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Abstract  

 

Nitrogen is a most important nutrient resource for Escherichia coli and other bacteria that 

harbor the glnKamtB operon, a high-affinity ammonium uptake system highly interconnected 

with cellular metabolism. Although this system confers an advantage to bacteria when 

growing under nitrogen-limiting conditions, little is known about the impact of these genes on 

microbial fitness under nutrient-rich conditions. Here, the genetically tractable E. coli 

BW25113 strain and its glnKamtB-null mutant (JW0441) were used to analyze the impact of 

GlnK-AmtB on growth rates and oxidative stress tolerance. Strain JW0441 showed a shorter 

initial lag phase, higher growth rate, higher citrate synthase activity, higher oxidative stress 

tolerance and lower expression of serA than strain BW25113 under nutrient-rich conditions, 

suggesting a fitness cost to increase metabolic plasticity associated with serine metabolism. 

The overexpression of serA in strain JW0441 resulted in a decreased growth rate and stress 

tolerance in nutrient-rich conditions similar to that of strain BW25113, suggesting that the 
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negative influence on bacterial fitness imposed by GlnK-AmtB can be traced to the control of 

serine biosynthesis. Finally, we discuss the potential applications of glnKamtB mutants in 

bioproduction processes.  

 

Introduction  

 

Natural environments normally exhibit an extremely high microbial diversity, nutrient 

limitations, and a variety of abiotic stress conditions (Ayub et al., 2004; Ayub et al., 2009; 

Pascuan et al., 2015; Soto et al., 2012; Stritzler et al., 2018). Accordingly, the growth rate, 

nutrient uptake and adaptation to abiotic stress are crucial parameters that reflect the fitness 

of microbes in their natural habitat. Nitrogen is an elemental component of almost all 

macromolecules in a microbial cell (Reitzer, 2003), including nucleic acids, proteins and cell 

wall compounds. Consequently, prokaryotes possess complex control mechanisms to 

provide an optimal nitrogen amount for cellular metabolism and to survive in nitrogen-limiting 

conditions (Kustu et al., 1984; van Heeswijk et al., 2013).  

Ammonium (found in an aqueous equilibrium between the protonated and the neutral 

species, i.e. NH4
+ and NH3) is the optimal nitrogen source for prokaryotes that contain the 

glnKamtB operon (e.g. Escherichia coli) and other ammonium uptake systems. The 

glnKamtB operon encodes a sensitive sensory system that regulates ammonium influx in 

response to external alterations in ammonium availability (Coutts et al., 2002). AmtB is an 

ammonium transporter whose activity is negatively regulated by the reversible formation of a 

complex with GlnK (Javelle et al., 2004), a small cytosolic signal transduction protein (PII 

protein) that orchestrates the activities of the main regulators of carbon and nitrogen 

metabolism (Burkovski, 2003; Gosztolai et al., 2017; Kim et al., 2012; van Heeswijk et al., 

2013; Vo et al., 2013). E. coli contains yet another PII protein, termed GlnB, with a different 

function than the GlnK protein from which it derives (Reitzer, 2003; Thomas et al., 2000). 

This is not surprising, largely due to the long-term maintenance of paralogs needed to foster 

the occurrence of neofunctionalization and/or subfunctionalization processes (Conant and 

Wolfe, 2008). 

Based on the genetic linkage and presence of the glnK and amtB genes in strains 

belonging to the Bacteria and Archaea domains, it has been proposed that these genes 

constitute an ancestral ammonium-sensing system of prokaryotes (Javelle and Merrick, 

2005; Thomas et al., 2000). However, since horizontal gene transfer is a critical mechanism 

of microbial evolution (Fox et al., 2014; Pascuan et al., 2015; Stritzler et al., 2018), the 

presence of this system in the Bacteria and Archaea domains does not necessarily imply that 

its emergence occurred in the common ancestor of prokaryotes. In addition, although several 

studies have demonstrated the importance of the ammonium-sensing system in the 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sle/advance-article/doi/10.1093/fem
sle/fnaa197/6006877 by C

arleton U
niversity Library user on 01 D

ecem
ber 2020



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

adaptation of microbes to changes in nutrient availability, including starvation and nutrient-

shock conditions (Gosztolai et al., 2017; Kidd and Wingreen, 2010; Kustu et al., 1984), little 

is known about the fitness cost of the occurrence of this nitrogen regulatory system.  

Thus, the aim of this study was to integrate phylogenetic and functional analyses to 

characterize the emergence of the glnK and amtB genes in prokaryotes and to understand 

the occurrence and conservation of these genes together with their possible impact of on 

microbial fitness, focusing on growth rate and oxidative stress tolerance as key parameters. 

 

Material and Methods 

 

Bacterial strains and genomic analyses 

 

Escherichia coli BW25113, a fast-growth model strain without auxotrophies, and its 

glnKamtB derivative (strain JW0441, CGSC#: 8602), obtained from the Coli Genetic Stock 

Center (Baba et al., 2006), were used in this study. The integrity of the glnKamtB operon in 

strain BW25113 and the knockout of this operon by the insertion of a kanamycin cassette in 

strain JW0441 were verified by sequencing and analyzing their genomes by means of 

Illumina Hiseq1500 technology and Geneious as indicated previously (Brambilla et al., 2019). 

 

Plasmid construction, bacterial transformation and gene expression 

 

Plasmids pECglnKamtB and pNOD26 were constructed for homologous and 

heterologous complementation of ammonium uptake deficiency in strain JW0441, 

respectively. Firstly, a PCR was carried out to amplify a fragment containing the glnKamt 

operon of strain BW25113 by using primers OpFW (5’-ATCTGCAGGCCAGCGTGCGTGAAGAGGAAT-3’) 

and OpRV (5’-ACCGTTCAGGAAGGGGTGATGCGTAAT-3’). The primers flanked a 1,955-bp fragment 

including the entire glnKamt operon and its intergenic regions. This amplification fragment 

was cloned into vector pGEM-t Easy (Promega #A1360) and its identity was verified by 

sequencing (Cuyeu et al., 2013). The resulting plasmid was termed pECglnKamtB. Secondly, 

plasmid pNOD26, carrying the ammonium channel NOD26 gene from Glycine max (Frare et 

al., 2018), was constructed by introducing amplified and XbaI-digested fragments of the full-

length NOD26 cDNA into the E. coli-expressing vector pSEVA4413 (Silva-Rocha et al., 

2013). The primers used were 26aFW (5’-CCTCTAGAATGGCTGATTATTCAGCAGG-3’) and 26aRV (5’-

CCTCTAGATTATTTGGAGGCAGCACGGC-3’), which contain XbaI sites. The absence of mutations in 

the NOD26 gene was verified by sequencing. In addition, the serA gene from strain 

BW25113 was amplified using primers 5’-CCTCTAGAATGGCAAAGGTATCGCT-3’ and 5’-

CCAAGCTTTTAGTACAGCAGACGGG-3’ and cloned in the expression vector pSEVA2513 (Silva-
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Rocha et al., 2013) by using XbaI and HindIII restriction enzymes. The resulting plasmid was 

named pSEVA-serA. Plasmids pECglnKamtB, pNOD26 and pSEVAserA were introduced by 

transformation into competent cells of strain JW0441. Ampicillin-resistant (JW0441-

pECglnKamtB), streptomycin-resistant (JW0441-pNOD26) and kanamycin-resistant 

(JW0441-pSEVAserA) transformants were maintained on LB agar plus ampicillin (100 

µg/mL), streptomycin (100 µgm/L) and kanamycin (50 µg/mL). qRT-PCR experiments were 

performed according to (Setten et al., 2013). 16S rRNA gene was chosen as the internal 

control gene. 

  

Bacterial growth under nitrogen-limiting conditions 

 

To test growth under nitrogen-limiting conditions, overnight cultures grown in 

lysogeny broth (LB) medium were washed twice in physiological solution and serially diluted 

to 10-9 in M9 minimal medium (47 mM Na2HPO4 Sigma cat#255793, 22 mM KH2PO4 Sigma 

cat#P9791, 20 mM NH4Cl Sigma cat#213330, 8.5 mM NaCl Ciardelli cat#750325, 1.9 mM 

MgSO4 Sigma cat#746452, 0.09 mM CaCl2 ICN cat#195088, 27 mM glucose Biopack 

cat#9638.08, pH=7.4). Then, aliquots (0.1 mL each) were plated in solid M9 medium (M9 

medium supplemented with 1.5% (w/v) Agar Sigma cat#A7921) varying both the 

concentration of nitrogen (from 0.01 mM to 20 mM NH4Cl) and the pH values (5.5 or 7.4) in 

the last medium and incubated at 37°C for 60 days. As a control of the presence of bacterial 

cells in each sample, aliquots (0.1 mL each) were also plated onto LB agar. Experiments 

showing < 10 or > 200 colony-forming units (CFU) in this control were discarded. 

 

Growth rate, citrate synthase activity and oxidative stress assays 

  

Cultures were performed in 125-mL Erlenmeyer flasks containing 25 mL of LB 

medium, incubated at 37°C with shaking (250 rpm). Overnight cultures grown at 37°C were 

used to inoculate fresh media at an initial optical density (OD 580 nm) of 0.05. Bacterial 

growth, doubling time and citrate synthase activity of strains were assessed under this 

nutrient-rich environment. Growth was monitored by measuring optical density for 135 min, 

and doubling time was evaluated in exponentially growing cells, where citrate synthase 

activity was measured by the CSA kit (Sigma-Aldrich CS0720). Tolerance to H2O2 was 

measured as previously described (Ayub et al., 2004), with slight modifications. Sterile 

Whatman No. 1 filter disks (5 mm) impregnated with 5 µL of 10% (w/w) H2O2 were placed on 

top of bacteria-seeded plates. Inhibition zones were measured after incubation at 37°C for 24 

h. 
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Bioinformatic protein and phylogenetic analyses 

 

GlnK (NP_414984) and AmtB (NP_414985) protein sequences of Escherichia coli 

were used as query to search against the genome database of NCBI 

(https://www.ncbi.nlm.nih.gov/) by using BLASTP software. Protein identities were calculated 

using MatGAT (Campanella et al., 2003). The glnK and amtB genes are normally, but not 

always, co-localized in the genome. Bioinformatic studies were restricted to homologous 

proteins (> 25% amino acid identity) as previously explained (Perez Di Giorgio et al., 2014). 

For each microbial species, we selected the proteins with highest amino acid identity with 

GlnK and AmtB from E. coli. The accession numbers of these proteins are shown in Fig. 1. 

Individual phylogenetic trees of GlnK and AmtB proteins were constructed using the 

Neighbor-Joining (NJ) method with genetic distances computed using the p-distance model 

and bootstrap analysis of 500 resamples and root on midpoint, using the MEGA software 

(Stecher et al., 2020). A consensus tree of GlnK and AmtB proteins using individual trees 

were constructed using the SplitsTree4 software (Huson and Bryant, 2006) by setting 

standard parameters as previously (Brambilla et al., 2020).  

 

Results and Discussion 

 

To investigate the origins of the glnK and amtB genes in prokaryotes, we analyzed 

the presence and the evolutionary relationships of these proteins from sequenced species 

belonging to the Bacteria and Archaea domains. Putative homologous proteins (>25% amino 

acid identity), which contain conserved motifs of the GnlK and AmtB proteins, are ubiquitous 

in Bacteria (thirty-two phyla) but almost absent (one phylum, Euryarchaeota) in Archaea (Fig. 

1). Naturally, despite their evolutionary equivalence, some of these putative homologous 

proteins probably display functional divergence. For example, GlnB proteins show a large 

functional divergence with respect to their homologous-derived GlnK proteins (Thomas et al., 

2000). The phylogenetic analysis showed that the GlnK and AmtB proteins from the Bacteria 

and Archaea domains are not divergent lineages and that these proteins from archaeal 

strains cluster with different bacterial phyla (Fig. 1). The most parsimonious explanation for 

this result is the emergence of the glnK and amtB genes in a common ancestor of Bacteria 

and their occasional transfer to Archaea. Interestingly, we observed complete congruence 

(i.e., same topology) between the GlnK-AmtB tree and the organismal evolution at the 

phylum level within Bacteria (Fig. 1). This fact suggests that the glnK and amtB genes from 

strains belonging to different bacterial phyla were inherited by vertical transfer. Since the 

number of possible evolutionary trees grows exponentially with the number of taxa studied, 

the probability that the congruent pattern observed in Bacteria occurs by chance is practically 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sle/advance-article/doi/10.1093/fem
sle/fnaa197/6006877 by C

arleton U
niversity Library user on 01 D

ecem
ber 2020



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

null (Perez Di Giorgio et al., 2014). Considering that our evolutionary analysis supported that 

the presence of glnK and amtB is an ancestral feature of the Bacteria domain, the retention, 

long-term persistence, and conservation of these genes suggest a robust contribution of this 

high-affinity ammonium uptake system to the bacterial fitness.  

To explore the potential impacts of the glnKamtB operon on metabolic plasticity, the 

growth of the wild-type strain Escherichia coli BW25113 and its derived glnKamtB mutant 

strain JW0441 was analyzed in solid M9 minimal medium using nitrogen-limiting conditions 

(Table 1). These experimental conditions included variable ammonium (NH4
+ + NH3) 

concentrations (from 0.01 to 20 mM) at two pH values (5.5 and 7.4). NH4
+ needs an 

ammonium channel to enter the cell, while NH3 crosses the cell membrane by unmediated 

diffusion (van Heeswijk et al., 2013). At pH 5.5, ammonium (pKa = 9.25) is mostly protonated 

(NH3 only accounts for 0.02% of the total ammonium), and then, nitrogen limitation is 

stronger for cells lacking ammonium channels (Frare et al., 2018; Vo et al., 2013). As 

expected, strains BW25113 and JW0441 showed similar vigorous growth at high ammonium 

concentrations (≥ 0.5 mM), independently of the pH of the medium, and strain JW0441 

exhibited slower growth than strain BW25113 at low ammonium concentrations (≤ 0.25 mM) 

(Table 1). Specifically, at low ammonium (≥ 0.1 mM) and low pH (5.5), strain JW0441 was 

unable to grow (Table 1). In this extreme condition, the behaviour of the complemented strain 

JW0441/pECglnKamtB (homologous complementation) was similar to that of the wild type 

strain BW25113 (Table 2), further supporting a critical role of the ammonium channel AmtB 

under nitrogen-limiting conditions. Similar results have been previously described in a 

Bacillus subtilis background, where the presence of the nrgAB operon, encoding homologs of 

AmtB and GlnK (Thomas et al., 2000), is necessary for ammonium uptake under nitrogen-

limiting or low pH conditions (Detsch and Stülke, 2003). Complementation of the mutant 

strain JW0441 with plasmid pNOD26 carrying the ammonium channel NOD26 from Glycine 

max (heterologous complementations) also restored the ability of the mutant cells to grow 

under these strict nitrogen-limiting conditions (Table 2). Taken together, these results verify 

the relevance of an ammonium channel to enable a high metabolism plasticity. It is 

interesting to note that the strain JW0441/pNOD26 showed higher percent of viable cells 

than the strains BW25113 and JW0441/pECglnKamtB under extreme nitrogen deficiency at 

low pH condition (Table 2). This is probably due the plant passive channel NOD26, which 

facilitates the diffusion of ammonium in favor of the concentration gradient in symbiotic 

nodules, was selected in a particularly acid (e.g. pH = 5) microenvironments (anoxic root 

cells) (Frare et al., 2018). 

In addition to its contribution to the uptake of ammonium under nitrogen-limiting 

conditions, the occurrence of the glnK and amtB in bacterial cells also implies an integration 

of the modulation of carbon and nitrogen metabolisms (Kidd and Wingreen, 2010; Kustu et 
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al., 1984). This co-occurrence could potentially affect other important parameters reflecting 

the fitness and competitiveness of bacteria such as the maximal growth rate. The last point is 

particularly important because the intrinsic constraints of bacterial maximal growth rate 

remains unclear (Zhu and Dai, 2018). In this context, we studied the growth and oxidative 

stress tolerance of strains either containing or lacking the glnKamtB operon in rich liquid LB 

medium, where growth rate is usually unrestricted. The mutant strain JW0441 showed a 

shorter initial lag and a higher duplication time than its parental strain BW25113 (Fig. 2). The 

results observed for the complemented strain JW0441/pECglnKamtB were similar to those 

described for the wild type strain (Fig. 2), supporting the notion that the glnKamtB operon 

plays a role on growth phenotypes.  

The lag phase is a stress period that prepares bacteria for cell division, and its 

extension is positively correlated with the control of cellular damage (Bertrand, 2019). 

Specifically, oxidative stress is a distinctive feature of the lag phase (Bradley et al., 2007; 

Cuny et al., 2007) and genetic modifications that increase oxidative stress tolerance of 

bacteria notably reduce the duration of lag periods (Ayub et al., 2009). In this context, we 

decided to explore the impact of the lack of the glnKamtB operon on the resistance to 

oxidative stress. Strain JW0441 exhibited a higher oxidative stress tolerance than strain 

BW25113 (Fig. 3a). Complementation of the mutant strain JW0441 with the pECglnKamtB 

plasmid suppressed the stress-tolerant phenotype of strain JW0441 (Fig. 3a), a fact that 

verifies the negative impact of this ammonium uptake system in abiotic stress tolerance and 

that provides a mechanism to explain the lag phase reduction in strain JW0441. 

Citrate synthase (CS) catalyzes the first reaction of the tricarboxylic acid cycle (TCA), 

playing a critical roles in central carbon and energy metabolism. Developmental roles of CS 

have been described in divergent bacterial lineages (Ireton et al., 1995; Viollier et al., 2001; 

Vornhagen et al., 2019; Zalis et al., 2019) and some lower eukaryotes (Kim et al., 1986; 

Ruprich-Robert et al., 2002). Thus, we decided to evaluate the effect of the lack of the 

glnKamtB operon on the activity of CS as a marker of metabolic robustness. Strain JW0441 

showed increased CS activity compared to strains BW25113 and JW0441/pECglnKamtB in 

exponentially growing cells (Fig. 3b), suggesting that the loss of GlnK and AmtB enhances 

activities through the TCA cycle. 

Previous studies have shown that the glnK mutation leads to an increase in the 

expression of the nitrogen assimilation control (NAC) protein under both nitrogen-limiting and 

nitrogen-excess conditions (Blauwkamp and Ninfa, 2002b) and that NAC mediates the 

repression of the expression of serA under nitrogen-rich conditions (Blauwkamp and Ninfa, 

2002a) (Fig. 4a). The serA gene encodes D-3-phosphoglycerate dehydrogenase, an enzyme 

that catalyzes the first and rate-limiting step of the L-serine biosynthesis pathway from 

intermediates of glycolysis (Zhang et al., 2017; Zhao and Winkler, 1996). Then, L-serine 
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synthesis drains off metabolites from glycolysis. Although around 15% of the glycolytic flux is 

directed into the L-serine synthetic pathway in E. coli, only 6% of this carbon flow is used for 

protein synthesis (McKitrick and Pizer, 1980; Pizer and Potochny, 1964). This is because L-

serine is a central cellular intermediate, which serves as a precursor for synthesis of 

important metabolites such as other amino acids (e.g. glycine, cysteine and tryptophan), 

purines, pyrimidines, phospholipids and C1 units (Grant, 2018; Peters-Wendisch et al., 

2002). In addition to its metabolic functions, L-serine can act as a signalling molecule that 

stimulates the expression of stress response genes and can be used as a precursor in the 

biosynthesis of gene products involved in adaptation to abiotic stress conditions (Kitamoto et 

al., 2020; Matthews and Neidhardt, 1989). Thus, L-serine catabolism can improve bacterial 

fitness under the pressure of different environmental stressors (Fig. 4a). Considering this 

background and our results, we propose that GlnK can moderate the growth rate and stress 

tolerance under nitrogen-rich conditions through the indirect induction of serA expression. In 

accordance with this hypothesis, the mutant strain JW0441 exhibited lower expression of the 

serA gene than its parental strain BW25113 and complemented strain 

JW0441/pECglnKamtB (Fig. 4a). Transformation of the JW0441 mutant with plasmid 

pSEVA2513-SerA, containing the serA gene under the control of a constitutive promoter, 

reversed the rapid growth (Fig. 4b) and stress-tolerant (Fig. 4c) phenotype of this strain. 

Regardless of the evolutionary mechanism of the maintenance of the glnK and amtB 

genes in bacteria, which is probably related to recurrent exposures to nitrogen-limiting 

conditions in natural environments, fitness costs associated with the presence of these 

genes in optimal growth conditions could be a serious obstacle to their conservation in 

bacterial populations. Thus, the reduced glnKamtB expression under nutrient-rich conditions 

(Atkinson et al., 2002) could be interpreted as a mechanism to mitigate the cost of the 

maintenance of these genes under favourable environmental conditions. On other hand, 

under controlled conditions, the presence of the glnK and amtB genes could negatively affect 

the efficiency of recombinant bacteria as cell factories for the biosynthesis of natural and 

artificial products. In fact, the growth rate and general stress resistance are critical factors, for 

example, in the efficiency of E. coli in fermentation processes (Liu et al., 2015; Yang et al., 

2020). Specifically, oxidative stress resistance in E. coli plays a critical role in the production 

of biofuels (Chen et al., 2018; Koppolu and Vasigala, 2016). In this line, by monitoring 

biomass increase on the basis of OD 580 nm values, higher cell densities were observed in 

JW0441 (9.1 + 0.2, n= 3) compared to BW25113 (OD= 7.1 + 0.3, n= 3) after 24 h of culture 

in LB medium (i.e. in the stationary phase). Thus, the experimental design of metabolically 

engineered E. coli for the production of different compounds can include the knockout of the 

glnK and amtB genes to maximize its efficiency. Further studies involving other bacterial 

species and glnKamtB mutant strains are necessary to determine whether the alteration in 
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growth and stress tolerance via knockout of these genes, as that described in this work, is a 

general mechanism to produce improved microbial cell factories.  

 

Conclusions 

 

The benefits of possessing a high-affinity ammonium uptake system highly 

interconnected with the carbon and nitrogen metabolisms for coordination of microbial growth 

under variable nutrient availability have been known since the identification of the glnK and 

amtB genes in bacteria. However, the origin and fitness cost of this evolutionary innovation 

have not yet been analyzed. In this study, we provide evidence of the emergence and 

conservation of these genes in the Bacteria domain, and confirmed their importance under 

certain nitrogen-limiting conditions. Interestingly, we showed that the presence of this 

ammonium uptake system implies an intrinsic constraint on the growth rate and stress 

tolerance of bacteria. This occurrence marks an unique example of a nutrient uptake system 

limiting the potential maximal growth rate of microbes. 
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Figure 1. The evolution of the glnK and amtB genes in prokaryotes. Phylogenetic 

analysis comparing the consensus tree of the GlnK and AmtB proteins (on the left) and 
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bacterial evolution at phylum level (on the right). GlnK and AmtB proteins from 

Stenosarchaea (M. lacustris and M. horonobensis), Archaeoglobi (A. fulgidus DSM 4304) 

and Methanomada (Methanothermobacter sp. THM-2, M. arboriphilus and 

Methanobacterium sp. MB1) subgroups of the archaeal phylum Euryarchaeota (at left) 

clustered with three different bacterial lineages (on the right). Bootstrap percentages of 40% 

or more are indicated at the branch points.  
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Figure 2. Effects of the mutation of glnKamtB on lag and growth phases of Escherichia 

coli. The duration of the lag phase and growth rates of Escherichia coli BW25113, its glnKamtB 

mutant derivative, strain E. coli JW0441, and the complemented strain 

JW0441/pECglnKamtB were evaluated in nutrient-rich LB medium. Values represent mean + 

SD (n = 7). Doubling time (dt) was calculated in exponentially growing cells (OD 580 nm = 0.23-

0.76). 
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Figure 3. Effect of the glnKamtB mutation on the oxidative stress resistance and the 

citrate synthase activity of Escherichia coli. (a) The tolerance to H2O2 of the wild-type 

strain Escherichia coli BW25113, its glnKamtB mutant derivative, strain E. coli JW0441, and 

the complemented strain E. coli JW0441/pECglnKamtB growing in nutrient-rich LB medium 

was evaluated by the disk inhibition assay. Inhibition zones were measured in millimeters. 

Values represent the mean + SD (n = 5). (b) The citrate synthase activity of Escherichia coli 

BW25113, its glnKamtB mutant derivative, strain E. coli JW0441, and the complemented 

strain JW0441/pECglnKamtB was analyzed in nutrient-rich LB medium in exponentially 

growing cells (OD 580 nm = 0.45-0.55). Values represent mean + SD (n=4). 
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Figure 4. Effects of the mutation of glnKamtB on the expression of the serA gene and 

the analysis of the relevance of serA expression in bacterial fitness under nutrient-rich 

conditions. (a) Schematic representation of the hypothetical influence of GlnK on the growth 

rate and stress tolerance via the indirect control of the expression of serA, (b) Real-time RT-

PCR studies of serA expression in Escherichia coli BW25113, its glnKamtB mutant 

derivative, E. coli JW0441, and the complemented strain JW0441/pECglnKamtB, (c) growth 

rates of strains BW25113, JW0441, JW0441/pECglnKamtB and JW0441 transformed with the 

pSEVA2513-SerA plasmid, analyzed in nutrient-rich LB medium in exponentially growing cells, 

and (d) tolerance of these strains to H2O2, studied by the disk inhibition assay. Values 

represent mean + SD (n=3). 
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Table 1. Benefits of the presence of the glnKamtB operon in nitrogen-limiting conditions. 
The growth of the wild type strain Escherichia coli BW25112 and its derived glnKamtB 
mutant strain Escherichia coli JW0441 was analyzed in minimal solid medium M9 supplemented 
with different concentrations of ammonium (NH4Cl) under acid (pH = 5.5) or nearly neutral (pH = 
7.4) conditions. Absence of growth (-). Presence of vigorous (++) and moderate (+) growth 
was defined based on relative colony size. 

 

 

 

 

 

 

 

 

 

 

 

 

  

NH4Cl 
 (mM) 

E. coli 
BW25112 

E. coli  JW0441 

pH 5.5 pH 7.4 pH 5.5 pH 7.4 

20 ++ ++ ++ ++ 

5 ++ ++ ++ ++ 

1 ++ ++ ++ ++ 

0.5 ++ ++ ++ ++ 

0.25 ++ ++ + ++ 

0.1 + ++ (-) ++ 

0.01 + ++ (-) ++ 
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Table 2. Importance of the presence of a high-affinity ammonium channel in bacterial 
growth under nitrogen-limiting conditions. Analysis of growth patterns of Escherichia coli 
BW25113 and its glnKamtB mutant derivative, strain E. coli JW0441, under extreme nitrogen 
deficiency (solid M9 minimal medium supplemented with 0.1 mM NH4Cl at pH = 5.5, selected 
previously in Table 1 and visualized in Figure S2). E. coli strains JW0441/pECglnKamtB and 
JW0441/pNOD26 were used for homologous and heterologous complementation assays, 
respectively. As a control of the presence of bacterial cells in each sample, same aliquots were also 
plated onto LB agar. Values represent mean + SD (n = 3).  
 

Strains 
Bacterial growth  

(colony-forming units) 
Viable cells under 

extreme nitrogen 

deficiency (M9 / LB) M9 LB agar (control) 

BW25112 042.6 + 3.20   145.0 + 11.70 29 % 

JW0441 Not detected   129.6 + 6.500 00 %  

JW0441/pECglnKamtB 030.6 + 3.50 128.3 + 16.1 24 % 

JW0441/pNOD26 126.6 + 23.6 137.3 + 15.0 92 % 
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