligo Pool Assay (SOPA)

matrix retrieved from Filippi et al. [22] was filtered to re-
move markers that were either monomorphic or showed
more than 10% of missing data, yielding a total of 139
bi-allelic SNPs.
Finally, nine SSR previously associated with SHR resist-

ance were successfully amplified in the AMP, ranging from
three to eight alleles and with a mean of five (Table S2).
A filter of minor allele frequency (MAF) <0.05 was ap-

plied as a final step for CG and marker selection,
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rendering a total of 168 markers to be tested for associ-
ation with disease incidence (DI), area under the disease
progress curve for disease incidence (AUDPCI), disease
severity 168 (DS) and incubation period (IP): 20 CGs,
139 bi-allelic SNPs from the 384-SNPs SOPA and nine
SSR. The final data matrix is provided in Table S3.

Genetic structure, kinship of the AMP-ILs and the
relationship with disease response
Bayesian population structure and kinship analysis were
based on the 42 SSR used by Filippi et al. [24]. The esti-
mates of population structure for the 135 AMP ILs were
similar to those reported by these authors for the ori-
ginal 137 ILs [24]. Again, the AMP is composed of three
different genetic groups, with the maintainer/restorer
status being the most prevalent characteristic associated
with group delimitation (Table S4). The percentage of
individuals assigned to a given population, i.e. with in-
ferred ancestry higher than 0.70, was 68.15%.
A genetic distance matrix D, estimated based on the

number of shared alleles between all pairs of individuals
is presented in Table S5, while the derived hierarchical
clustering dendrogram is presented in Fig. S1. Based on
the Akaike Information Criteria (AIC), we determined
that 60 nested random effects are needed for kinship
structure modelling (Fig. S1, red line).
Regarding phenotypic data, the 135 AMP-ILs evaluated

for (DI), (AUDPCI), (DS) and (IP) exhibited substantial
variability in all disease descriptors, with rankings being

similar to those reported by Filippi et al. [24] for the ori-
ginal panel of 137 ILs (Table S4).
No significant correlation was observed between the

genetic distance estimates and the Euclidean distances
based on standardised SHR-phenotypic variables (R2 =
0.028; Mantel test, p = 0.18). Additionally, no significant
correlations were observed between ancestries inferred
by STRUCTURE and the SHR-phenotypic variables
(Table S6). Moreover, visual inspection of the box plots
of the adjusted means of SHR-phenotypic variables for
the three groups inferred by STRUCTURE revealed no
evident differences among groups (Fig. 1), as confirmed
by ANOVA (DI, p = 0.5771; AUDPCI, p = 0.8159; DS,
p = 0.2428; IP, p = 0.7178).

Association analysis
The four AM models tested were almost equivalent, i.e.,
they showed similar shape and mean squared differences
(MSD) between the observed and expected p-values
(under the hypothesis of no marker effect) (Fig. S2 and
Table S7).
Under the QK model, which includes both the popula-

tion (Q) and the kinship structures (K), eighty-six
markers were associated with SHR resistance before
multiple testing corrections (p < 0.05) (Table S8). Con-
sidering a q-value threshold of 0.2, the number of statis-
tically significant marker-trait associations was reduced
to 53 (32 for DI, 6 for AUDPCI, 12 for DS and 3 for IP;
p < 0.05; q-value < 0.2, Table S8). Using a more stringent
criterion (p ≤ 0.01, q-value < 0.20), a total of 23 marker-

Fig. 1 Box-plot of SHR-phenotypic variables in the three STRUCTURE clusters. a, DI: Disease incidence; b, AUDPCI: Area under the disease progress
curve for disease incidence; c, DS: Disease severity; d, IP: Incubation period
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trait associations were detected (nine for DI, six for
AUDPCI, five for DS and three for IP), encompassing 13
different genes (Table 2). The markers SNP117, HaCOI_
1, HA1848, and SNP136 were associated with three
SHR-phenotypic variables; SNP144 and SNP128 were re-
lated to two variables; while G33, G34, SNP125, SNP80,
SNP60, SNP23, and SNP44 were associated with a single
variable. The percentage of variation explained by each

marker was 13.98% on average, ranging from 6.79 to
25.31% (Table S8). The markers SNP117, HaCOI_1, and
HA1848 showed the most significant association with
disease resistance (p < 0.01, q-value < 0.10).
The 13 associated genes (p ≤ 0.01, q-value < 0.2) were

mapped against the sunflower reference genome and
localised on chromosomes 2, 6, 7, 9, 10, 14, and 15. The
GO-terms of the genes harbouring the associated

Table 2 Markers associated with SHR resistance (p ≤0.01; q-value < 0.20). Physical mapping of the associated markers, as well as
Molecular Function and Gene Onthology (GO) assignment were retrieved from Heliagene.org, using the genome XRQ v1.0 (Badouin
et al. 2017) [22]

Marker Chromosome Position
(bp)

Origin Phenotypic
variable

Molecular function GOs

SNP117 10 132,349,611 Illumina SNP-array DI, AUDPCI, IP 3-oxo-Delta(4,5)-steroid
5-beta-reductase

P:cellular metabolic process; F:coenzyme
binding; F:catalytic activity

HaCOI_1 14 168,171,427 CG
(Talukder et al. 2014) [18]

DS, AUDPCI, IP insensitivity to coronatine F: protein binding

HA1848 7 – SSR
(Zubrzycki et al. 2017) [9]

DS, DI, AUDPCI – –

SNP136 9 72,028,226 Illumina SNP-array DS, DI, AUDPCI Beta-hexosaminidase 1 P:carbohydrate metabolic process;
C:cytoplasmic membrane-bounded
vesicle; F:beta-N-acetylhexosaminidase
activity; F:cation binding

SNP144 13 14,745,225 Illumina SNP-array DI, AUDPCI Tyrosine transaminase
family protein

F:pyridoxal phosphate binding; P:cellular
amino acid and derivative metabolic
process; F:1-aminocyclopropane-1-
carboxylate synthase activity; P:vitamin E
biosynthetic process; F:L-tyrosine:2-
oxoglutarate aminotransferase activity

SNP128 12 18,758,084 Illumina SNP-array DI, AUDPCI Germin-Like Protein 3
(HaGLP3)

F:superoxide dismutase activity;
C:plant-type cell wall; F:oxalate oxidase
activity; F:nutrient reservoir activity;
P:oxidation reduction; P:auxin-mediated
signaling pathway; F:oxidoreductase
activity;

G33 16 62,306,954 CG (Zhao et al. 2007) [34] DS Radical SAM superfamily
protein

F: catalytic activity; iron-sulfur cluster
binding

SNP125 2 120,750,653 Illumina SNP-array DI Xylulose kinase-2 phosphate metabolic process;transferase
activity, transferring
phosphorus-containing
groups;phosphotransferase activity,
alcohol group as acceptor;primary
metabolic process;carbohydrate
metabolic process

SNP80 14 170,322,057 Illumina SNP-array DI Embryonic flower 2 P:genetic imprinting; P:negative regulation
of flower development; F:transcription
factor activity; C:nucleus

SNP60 10 173,066,810 Illumina SNP-array DI Serine-threonine/
tyrosine-protein kinase

P: protein phosphorylation, F: Protein-
serine/threonine kinase activity,
F: ATP binding.

G34 14 137,657,256 CG (Zhao et al. 2007) [34] DI ATP-binding cassette,
subfamily C, member 9

P: potassium ion transport; F: ATP binding;
sulfonylurea receptor activity; C: membrane

SNP23 15 16,332,782 Illumina SNP-array IP Rho-associated protein
kinase 1/2

P:protein amino acid phosphorylation;
F:ATP binding; F:protein serine/threonine
kinase activity

SNP44 6 52,738,650 Illumina SNP-array DS GRAS family transcription
factor

P: positive regulation of transcription,
DNA-templated regulation of
transcription, DNA-templated, response to
chitin, response to xenobiotic stimulus;
F: DNA-binding transcription factor
activity, sequence-specific DNA binding

DI disease incidence, DS disease severity, AUDPCI area under the disease progress curve for disease incidence and IP incubation period
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markers are detailed in Table 2. In addition, we also sur-
veyed the annotation of all the genes located ±1Mb
flanking regions upstream and downstream from all the
associated markers, in order to build a catalog of all
genes that could be involved in SHR resistance. A total
of 124 genes were identified within these regions, which
ranged from one to 39 per associated marker. Location,
description and distance to the associated marker are
given in Table S9.
To investigate the patterns of variation in the associ-

ated markers, we ranked the ILs according to the num-
ber of favourable alleles (Table S4). The top four ILs
were 51084/C820, RHA801, HA441, and 51084, with the
number of favourable alleles ranging from eleven to nine
(Table 3). For these ILs, the adjusted means of DI, DS
and AUDPCI were within the first quartile in all cases
(with the exception of IL 51084/C820 for DI and ILs
51084/C820 and RHA801 for DS), while the IP values
fell within the last quartile, i.e. the most resistant. These
ILs also showed sustained levels of resistance across field
trials. In agreement with these findings, significant and
negative correlations were found between DI, AUDPCI,
DS and the number of favourable alleles (Spearman, p <
0.01, Table S10), while a positive correlation was ob-
served for IP and the number of favourable alleles
(Spearman, p < 0.01, Table S10).

Discussion
Sclerotinia sclerotiorum resistance is a complex trait with
medium to low heritability and a largely unknown gen-
etic basis. In this work, an AM study encompassing 135
sunflower ILs was conducted to identify genes involved
in SHR resistance. Despite the increasing attention being
paid to genome-wide approaches, CG AM remains a
robust strategy to explore phenotype-genotype associa-
tions. Careful selection of CGs can greatly improve
success rates, particularly when there is little knowledge
about the molecular mechanisms underlying the trait of
interest. Here, we detected 13 markers associated with
SHR resistance using different sources of information as
starting points. Unlike previous AM approaches to SHR,
that investigated from eight to sixteen CGs [17, 18], here
we evaluated 27 CGs, a panel of nine SSRs previously as-
sociated with SHR resistance via bi-parental mapping

and a set of 384 SNPs located in genes related to biotic
and abiotic stress responses, such as hypersensitive
response, jasmonic-acid and auxin mediated signaling
pathways, response to oxidative stress, calcium associ-
ated genes, germin-like proteins, among others [9].
Moreover, the complexity of the trait led us to score
four disease descriptors, making this study the most ex-
haustive AM approach to disease resistance in sunflower
to date.
An understanding of the effect of population structure

on the trait of interest is critical to avoid spurious asso-
ciations in AM studies. If population structure accounts
for too much of the variation, then structured associ-
ation analyses will have low power to detect the effects
of individual markers [25]. In our AMP, correlations
were found neither between the Euclidean distances
based on SHR-phenotypic variables and the matrix of
genetic distances, nor between individual variables and
the assignment scores from Bayesian analyses. This sug-
gests that population structure would have little impact
on the detection of marker-trait associations.
Another key aspect in AM mapping studies is the in-

clusion a measure of relatedness among individuals
within and between subpopulations, as coancestry coeffi-
cients calculated from pedigree records or marker-based
kinship estimates [26]. The kinship structure implies a
correlation structure of observations in the framework
of a statistical model. Modelling kinship structure as a
set of nested random factors, as we did here, is an alter-
native approach to the inclusion of the kinship matrix as
a correlation matrix of an IL random effect. This ap-
proach allows the use of standard statistical software for
mixed model fitting.
To test for associations, we first applied a naïve ap-

proach that did not include any correction for the level
of relatedness or structure between ILs (model SM). The
curves of observed vs. expected p-values (under the
hypothesis of no marker effect) and the mean square dif-
ference between them [26], showed that accounting for
population structure (model Q) did not contribute to a
clear reduction in the number of significant marker-trait
associations (p < 0.05). The same result was obtained by
including the kinship structure (model K) and both
sources of structure (model QK). These results are in

Table 3 Performance of the inbred lines with the highest number of favourable alleles

Inbred
Line

SNP117 HA1848 SNP136 SNP128 SNP144 SNP125 SNP80 G34 SNP60 HaCOI_
1

G33 SNP44 SNP23 DI AUDPCI DS IP

51084 x x x x x x x x x 32.1 3.81 45.5 19.88

51084/
C820

x x x x x x x x x x x 46.2 4.03 49.4 21.20

RHA441 x x x x x x x x 21.8 2.52 32.9 21.53

RHA801 x x x x x x x x 31.8 3.75 50.5 20.79

DI disease incidence, DS disease severity, AUDPCI area under the disease progress curve for disease incidence and IP incubation period

Filippi et al. BMC Plant Biology          (2020) 20:322 Page 7 of 13



accordance with the fact that none of the SHR-phenotypic
variables showed association with the underlying popula-
tion structure, thus minimising the risk of spurious associa-
tions derived from marker-trait covariance [27].
A q-value was calculated for the entire set of p-values

to establish a reasonable false discovery rate [28, 29].
Three markers, HA1848, HaCOI_I and SNP117, located
in chromosomes 7, 10 and 14, respectively, had the most
significant associations with disease resistance (p < 0.01;
q-value < 0.10). Moreover, each of these markers were
associated with three of the four SHR phenotypic vari-
ables. Two of these associated markers validate a previ-
ous biparental mapping study of Sclerotinia resistance in
sunflower [9]. The SSR marker HA1848 was reported to
co-localise with a QTL for decrease in SHR DI [9], while
the CG HaCOI_1 appeared to be related to Sclerotinia
stem rot resistance [18]. The HaCOI_1 CG is ortholo-
gous to the Arabidopsis thaliana COI1 gene, which en-
codes a leucine-rich repeat (LRR) protein essential for
the Jasmonic acid (JA) signaling pathway. The JA has a
crucial role in plant defense against biotic and abiotic
stresses [30]. Indeed, necrotrophic fungal pathogens, like
S. sclerotiorum, are known to act as primary activators of
JA-dependent defenses through the COI1 receptor [31].
The gene harbouring SNP117 was assigned to the GO

category progesterone 5β-reductase (P5βR). In spite of
being a family first described in animals, PRISEs (proges-
terone 5β-reductase and/or iridoid synthase-like 1,4-
enone reductases) are ubiquitous in plants and are in-
volved in cardenolide and iridoid biosynthesis in many
species [32]. The occurrence of species with these en-
zymes but not producing cardenolides or iridoids may
indicate a more general role in the scavenging and de-
toxification of reactive carbonyl compounds [32]. In
agreement with this proposal, members of this family
showed to be sensitive to abiotic and mechanical
stressors, with their expression being regulated by ethyl-
ene and hydrogen peroxide [33].
At a less stringent threshold (p ≤ 0.01; 0.10 < q-value <

0.20), ten additional markers, distributed across eight
different chromosomes were associated with resistance.
The orthologs of two of these genes, G33 and G34, were
previously identified as differentially expressed in re-
sponse to Sclerotinia infection in Brassica napus [34].
G34 encodes an ABC transporter and has several known
functions of agricultural importance, with detoxification
and auxin transport being one of the most important
[35]. Auxing mediated signaling is not only related to
plant grow and development, but also to pathogen
resistance, mainly for necrothophic fungi [36, 37].
G33 encodes a member of the Radical SAM Superfam-

ily, which contains over 100,000 homologous enzymes
that catalyze a broad range of reactions required for life
[38], including disease resistance [39].

The remaining eight markers include a germin-like
protein (GLP, SNP128), a β-hexosaminidase (SNP136), a
putative rho-associated protein kinase (SNP23), and five
genes with diverse annotations (i.e. Tyrosine transaminase,
Embryonic flower 2, Xylulose kinase, Serine-threonine/
tyrosine kinase, GRAS family transcription factor). Germins
and GLPs are encoded by gene families with multiple mem-
bers, and a wealth of evidence supports their involvement
in plant defense. Many germins possess oxalate oxidase
(OXO) activity, i.e. can degrade oxalic acid to H2O2 and
CO2 [40, 41], whereas GLPs show superoxide dismutase
(SOD), phosphodiesterase, polyphenol oxidase, protease in-
hibition or proteolytic activities [42]. In particular for S.
sclerotiorum, Rietz et al. [43] reported the role of GLPs in
the defense response of B. napus against the pathogen.
More recently, overexpression of sunflower HaGLP1 in A.
thaliana was also shown to promote reactive oxygen spe-
cies (ROS) accumulation and enhance protection against S.
sclerotiorum and Rhizoctonia solani [44].
The marker SNP136 is of particular interest since it

falls within a β-n-acetylglucosaminidase that catalyses
the hydrolysis of chitin oligosaccharides. Chitin (β-1,4-
linked polymer of N-acetylglucosamine) is commonly
present in fungal cell walls, and its fragments are known
to act as potent elicitor signals in plant defense [45].
Fusari et al. [17] found that one allele of a putative

Rop-interactive CRIB motif-containing protein (rhoBP_
B//RIC) was associated with a decrease in SHR DI. This
association could not be assessed in our AMP, because
the beneficial allele was at a very low frequency (< 0.05).
However, we were able to identify another putative Rho-
associated protein kinase related to an increase in SHR
resistance (SNP23), further suggesting that this family
plays a role in the defense process.
The causal polymorphism for a QTL can be distant

from the marker under scrutiny, particularly in species
with high levels of linkage disequilibrium, such as sun-
flower [20, 46, 47]. In line with this notion, several of
the associated markers found in our work show allelic
differences leading to synonymous substitutions. Mining
of the recently available sunflower genome [22] identi-
fied a considerable number of promising candidates for
future evaluation. Genes related to defense processes
located in the vicinity of the associated markers include
a protein phosphatase 2C, nucleotide binding site–leu-
cine-rich repeat (NBS-LRR) R proteins, acetyltransfer-
ases, GRAS proteins and various GLPs. In sum, we
generated a catalog of 124 candidate genes, putatively
involved in the SHR resistance process.
Overall, we found that most of the genes associated with

resistance to SHR have molecular functions involving the
accumulation and degradation of ROS and JA-mediated
signaling pathways, which are primary processes in plant-
pathogen interactions. In agreement with these findings,
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Na et al. [48] reported high transcript abundance for
marker genes involved in both the SA and JA pathways in
a resistant sunflower cultivar challenged with the patho-
gen S. sclerotiorum. In addition, H2O2 levels and ROS
scavenger enzyme activities were also increased, as well as
callose deposition on the cell wall and soluble protein
content.
As genotyping costs continue to decrease, phenotyp-

ing efforts are becoming the most critical issue for
AM approaches. Although high correlations were
observed among the four examined phenotypic vari-
ables [6], there were several associations with only
one disease descriptor, suggesting that, despite some
overlapping, all of them give insights into different
aspects of resistance. In agreement with the results of
the statistical analysis, the distribution of the
favourable alleles of the associated markers among
the ILs of the AMP is consistent with their pedigree
and prior behaviour in field trials. Significant and
negative correlations were found between DI,
AUDPCI, DS and the number of favourable alleles,
while a positive correlation was observed for IP and
the number of favourable alleles, suggesting that ILs
with a higher number of favourable alleles tend to
have lower DI, AUDPCI and DS while longest IP.
Indeed, the highest number of favourable allelles
corresponded to ILs showing a stable response across
growing seasons [6] and ranked among the most re-
sistant in terms of DI, DS, AUDPCI and IP values.
Moreover, recent field observations indicate that these ILs
also have enhanced resistance to head and stem canker
caused by Phomopsis heliantii (Corro Molas A., pers.
comm.). In sum, our results highlight that the adoption
and application of strategies combining a moderate num-
ber of markers with previuos genomic information, as
CG-association mapping, allows the identification of
strong genomic signals associated with traits of agronomic
importance, even for low heritability traits, as SHR resis-
tamce. In this regard, this work brings the first hints
towards the characterization of sunflower resistant genes
to SHR, while contributing to marker-assisted breeding
for crop improvement.

Conclusions
Four of the SHR resistance-associated markers identified
in this work, HA1848, HaCOI_1, G33 and G34, validate
previous research and emerge as promising candidates
for marker-assisted breeding. Moreover, our work
allowed the identification of novel markers, i.e. SNP117,
SNP136, SNP144 and SNP128, consistently associated
with SHR resistance, as determined by using different
disease descriptors. Further studies are currently under
way to confirm their effect on resistance using

mutagenised populations. From a germplasm perspec-
tive, the ILs with the largest combination of resistance
alleles also provide a valuable resource for sunflower
breeding programs worldwide.

Methods
Plant material and sources of phenotypic data
The development of the sunflower association mapping
population (AMP) used here is described in Filippi et al.
[24]. Briefly, a diverse collection of 137 cultivated sun-
flower inbred lines (ILs) was selected by the sunflower
breeders of the Instituto Nacional de Tecnología Agro-
pecuaria of Argentina (INTA) and preserved at the Ac-
tive Germplasm Bank of INTA Manfredi (BAG-IM). All
the ILs are breeding resources obtained under institu-
tional and national guidelines (see Filippi et al. [24] for
details on the original source of plant materials). Genetic
diversity analyses of these ILs using 42 SSR markers, as
well as a panel of 384 SNPs, indicated that our AMP
exhibits a high percentage of the allelic diversity present
within the cultivated sunflower gene pool [24].
The susceptibility of the original 137 AMP ILs towards

S. sclerotiorum was assessed by Filippi et al. [6] in five
consecutive field trials (FTs) conducted at the Balcarce
Experimental Station INTA (37° 50′ 0″ S, 58° 15′ 33″
W, Province of Buenos Aires, Argentina) from 2009 to
2014. The FTs were conducted in a randomized
complete block design with two blocks. The variables
used as a proxy for SHR resistance were disease inci-
dence (DI), disease severity (DS), area under the disease
progress curve for disease incidence (AUDPCI) and in-
cubation period (IP).
A full description of the experimental field design, fungal

isolation, inoculum preparation and statistical methods
associated to adjusted mean estimation for all the SHR-
phenotypic variables can be found in Filippi et al. [6].
In the present study, the number of AMP ILs was re-

duced to 135 because two of them were contaminated,
so both genetic and phenotypic statistical analyses were
repeated in order to obtain specific values for this re-
duced IL population. Seeds were provided by the Active
Germplasm Bank of INTA Manfredi.

DNA extraction and genotyping
Total DNA was extracted from leaf tissue from three in-
dividuals of each IL using NucleoSpin Plant II kit
(Macherey-Nagel, Germany), following manufacturer’s
instructions. The quality and concentration of the gen-
omic DNA were assessed using electrophoretic analysis
and Picogreen® technology (Invitrogen, San Diego, CA).
Three types of molecular markers were used to test

for association with SHR resistance: 1) PCR amplicons: a
panel of 27 candidate genes (CGs) selected from Zhao
et al. [34], Ehrenbolger et al. [49], Fusari et al. [17] and
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Talukder et al. [18] (Table 1); 2) SNPs: 384 SNPs from a
custom Illumina Oligo Pool Assay designed on the basis
of stress-related candidate genes (Sunflower Oligo Pool
Assay, SOPA, [9, 24]); and 3) SSRs: a set of 9 SSR
markers recently associated with SHR resistance by bi-
parental QTL mapping in sunflower [9].

PCR amplicons
Table 1 provides general information on the CGs and
the primers used for amplification. For CGs selected
from a transcriptional analysis of A. thaliana in response
to S. sclerotiorum [34], we first used the phylogenetic ap-
proach of Fusari et al. [17] to identify the corresponding
orthologous genes in sunflower. We made an initial step
of polymorphism assessment for all the CGs because no
knowledge of diversity levels was available. Direct Sanger
sequencing of the 27 CGs was performed in a core set
(CS) of eight inbred lines to identify haplotypes and se-
lect the best genotyping method for the AMP. The sim-
ulated annealing algorithm, implemented in the software
PowerMarker V. 3.51 [50] (Liu & Muse 2005), was used
for CS construction, with 1000 replicate analyses [51].
The CS included ILs 2091, 2121, 51084/5429, B99,
C154B, C625U, R419 and R449. CGs with only two hap-
lotypes were genotyped using denaturing High-Pressure
Liquid Chromatography (dHPLC) or digestion by CEL1
endonuclease, as described in Fusari et al. [52]. Haplo-
types differing in fragment size were genotyped by fluor-
escent capillary electrophoresis (FCE). Finally, CGs with
more than two haplotypes were genotyped by direct se-
quencing. All sequencing reactions and analyses were
performed as described in Fusari et al. [46].

Sunflower Oligo Pool assay (SOPA)
The 384 Illumina SOPA was designed to target SNPs
selected by in-silico searches of EST-databases focusing
on genomic regions with molecular functions related to
stress responses [9]. Among the initial panel of 384
SNPs on the array, 182 were found to be variable in our
AMP [24], with 139 passing the minor allele frequency
filters used for this study. SNP polymorphism data for
the AMP are available in Filippi et al. [24].

SSR markers
A total of nine SSR markers were selected from a study
of QTL mapping for SHR resistance on a biparental sun-
flower population derived from the cross of the public
French ILs PAC2 x RHA266 [9]. Genotyping was carried
out as described in Filippi et al. [24]. The general fea-
tures of the SSR markers are given in Table S2.

Population structure and relatedness
As mentioned before, due to the reduction in the num-
ber of ILs compared to our previous analyses, population

structure was re-estimated using the Bayesian approach
implemented in STRUCTURE [53] based on the 42 SSR
described in Filippi et al. [24]. Two of these SSR (HA77
and HA1848), were also tested for phenotype-genotype
associations.
The kinship structure (K) was modelled as a set of

nested random effects. In this regard, a matrix (S) of
proportion of shared alleles was generated from the
above-mentioned 42 SSR and used as input for the esti-
mation of the distance matrix D ¼ ffiffiffiffiffiffiffiffi

1−S
p

. The agglom-
erative hierarquical cluster was generated with the ward.
D agglomeration method. The resulting dendrogram was
cut at different levels (nodes) and as a result, ILs were
grouped into 2 to 134 clusters. The Akaike Information
Criteria was used to determine the optimal number of
grouping factors needed to model the kinship structure.
To assess the relationship between disease response and

the genetic structure of the AMP, we carried out a Mantel
test comparing an Euclidean distance matrix based on the
standardised adjusted means of the phenotypic variables
with the genetic distance matrix D. In addition, we con-
ducted a correlation analysis between disease response
variables and the STRUCTURE ancestry coefficients of
each inbred line. Finally, one-way ANOVA was used to
test for significant differences in disease response variables
among STRUCTURE clusters; ILs were assigned to a
given cluster when inferred ancestry was > 0.70.

Association mapping
Statistical analyses were performed according to the
two-step method described in Stich et al. [26].
Briefly, it aims at obtaining adjusted means for each
IL, considering the effects of year, inoculation date
and the plot structure of the experimental design. In
the second step, the adjusted mean derived from the
first step is used as the response variable and is fit-
ted for one marker at a time. We considered the
four following models:

1) A simple linear model (SM), which only includes a
fixed effect for the marker (Mi), under the
assumption of independence of errors.

Y ij ¼ μþMi þ eij

2) The Q model, which extends the Generalised
Linear Model (GLM) by including the population
structure as a set of regressor variables
corresponding to the STRUCTURE ancestry
assignment matrix Q.
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Y ij ¼ μþMi þ Qβþ eij

3) The K model, which does not include population
structure but a set of nested random factors
represented by the term Zk, where Z is an
incidence matrix and k is a random effects vector
(see the representation of the kinship structure in
the previous section).

Y ij ¼ μþMi þ Zk þ eij

4) The model QK, which includes both the population
and the kinship structures.

Y ij ¼ μþMi þ Qβþ Zk þ eij

Correlations among SHR-phenotypic variables and the
number of favourable alleles were estimated using Spear-
man’s rank correlation.
The R environment [54] was used for most of the

statistical analyses. Library lme4 [55] was used for model
fitting. The function hclust with method ward.D was ap-
plied for cluster analysis, while the function cutree was
implemented to cut the dendrogram that generated the
grouping factors used to model kinship. Complementary
statistical analyses were performed by means of InfoStat
[56] and InfoGen [57].
The false discovery rate (FDR) thresholds were deter-

mined using the QVALUE package [58] and a q-value
cut-off of 0.2, as suggested by Iquira et al. [28].

Annotation and genomic context of the associated
markers
Given that most of our SNP markers were located within
CGs, we retrieved the annotations of the genes harbour-
ing the associated markers using BLASTN searches
against the reference genome of Helianthus annuus
(available at http://www.heliagene.org). We also searched
for the genes surrounding the associated markers. To
ensure physical linkage [47], we scanned up to ±1 mega-
base from the marker of interest (XRQ version 1.0, [22]).
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