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3Centro de Investigación en Medicina Traslacional ‘‘Severo R Amuchástegui’’ (CIMETSA), Instituto Universitario Ciencias Biomédicas
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SUMMARY
The generation of axonal and dendritic domains is critical for brain circuitry assembly and physiology. Nega-
tive players, such as the RhoA-Rho coiled-coil-associated protein kinase (ROCK) signaling pathway, restrain
axon development and polarization. Surprisingly, the genetic control of neuronal polarity has remained
largely unexplored. Here, we report that, in primary cultured neurons, expression of the histone methyltrans-
ferase G9a and nuclear translocation of its major splicing isoform (G9a/E10+) peak at the time of axon forma-
tion. RNAi suppression of G9a/E10+ or pharmacological blockade of G9a constrains neuronal migration,
axon initiation, and the establishment of neuronal polarity in situ and in vitro. Inhibition of G9a function upre-
gulates RhoA-ROCK activity by increasing the expression of Lfc, a guanine nucleotide exchange factor (GEF)
for RhoA. Together, these results identify G9a as a player in neuronal polarization.
INTRODUCTION

The regulation of gene expression is critical to supply products

demanded by developing neurons. In this regard, epigenetics

enclose different aspects of gene regulation, including DNA

and histone modifications that reshape chromatin in response

to transcriptional requirements (Hwang et al., 2017). Histone

post-translational modifications contribute to shape chromatin

structure, switching between transcriptionally active and inac-

tive states (Gardner et al., 2011; Hwang et al., 2017; Tan et al.,

2011). Accordingly, the histone methyltransferase G9a catalyzes

the dimethylation of H3K9 (H3K9me2), considered a repressive

mark (Mozzetta et al., 2014; Roopra et al., 2004; Shinkai and Ta-

chibana, 2011; Tachibana et al., 2002; Tachibana et al., 2008).

Recent reports have linked G9a with neuronal functions,

including neurogenesis (Kim et al., 2016; Olsen et al., 2016), neu-

rite growth (Fiszbein et al., 2016; Fiszbein and Kornblihtt, 2016),

synaptic plasticity (Sharma et al., 2017a, 2017b; Sharma and Sa-

jikumar, 2019), and neurodegeneration (Liang et al., 2016a,

2016b). However, the contribution of G9a to early neuronal

development, including axon/dendrite differentiation and

growth, is missing.

A critical step in the early life of neurons is the acquisition of

polarity, where axonal and dendritic domains are generated

(Barnes and Polleux, 2009; Cáceres et al., 2012). A wide variety
This is an open access article under the CC BY-N
of factors have been identified as key regulators of cytoskeletal

organization and dynamics required for neuronal polarization

(Bradke and Dotti, 1997; Namba et al., 2015; Stiess and Bradke,

2011). Nevertheless, genetic mechanisms controlling cytoskel-

eton organization and its contribution to the acquisition of

neuronal polarity have remained largely unexplored.

We now describe a mechanism controlling the activity of the

RhoA pathway, a critical regulator of axon initiation and growth

(Dupraz et al., 2019). Using in vivo and in vitro approaches, we

report that basal activity of G9a is required for axon growth

and cortical migration of neurons. We have detected that G9a

targets Lfc expression, a guanine exchange factor (GEF) for

RhoA, and hence the activity of the RhoA/Rho coiled-coil-asso-

ciated protein kinase (ROCK) signaling pathway, a key constraint

for axon growth during polarization.

RESULTS

G9a Is Expressed Early in Polarizing Neurons
We evaluated G9a expression and distribution in cultured hippo-

campal neurons within the first 72 h in vitro, a time period in

which polarization is defined in this model system (Figures 1A–

1C). G9a immunofluorescence was detected in neurons at the

time of plating, displaying both cytoplasmic and nuclear localiza-

tion; within the next 72 h, a progressive increase in its nuclear
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Figure 1. G9a/E10+ Is Required for Neuronal Polarity and Axon Growth in Cultured Neurons

(A) Images showing G9a (red) distribution by immunofluorescence (IF) in cultured neurons at different times after plating (6–72 h). Nuclei (blue) were labeled with

DAPI. Fire (lookup table) LUT corresponds to G9a IF.

(B) Quantification of nuclear G9a IF (normalized by DAPI; for experimental details, see Method Details).

(C) Quantification of G9a/E10+ to G9a/E10� ratio by radioactive RT-PCR in cultured neurons (1–72 h).

(D) Images showing neurons transfected shortly after plating with shRNA-G9a/E10+/GFP or sc-shRNAG9a/E10+/GFP (control) and fixed at 2 DIV (days in vitro).

Neurons were stained to detect G9a (red), TuJ1 (white), and DAPI (blue) by IF.

(E) Quantification of knockdown efficiency of G9a by IF (see experimental details in Method Details).

(F) Representative control and shRNA-G9a/E10+/GFP-expressing neurons at 2 DIV.

(G) Quantification (%) of stages 2 and 3 neurons at 2 DIV.

(H and I) Quantification of average axonal (H) and minor neurite (I) lengths.

(J–M) (J) Representative images of neurons treated with Bix 01294 after plating and fixed at 2 DIV. (K) Quantification (%) of stages 2 and 3 neurons and axonal (L)

and minor neurite lengths (M) at 2 DIV after 1 mM Bix 01294 treatment.

(N) Tau-1 IF in control and shRNA-G9a/E10+/GFP neurons (2 DIV).

(O) Quantification of Tau-1 IF intensity (normalized by GFP emission).

(P) Total Tau detection by Tau-5 mAb IF in 2 DIV control or shRNA-G9a/E10+/GFP neurons (transfected after plating).

Graphs represent mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. Kruskal-Wallis test, multiple comparison (except in B and C; Student’s t test). In total, 35–45

transfected neurons were analyzed for each condition from three independent cultures (n = 3). Scale bars: (A–D) 5 mm; (F–P) 50 mm.
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localization became quite evident, paralleled by a decrease in

the cytoplasmic staining (Figures 1A and 1B). Recently, we re-

ported that in neuroblastoma cells, the alternative splicing iso-

form of G9a including exon 10 (G9a/E10+) is required for neurite

outgrowth (Fiszbein et al., 2016). Therefore, it became of interest

to evaluate expression of G9a/E10+ in cultured hippocampal

neurons during the establishment of polarity.

To address this, we performed radioactive RT-PCR assays to

estimate the G9a/E10+ to G9a/E10� mRNA ratio in extracts of

neurons cultured from different time periods. The results ob-

tained showed a progressive enrichment in G9a/E10+, which

became evident as soon as 12 h after plating and remained

high for at least 2 more days (Figure 1C); together, these obser-
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vations suggest that G9a/E10+ is the main splicing variant in

polarizing neurons and prompted us to evaluate the conse-

quences of its suppression on axon formation. To this end, we

designed a small hairpin RNA (shRNA) targeting a sequence

within exon 10 of G9a mRNA to specifically knockdown the

expression of G9a/E10+ (Figures 1D and 1E). Neurons were

transfected immediately after plating with a pCAGIG-GFP

plasmid, encoding shRNA-G9a/E10+, scrambled shRNA (sc-

shRNA), or shRNA-luciferase. Immunofluorescence revealed a

significant reduction of G9a staining 48 h after transfection of

shRNA-G9a/E10+/GFP (Figure 1E), evident by the loss of nuclear

staining (Figure 1D, lower panel arrows). A weak cytoplasmic

signal remained, probably reporting the presence of the



Figure 2. G9a/E10+ Allows Cortical Migration and Polarization In Situ

(A) Representative E17.5 coronal cortical slices of mouse brains expressing sc-shRNA (control) or shRNA-G9a/E10+/GFP after IUE (E15.5–E17-5).

(B) Magnification of insets 1 and 2 shown in (A).

(C) Quantification (%) of neurons by layer. VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate zone; CP, cortical plate.

(D) Estimation (%) of bipolar-multipolar cells at SVZ-IZ.

Graphs represent mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, Student’s t test. In total, 8–12 slices were analyzed from three independent IUE experiments by

each condition (n = 3), and 100–200 cells were counted by slice. Scale bar: 200 mm.
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less-abundant splicing variant (G9a/E10�) unaffected by the

knockdown of G9a/E10+. Besides, neurons expressing

shRNA-G9a/E10+ showed a �50% reduction of H3K9me2 (Fig-

ure S1), suggesting this mark is mainly catalyzed by G9a/E10+ in

polarizing neurons.

G9a/E10+ Is Required for Axon Formation
In the following series of experiments, we evaluated the

impact of G9a/E10+ suppression on the establishment of

morphological polarity (i.e., extension of an axon). Neurons

were transfected shortly after plating with either shRNA-G9a/

E10+/GFP or sc-shRNA-G9a/E10+/GFP and fixed 48 h later

to evaluate axon formation (Figures 1F–1H). As in previous

work (Conde et al., 2010), a neurite was considered an axon

if its length was at least 100 mm and/or 2–3 times longer

than minor neurites of the same cell. By 2 days in vitro (DIV),

more than 85% of control neurons have acquired morpholog-

ical polarity (stage 3), exhibiting a single axon-like neurite and

several shorter minor processes (Figures 1F and 1G). By

contrast, almost 80% of shRNA-G9a/E10+ GFP-expressing

neurons were arrested at stage 2 of polarity (i.e., neurons

with a symmetric array of short neurites) (Figures 1F and

1G). A small percentage (less than 20%) was able to reach

stage 3 but displayed short axon-like neurites (Figures 1F–

1I). To complement these experiments, cultured neurons

were treated with Bix 01294, a small molecule that blocks

G9a catalytic activity (Kim et al., 2016; Kubicek et al., 2007;

Sharma et al., 2017b); this treatment reproduced the

phenotype observed after G9a/E10+ suppression (Figures

1J–1M).

The expression and distribution of a well-characterized axonal

marker in control and G9a-suppressed neurons were also eval-

uated. A gradient of dephosphorylated Tau, selectively labeled
by the Tau-1 mAb (Binder et al., 1985) and enriched toward the

distal axon, has been extensively used as a canonical molecular

marker for nascent and mature axons (Mandell and Banker,

1996). Very little Tau-1 IF signal was found in neurites from stage

2 neurons either in control or shRNA-G9a/E10+-treated cultures

(Figure 1N). By contrast, while a well-defined Tau-1 gradient was

found in axons from stage 3 sc-shRNA-G9a/E10+/GFP-treated

neurons, the few shRNA-G9a/E10+/GFP neurons bearing a short

axon showed faint Tau-1 signal (Figures 1N and 1O), despite no

significant changes in total Tau as revealed by staining with the

Tau-5 mAb (Figure 1P); a similar phenomenon was observed af-

ter Bix-01294 treatment (not shown).

Then, we evaluated the contribution of G9a to neuronal devel-

opment in situ. To this end, in utero electroporation (IUE) of em-

bryonic mouse brains (E15.5) with the pCAGIG-GFP plasmid

encoding shRNA-G9a/E10+ was used to assess the conse-

quences of G9a downregulation on cortical migration and polar-

ization (Figure 2). Two days after IUE (E17.5), embryos were

sacrificed, and GFP-expressing brains were fixed to visualize

the cerebral cortex. Cortical migration was evaluated according

to Kriegstein and Noctor (2004). Of note, we chose E15.5–E17.5

because within this time frame, migrating neurons undergo

morphological transformations similar to the stage 2–3 transition

observed in vitro.

For morphometric purposes, the embryonic cerebral cortex

was divided in four layers: the ventricular zone (VZ), subventric-

ular zone (SVZ), intermediate zone (IZ), and cortical plate (CP)

(Fuentes et al., 2012). Figure 2A shows representative E17.5

coronal slices from sc-shRNA-G9a/E10+/GFP- and shRNA-

G9a/E10+/GFP-expressing neurons. The results obtained

showed that most shRNA-G9a/E10+/GFP-expressing cells

failed to migrate and reach either the IZ or CP zones (Figures

2A and 2C).
Cell Reports 31, 107639, May 12, 2020 3
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Most neurons located at the SVZ display a multipolar pheno-

type, resembling the stage 2 of polarity observed in culture

(Barnes and Polleux, 2009), while those located at the SVZ-IZ

boundary display a bipolar morphology (Hatanaka and Yamau-

chi, 2013; Kriegstein and Noctor, 2004; Nakamuta et al., 2011).

Therefore, we estimated the percentage of multipolar and bipo-

lar neurons at SVZ-IZ zones in sc-shRNA and shRNA-G9a/E10+/

GFP-treated animals. (Figures 2A, 2B, and 2D). Figure 2B shows

representative bipolar and multipolar morphologies detected in

control and G9a-suppressed neurons (insets 1 and 2, respec-

tively). As expected, 64% of control neurons had bipolar mor-

phologies, characteristic of polarized neurons (Figures 2B and

2D). However, 79% of shRNA-G9a/E10+/GFP-expressing neu-

rons displayed a multipolar phenotype, resembling the one

observed after G9a/E10+ suppression in culture. Together, our

data suggest that G9a/E10+ is instrumental for axon growth initi-

ation and morphological polarization.

The RhoA Pathway Is Targeted by G9a in Developing
Neurons
To explore a possiblemechanism underlying G9a participation in

axon formation, we hypothesized that G9a might repress the

expression of inhibitors of polarization, such as members of

the RhoA/ROCK pathway. We based our hypothesis on the

following evidence. First, downregulation of RhoA-ROCK is

required for axon formation (Conde et al., 2010; Xu et al., 2015;

Takano et al., 2017; Dupraz et al., 2019). Second, phosphoryla-

tion of Tau partially depends on ROCK (Amano et al., 2003),

decreasing Tau-1 immunoreactivity (Mandell and Banker,

1996). Finally, G9a controls ROCK expression in non-neuronal

cells (Bian et al., 2015).

To begin testing this idea, we first measured RhoA and ROCK

activities using Förster Resonance Energy Transfer (FRET) in

neurons expressing genetically encoded biosensors. Hippo-

campal cultures were transfected immediately after plating

with a RhoA biosensor designated as RhoA1G (Fritz et al.,

2013)—or Eevee-ROCK, a biosensor based on the Eevee back-

bone carrying the consensus substrate sequence for ROCK (Li

et al., 2017)—tomeasure RhoA and ROCK activities by FRET us-

ing ratio imaging, respectively (Quassollo et al., 2015). To

achieve an acute and fast loss of G9a function, neurons were

treated with Bix 01294 immediately after transfection and fixed

18 h later. We focused our analyses on neurons showing a

nascent axon in both control and G9a-inhibited conditions;

then, we analyzed FRET efficiencies in the axon, minor neurites,

and soma (Figures 3A–3N). Treatment with Bix 01294 signifi-

cantly increased RhoA and ROCK activities in the axonal

compartment (Figures 3A–3N), suggesting that G9a controls

RhoA/ROCK activities in polarizing neurons.

We then evaluated whether ROCK inhibition could rescue

axonal growth defects in G9a/E10+-suppressed neurons. To

this end, control or shRNA-G9a/E10+/GFP-transfected neurons

were treated with Y-27632 (10 mM), a specific inhibitor of

ROCK1/2 (Darenfed et al., 2007) (Figures 3O, 3Q, and 3R). The

results obtained showed that Y-27632 rescues the phenotype

after silencing G9a/E10+, with most neurons developing a Tau-

1+ axon-like neurite (Figure 3O). A similar effect was observed

in neurons treated with Bix 01294 (Figures 3P, 3S, and 3T).
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Together, these results suggest that the loss of function of G9a

impairs axon formation through a ROCK-dependent effect.

G9a Controls Axonal Growth through a Lfc-Dependent
Mechanism
It is nowwell established that RhoGTPase activity is tightly regu-

lated by GEFs and GTPase activating proteins (GAPs) (Gonza-

lez-Billault et al., 2012). In neurons, theGEF Lfc, encoded byArh-

gef2, promotes RhoA activity and ROCK signaling during

polarization (Conde et al., 2010). Suppression of Lfc enhances

axon formation, while its overexpression inhibits axon outgrowth

(Conde et al., 2010). Thus, it became of interest to test whether

G9a might regulate Lfc expression during axon formation.

Therefore, we analyzed Arhgef2 expression in cultured neu-

rons. This analysis revealed a peak of expression 6 h after

plating, followed by a significant decrease at 3 DIV (Figure 4A).

In contrast, G9a expression peaks 12 h after plating, remaining

high thereafter (Figures 1C and 4B), which negatively correlates

with Arhgef2 expression within this time frame (R2 = 0.911; Fig-

ure 4C). By contrast, mRNA levels of RhoA, ROCK, and ARH-

GEF11 (a RhoA GEF encoded by Arhgef11; Mizuki et al., 2016)

did not change within the first 72 h of culture (Figures 4D–4F).

Moreover, Bix-01294-treated neurons showed an increase in

Arhgef2 expression at 12 h (Figure 4G), suggesting a repressive

role for G9a.

G9a lacks DNA binding domains and requires the interaction

with proteins to catalyze histone methylation. In this regard,

the repressor factor REST recruits G9a through its C-terminal

domain (Tachibana et al., 2002; Roopra et al., 2004; Estève

et al., 2005) and binds to DNA by recognizing the consensus

site ‘‘RE1’’ (regulatory elements 1) (Schoenherr et al., 1996;

Bruce et al., 2004; Liu et al., 2009). After an in silico analysis,

we found several RE1 sites neighboring the transcription start

site (TSS) of Arhgef2, which prompted us to analyze H3K9me2

levels at the promoter region. Using cultured neurons for 12 h

and chromatin immunoprecipitation (ChIP)-qPCR, we detected

the H3K9me2 mark at �800 pair base (pb) of the TSS, which

was significantly reduced after G9a inhibition (Figure 4H). More-

over, the knockdown of G9a increased Lfc levels in neurons,

showing an axonal enrichment (Figures 4I–4M). Finally, expres-

sion of shRNA-Lfc-HcRed (Conde et al., 2010) partially rescued

axon formation in G9a-suppressed neurons (Figures 4N–4Q). In

summary, these data support the notion that G9a inhibits Lfc

expression at the time of polarization and axon formation.

DISCUSSION

It is now accepted that positive regulators, acting on a selected

neurite, neutralize inhibitory elements, leading to axon specifica-

tion and growth (Takano et al., 2019). Current evidence favors

the view that Lfc-RhoA-ROCK signaling is a major negative fac-

tor preventing axon formation (Conde et al., 2010; Takano et al.,

2017). Recently, the SMAD-specific E3 ubiquitin protein ligase 1

(SMURF 1) that leads to proteasome degradation of RhoA (Vohra

et al., 2007), and Tctex-1 (Chuang et al., 2005), a dynein light

chain that binds and inactivates Lfc (Conde et al., 2010), have

emerged as factors driving axon outgrowth by counteracting

the inhibitory actions of RhoA. We now report on a new



Figure 3. G9a Targets the RhoA Pathway

(A) Images show representative RhoA-1G FRETmaps of control and 1 mMBix-01294-treated neurons. Neurons were transfected after plating with the biosensors

and treated with Bix 01294; they were fixed 18 h later.

(B) Images show representative Eevee-ROCK FRET maps of control and 1 mM Bix-01294-treated neurons (transfection, plating and fixation as in A).

(C–N) (C) Quantification of RhoA activity in control neurons. (D) RhoA activity in the whole axon, (E) proximal axon, (F) distal axon, (G) minor neurites and (H) soma

in control and Bix-01294-treated neurons. (I) Quantification of ROCK activity in control neurons. (J) ROCK activity in the whole axon, (K) proximal axon, (L) distal

axon, (M) minor neurites and (N) soma in control and Bix-01294-treated neurons.

(O) Images showing control or shRNA-G9a/E10+/GFP-expressing neurons. Cells were transfected at the time of plating, treated with Y-27632 (10 mM) 18 h later,

and fixed at 2 DIV. Tau-1 IF shows axons (red arrows).

(P) Representative neurons treated with 1 mM Bix 01294 (after plating) and Y-27632 (10 mM) 18 h later, fixed at 2 DIV and stained for Tuj-1 IF.

(Q–T) (Q) Quantification of average axonal length and (R) minor neurites length in control and G9a-suppressed neurons after Y-27632 treatment. (S) Axonal length

and (T) minor neurites length in control and 1 mM Bix-01294-treated neurons after 10 mM Y-27632 administration.

Graphs represent mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001; ns, non-significant. Kruskal-Wallis, multiple comparisons; (B–D) Student’s t test. (A–D) Twenty

to 30 transfected neurons were analyzed from five independent cultures (n = 5). (E–J) Thirty transfected neurons were analyzed by each condition from three

independent cultures (n= 3). Scale bars: (A and H) 20 mm; (O and P) 50 mm.
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mechanism controlling the Lfc-RhoA-ROCK inhibitory axis. Our

results provide the first set of evidence suggesting that a mech-

anism involving the histone methyltransferase G9a controls Lfc

expression and RhoA/ROCK activities, affecting axon formation

and polarization in developing neurons.

Several lines of evidence support this view. First, the expres-

sion and nuclear localization of G9a/E10+ in cultured hippocam-

pal neurons highly correlate with the time course of axon forma-

tion. Second, Lfc expression, which is high in unpolarized

neurons, negatively correlates with G9a/E10+ levels that rise at

the time of axon outgrowth. Third, the loss of function of G9a,

either using genetic or pharmacologic tools, inhibited neuronal

polarization, evidenced by axonal growth arrest and the absence
of a proximo-distal Tau-1 gradient. Besides, themultipolar-bipo-

lar transition fails in cortical neurons developing in situ and ex-

pressing the shRNA-G9a/E10+/GFP. Moreover, inhibition of

G9a reduced H3K9me2 levels of Arhgef2, increasing Lfc expres-

sion and RhoA-ROCK activities in cultured neurons. Finally, a

causal relationship between G9a inhibition/knockdown and up-

regulation of the RhoA-ROCK signaling pathway, most likely

caused by enhanced Lfc expression, is also supported by the

fact that Y-27632 or Lfc suppression rescue axonal growth

defects.

Developmental functions of G9a have been reported previ-

ously. Thus, G9a depletion impairs embryonic stem cells differ-

entiation by affecting developmental and proliferative programs
Cell Reports 31, 107639, May 12, 2020 5



Figure 4. G9a-Dependent Axonal Growth Is Mediated by Lfc Expression

(A) Neurons were cultured for 1–72 h to measure mRNA levels of Arhgef2 by qRT-PCR.

(B) mRNA levels of Arhgef2 and G9a/E10+ to G9a/E10� mRNA ratio within the first 3 DIV. Values were obtained from Figure 1C and from (A), respectively, and

reproduced here for comparative purposes.

(C) Linear regression plot between Arhgef2 mRNA and G9a E10+ /E10� ratio within 6–72 h of culture.

(D) Quantification of RhoA, (E) Rock, and (F) Arhgef11 mRNA as in (A).

(G) Arhgef2 mRNA levels after 1 mM Bix 01294 treatment (after plating); RNA was isolated 12 h later.

(H) H3K9me2 detection by ChIP-qPCR at �800 pb of TSS of Arhgef2 in control or Bix-01294-treated cultured neurons (t = 12 h; Bix added after plating).

(I) Representative images showing control and shRNA-G9a/E10+/GFP neurons stained by IF to detect Lfc at 2 DIV.

(J–M) (J) Quantification of Lfc IF levels in whole neuron, (K) axon, (L) minor neurites, and (M) soma.

(N) Images showing representative neurons transfected immediately after plating with sc-shRNA G9aE10+/GFP, shRNA G9aE10+/GFP, sc-shRNA plus shRNA-

Lfc-HcRed, and shRNA G9aE10+/GFP plus shRNA-Lfc-HcRed; in all cases, cultures were fixed at 2 DIV.

(O–Q) (O) Quantification of polarity acquisition and (P) axonal and (Q) minor neurites length.

Graphs represent mean ± SEM. *p < 0.05, ***p < 0.001; ns, non-significant. Kruskal-Wallis test, multiple comparisons for (A)–(H), (O), and (P). (D), (E), and (J–N):

Student’s t test. n = 3 (independent cultures). Scale bar: 50 mm.
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(Au Yeung et al., 2019; Feldman et al., 2006; Kim et al., 2016;

Liu et al., 2015; Ugarte et al., 2015; Dong et al., 2008). Never-

theless, its contribution to neuronal development is just starting

to emerge; in this regard, we previously reported that G9a/

E10+ is expressed in N2a cells and required for neurite growth

(Fiszbein et al., 2016). In addition, G9a represses the expres-

sion of several genes encoding K+ channels after spinal nerve

injury, affecting axonal recovery, pain sensitivity, and function

(Laumet et al., 2015). Considering this evidence and data pre-

sented in our work, we wondered whether G9a could be

involved in axonal recovery after injury and neural disorders

where the RhoA pathway is dysregulated (Chong et al., 2017).

In fact, injured axons improve their growth capacity once

ROCK is inhibited (Kubo et al., 2007; Lingor et al., 2007; Plan-
6 Cell Reports 31, 107639, May 12, 2020
champ et al., 2008; Rozés Salvador et al., 2016). Thus, chro-

matin changes controlled by G9a could be important for axonal

regrowth after injury.

Our data suggest a selective regulation of Lfc expression,

since neither RhoA-ROCK nor GEF11 displays any correlation

with G9a/E10+ levels at the time of polarization. However, we

cannot rule out that other genes involved in axon formation could

also be regulated by G9a. In fact, G9a controls the expression of

genes associated with cAMP and Ca2+-dependent signaling

(Laumet et al., 2015), which participate in axon formation (Shelly

et al., 2010; Muñoz-Llancao et al., 2015; Wilson et al., 2016).

In summary, our work proposes G9a as a player for neuronal

polarization, contributing to filling a gap between (epi)genetics

and polarity acquisition.
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Kermer, P., Bähr, M., and Lingor, P. (2008). BAG1 promotes axonal outgrowth

and regeneration in vivo via Raf-1 and reduction of ROCK activity. Brain 131,

2606–2619.

Quassollo, G., Wojnacki, J., Salas, D.A., Gastaldi, L., Marzolo, M.P., Conde,
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-tubulin class III Abcam ab78078; RRID:AB_2256751

Anti-Ehmt2 antibody (G9a) Sigma SAB2700645

Anti-Tau1 Lester Binder’s laboratory (Binder et al., 1985) N/A

Anti-Tau5 Lester Binder’s laboratory (Binder et al., 1985) N/A

Anti-Lfc Dianova X1089P

Anti-H3K9me2 Abcam ab1220; RRID:AB_449854

Anti-H3 Millipore 07-690; RRID:AB_417398

Alexa Fluor 546 anti-sheep LifeTechnologies A21098; RRID:AB_1500708

Alexa Fluor 488 anti-mouse LifeTechnologies A11029; RRID:AB_138404

Alexa Fluor 568 anti-mouse LifeTechnologies A11004; RRID:AB_2534072

Alexa Fluor 546 anti-rabbit LifeTechnologies A11010; RRID:AB_2534077

Chemicals, Peptides, and Recombinant Proteins

Bix 01294 trihydrochloride hydrate SIGMA B9311

Y-27632 dyhidrochloride Merck Millipore 688000

Experimental Models: Organisms/Strains

Rat: Wistar Produced in the animal facility of Instituto de

Investigación Médica Mercedes y Martin

Ferreyra (Córdoba, Argentina); originally from

Charles River, USA.

N/A

Mouse: C57BL/6N Produced in the animal facility of Instituto de

Investigación Médica Mercedes y Martin

Ferreyra (Córdoba, Argentina); originally from

Universidad Nacional de la Plata (La Plata,

Argentina).

N/A

Oligonucleotides

See Table S1 for primers and oligonucleotides

used in this paper.

N/A

Recombinant DNA

pCAGIG shRNA-G9a/E10+ (shRNA G9aE10+/GFP) This paper N/A

pCAGIG sc-shRNA-G9a/E10+ (sc-shRNA G9aE10+(GFP) This paper N/A

RhoA 1G FRET biosensor Fritz et al., 2013 N/A

Eevee ROCK FRET biosensor Li et al., 2017 N/A

pCAG-HcRed shRNA-Lfc Conde et al., 2010 N/A
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources/reagents should be directed to and will be fulfilled by the Lead Contact, Alfredo Cá-

ceres (acaceres@immf.uncor.edu).

Materials Availability
The plasmid pCAGIG shRNA-G9a/E10+/GFP was generated in this study. For further information and request, please contact Dr.

Alfredo Cáceres.

Data and Code Availability
This study did not generate/analyze datasets.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Wild-type E18.5 pregnant wistar rats and wild-type E15.5 pregnant C57BL/6N mice were produced and housed at the animal facility

of Instituto de Investigación Médica Mercedes y Martin Ferreyra (INIMEC-CONICET-UNC), following Institutional Animal Care and

Use Committee (CICUAL) and NIH guidelines. All procedures were approved by the CICUAL of INIMEC. Male and female animals

were matched in this study.

METHOD DETAILS

Primary culture of hippocampal neurons
Hippocampal neuronal cultures were prepared according to Kaech and Banker, 2006 (see also Conde et al., 2010). Briefly, either

hippocampus or cortices were isolated from embryonic rat brain of E18.5 days, followed by enzymatic and mechanical dissociation.

Neurons were seeded on either plastic culture dishes or glass coverslips, both pre-treated with poly-L-lysine (PLL) (1 mg/ml) over-

night. For plating, neurons were cultured for 1 h in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% horse

serum. Then, plating medium was replaced by Neurobasal culture medium supplemented with B27 Plus, Glutamax and antibiotics

(penicillin and streptomycin). For transfection and non-transfection assays, 5x104 and 2x104 cells/coverslip were plated, respec-

tively. Animal procedures followed the guidelines of NIH and institutional animal care and use committee of Instituto Ferreyra.

Cloning of pCAGIG shRNA-G9a/E10+
Briefly, we chose a sequence contained in the exon 10 to specifically knock-down this splicing variant. Of note, exon 10 sequence

is conserved in rat and mouse. Target sequence was 50 GGGGTCCCTGGAGCTGCCCAG 30. Following the protocol, we

ordered 4 oligonucleotides (Macrogen) to clone the shRNA coding sequence cassette into the pB6/U6 plasmid (1a:

GGGTCCCTGGAGCTGCCCAGA, 1b: AGCTTCTGGGCAGCTCCAGGGACCC, 2a: AGCTTCTGGGCAGCTCCAGGGACCCCT

TTTTG, 2b: AATTCAAAAAGGGGTCCCTGGAGCTGCCCAGA). Then, cloning into pB6/U6 plasmid was done in two steps (for

each pair of oligonucleotides). For annealing, oligonucleotides 1a and 1bwere dissolved in buffer NEB 3 (NewEngland BioLabs) heat-

ed at 100�C for 5min and then chill up to reach RT (2h). Then, annealed oligonucleotides 1a+1bwere cloned into the pB6/U6 plasmid,

previously digested with ApaI, treated with Klenow to blunt 30protruding end and finally digested with HindIII (A/K/H). Thus, annealed

1a+1b oligonucleotides were ligated into a purified pB6/U6 (A/K/H) using a DNA ligase T4 for 1 h at RT (pB6/U6 1st). Then, pB6/U6 1st

was purified for the 2nd step of cloning. Accordingly, pB6/U6 1st was digested with EcoRI and HindIII and then purified using a GenJet

Gel Extraction kit (ThermoFisher Scientific). Annealed oligonucleotides 2a and 2b were then ligated into pB6/U6 (pB6/U6 2nd). Then,

pB6/U6 2nd was amplified in DH5a cells and colonies (Amp-resistant) were selected for DNA purification using a GenJet miniprep kit

(ThermoFisher). Purified pB6/U6 2nd was sequenced in Macrogen (Korea) to check proper shRNA reconstruction. Then, U6-shRNA-

containing cassette was digested from pB6/U6 2nd and subcloned into a GFP-expressing plasmid under CAG U6 promoter

(pCAGIG). For this, pB6/U6 2nd was digestedwith SpeI, purified and then ligated into a SpeI-digested pCAGIG plasmid. Then, ligation

product was purified from gel and amplified in DH5a cells overnight. Amp-resistant bacteria were selected for DNA purification

(GenJet midiprep kit, ThermoFisher).

Transient expression of cDNAs by transfection
After 1 h of plating in MEM supplemented with 10%HS, neurons were transfected with Lipofectamine 2000. For this, plating medium

was replaced by Neurobasal medium without any supplement. Both DNA and Lipofectamine were mixed in Optimem medium and

then added to neurons in Neurobasal, following manufacturer’s instructions. After 2 h of transfection was stopped by replacing

medium by Neurobasal supplemented with B27, Glutamax and antibiotics for the time of each experiment. All these reagents

were purchased from Thermo Fisher Scientific – Lifetechnologies (USA).

Immunofluorescence and imaging
Neurons were fixed with a solution containing 4% w/v paraformaldehyde and 4% sucrose (SIGMA), diluted in phosphate buffered

saline (PBS) solution for 20 min at RT. Fixed cultures were then washed 3 times with PBS followed by permeabilization with 0.2%

Triton X-100 in PBS for 5 min at RT. For immunofluorescence, permeabilized cells were incubated for 2 h with primary antibodies

diluted accordingly in 0.1% v/v Tween-PBS solution. Three 10 -min washes with PBS were done before incubation with secondary

antibody incubation. For this, secondary antibodies conjugated with fluorochromes (AlexaFluor488 nm, 568 nm and 633 nm from

ThermoFisher) were diluted (1: 1,000) in 0.1% v/v Tween-PBS solution for 1 h at RT in a dark-wet chamber. Then, cells were washed

3 times with PBS and mounted with Mowiol (SIGMA) reagent on glass slides. Samples were stored at 4�C until imaging. Z stack

imaging was done in an LSM 800 microscopy (Zeiss, Germany) using a 40x oil objective and 1 airy unit (a.u.). Reconstruction and

post-imaging analysis were done in Fiji-ImageJ (NIH, USA). Antibodies used in this study: mouse monoclonal antibody (mAb)

Tau-1 (diluted, 1:400) Tuj-1 (mAb against the neuron-specific class III b-tubulin, 1:1,000, Abcam, #ab78078); Tau-5 (a mAb that rec-

ognizes a dephosphorylated epitope and thus served to detect total Tau protein, 1:400). Tau-1 and Tau-5 mAbs were a generous gift

from Dr. Lester I. Binder (Binder et al., 1985).
Cell Reports 31, 107639, May 12, 2020 e2
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G9a and H3K9me2 nuclear detection
G9a or H3K9me2 mark was detected in cultured neurons following the protocol of immunofluorescence described. Fixed neurons

were stained with anti-G9a (Anti-Ehmt2, 1:1000, rabbit, SIGMA, #SAB2700645) for 1 h at RT or anti-H3K9me2 antibody (Abcam,

1:300, mouse, #1220) overnight at 4�C, followed by secondary antibody incubation (anti-rabbit AlexaFluor 568 nm or anti-mouse

AlexaFluor 568, ThermoFisher) for 1 h. After washing, a final incubation of 5 min with DAPI (1: 10,000) was done for nuclear staining.

Image acquisition was achieved by z stack imaging for either G9a or H3K9me2 and DAPI fluorescence using a Zeiss LSM 800

confocal microscopy. In order to quantify G9a and H3K9me2 nuclear levels, total G9a fluorescence and DAPI staining were calcu-

lated throughout z axis using the ‘‘z-project/sum slices’’ plug-in of Fiji-ImageJ. Then, a nuclear ROI was measure, defined by DAPI

fluorescence projection. G9a and H3K9me2 nuclear fluorescences were divided by DAPI staining to normalize the nuclear volume of

each cell.

Detection of Lfc levels
Lfc was detected in neurons transfected after plating with sc-shRNA-G9a/E10+/GFP or shRNA-G9a/E10+/GFP and fixed at 2 DIV,

following the protocol of immunofluorescence described. Fixed neurons were stained with an antibody anti-Lfc (Dianova, #X1089P,

lot no: 9138, sheep, 1:250) overnight (16-18 h) at 4�C followed by secondary antibody incubation (anti-sheep AlexaFluor 546 nm,

ThermoFisher) for 1 h at RT. Image acquisition was achieved by z stack imaging using a Zeiss LSM800 confocal microscopy. In order

to quantify Lfc levels, total Lfc fluorescence was calculated throughout z axis using the ‘‘z-project/sum slices’’ plug-in of Fiji-ImageJ.

Then, a linewas drawn throughout the axon andminor neurites, or a ROI for somatic IF signal, tomeasuremean fluorescence levels in

each compartment.

Quantification of polarity, axonal and minor neurites length
Neurons displaying a symmetric array of neurites of 20-40 mm in length were considered to be at stage 2. By contrast, neurons

exhibiting a single neurite of at least 100 mm (or more), or 2-3 times longer than any one of the other minor processes of the same

cell, were considered to be at stage 3. Neurite lengths (axonal and minor neurites) were quantified using the segmented line tool

of Fiji-ImageJ.

In utero electroporation (IUE) of E15 embryos and imaging
IUE were done following previous reports (Cánovas et al., 2015; Fuentes et al., 2012). Briefly, pregnant E15 C57BL/6mice were anes-

thetized with isofluorane (4% for induction and 2% for maintenance) during the whole surgery, using Tramadol (5 mg/kg) as analgesia

during the procedure. Embryos were exposed out of the maternal belly for local injection of cDNA-encoding plasmids into lateral

ventricle of the brain. To visualize successful injections, the fast green FCF dye (Sigma-Aldrich, #F7252) was co-injected with

DNAs. Then, brains were electroporated using a BTX electroporator with Tweezers w/Variable Gap 2 Square Platinum Electrodes

(Nepagene, CUY647P2X2) (DV = 39 V; pulses: 5; duration: 50 ms; intervals between pulses: 950 ms). After electroporation, in utero

embryoswere returned to thematernal belly to followwith the recovery of themother. Two days after surgery (E17.5), they were sacri-

ficed to check for GFP expression in both control and shRNA-G9a/E10+ genetic contexts. Brains expressing GFP were fixed in 4%

w/v paraformaldehyde solution dissolved in PBS overnight at 4�Cwith gentle agitation. Then, fixed brains were immersed into a 30%

w/v sucrose solution for 24 h at 4�C. Post-fixed brains were frozen at �20�C using Crioplast solution (Biopack). Cerebral cortex was

sliced into 40 mm cortical sections using a cryostat (Leica CM 1850). Brain slices were mounted into glass slides. Tissues were

permeabilized with 0.3% v/v Triton X-100-PBS solution, followed by DAPI staining (15 min at RT). Then, samples were mounted

in Mowiol solution (Sigma) for z stack imaging in a Zeiss LSM-800 confocal microscopy. Images were acquired with a 20x oil objec-

tive. Several fields were acquired by slice in order to reconstruct thewhole tissue (from the ventricular zone to the cortical plate). Thus,

images were then stitched using the Stitching plug-in of Fiji-ImageJ. Images shown in Figure 2 represent the maximal intensity of

fluorescence, generated with the z-project/maximal intensity plug-in of Fiji-ImageJ. Animal procedures followed the guidelines of

NIH and institutional animal care and use committee of Instituto Ferreyra.

Measurement of RhoA and ROCK activities using FRET biosensors
Neurons were culture for 18 h on 24-multiwell containing glass coverslips (12 mm diameter, 5x104 neurons/coverslip) pre-treated

with PLL overnight. Neurons were transfected 1 h after plating with plasmids encoding FRET-based biosensors to measure either

RhoA or ROCK activity (Fritz et al., 2013; Quassollo et al., 2015; Li et al., 2017). Transfection was done following our transient trans-

fection method, using 400 ng per well. In order to avoid overexpression, neurons were fixed with a 4% w/v paraformaldehyde/su-

crose solution at 18 h of culture. To estimate FRET efficiency, an Olympus IX81inverted microscope equipped with a DSU device,

fluorescence illumination (100 W mercury arc lamp), and a microprocessor were used. CFP (donor channel) was excited with a

433 nm laser and emission was collected 475 nm. Acceptor channel (FRET) was excited with a 433 nm laser and emission was

collected at 527 nm. FRET map was obtained by the dividing the processed image of the FRET channel over the image of the donor

channel. To exclude from the analysis out-of-cell pixels, a 0-1 intensity binary mask was created using FRET channel images and

multiplied by the FRET map images. FRET maps and their quantifications were done using Fiji-ImageJ (NIH, USA), by drawing a

line in neurites (axon or minor neurites) or by defining a somatic ROI (for somas). The values shown represent mean FRET efficiency

in each neuronal compartment.
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RNA isolation, qRT-PCR analysis and G9a alternative splicing detection
Neurons were cultured on 35 mm plastic dishes pre-treated with PLL overnight (106 cells/dish). Control and Bix-01294-treated neu-

rons were cultured for 1 DIV. Bix-01294 (or vehicle) was added to the culture medium 1 h after plating and maintained up to the

moment of RNA isolation. For this, neurons were lysed and resuspended in Trizol reagent (Lifetechnologies) following the manufac-

turer’s instructions. cDNA was then generated by reverse transcriptase using Superscript IV RT (ThermoFisher) or M-MLV RT

(Promega), following datasheet guidelines. Quantitative PCR reactions were done using a StepOne Real Time PCR system (Applied

Biosystems) with SYBR Green master mix (Life Technologies) with the following primers: Rat Arhgef2 Fw: AGCATTACAGCCAAG

GAAGC, Rv: AGCAGTGCAGCTTTCTGTTG; Rat Gapdh Fw: AACTTTGGCATCGTGGAAGG, Rv: TGGATGCAGGGATGATGTTCTG.

Rat ROCK1 Fw: AGGGACATCATGGCATTTGC, Rv: TTCAGGCACATCGTAGTTGC; Rat RhoA Fw: TTATGTGCCCACGGTGTTTG,

Rv: TGTCCAGCTGTGTCCCATAAAG. To detect G9a/E10+ and G9a/E10- splicing variants in cultured hippocampal neurons, RNA

was isolated from cultured cells at different times of culture to detect alternative splicing by radioactive PCR, using a Bio-Rad

T100 cycler with the following primers: Fw: GGGTGAAGCCATCCAGGAAA, Rv: CTCTCCGTCCACACTTTCGG. A ratio between

G9a/E10+ and G9a/E10- variants was established as a measurement of G9a/E10+ enrichment during neuronal polarization.

H3K9me2 chromatin immunoprecipitation (ChIP)
For ChIP assays, cortical neurons were isolated from E18.5 brain rat embryos and cultured into 10 mm plastic dishes (1.5x107 neu-

rons/dish). Neurons were treated immediately after plating with 1 mMBix-01294 or vehicle (water) for 12 h. Then, chromatin was iso-

lated for ChIP reactions following the protocol described in Palomer et al., 2016. Briefly, neurons were cross-linked with 1% form-

aldehyde diluted in neuronal culture medium (Neurobasal supplemented with B27, Glutamax and antibiotics) for 10 min at 37�C.
Cross-linking was stopped by adding 125 mM glycine for 2 min at RT. After 3 PBS washes at 4�C, cells were lysed with Soft Lysis

Buffer (50 mM Tris pH 8, 10 mM EDTA, 0,1% v/v NP-40 and 10% v/v glycerol supplemented with protease inhibitor cocktail (PIC;

pepstatin, aprotinin, leupeptin and PMSF), followed by cell scrapping and centrifugation (3,000 rpm, 15min at 4�C) for nuclear enrich-
ment. Pellets were resuspended in SDS Lysis Buffer (1% v/v SDS, 10 mM EDTA, 50 mM Tris pH 8 supplemented with PIC). Then,

chromatin was shredded by sonication using a BioRuptor Pico (Diagenode, cat no: B01060010; 10 cycles 30’’ ON / 30’’ OFF at

4�C), followed by centrifugation at 13,000 rpm for 10 min at 4�C. Supernatant-containing chromatin was recovered for protein quan-

tification; 100 mg of protein were used by ChIP reaction. Of note, a 10%of each sample was saved as input. ChIP reactions were done

using anti-H3K9me2 antibody (AbCam, mouse, #1220; 3 mg/reaction) and normalized to total Histone 3 (anti-H3, Millipore, #07-690,

3 mg/reaction) (reactions without antibodies were done as negative controls). Pre-cleared Protein A/G Agarose (Pierce-Thermo Sci-

entific, #20422) was used for overnight immunoprecipitation at 4�C with agitation. Then, samples were washed 3 times with each of

the following buffers: Low Salt (0,1% SDS, 1% v/v Triton X-100, 2 mM EDTA pH 8, 20 mM Tris pH 8 and 150 mM NaCl), High Salt

(0,1% SDS v/v, 1% v/v Triton X-100, 2 mM EDTA pH 8, 20 mM Tris pH 8 and 500 mM NaCl) and LiCl buffer (250 mM LiCl, 1% v/v

NP-40, 1% NaDOC, 1 mM EDTA and 10 mM Tris pH 8). After every wash, samples were centrifuged at 3,000 rpm for 3 min at

4�C. Supernatants were discarded and pellets resuspended in 100 mL of Elution Buffer (1% v/v SDS, 100 mM Na2CO3) for 30 min

at 37�C. Then, samples were centrifuged at 11,000 rpm for 3 min and cross-links of IP eluates and input samples were reversed

by adding 200 mM NaCl overnight (16-18 h) at 60�C. Finally, samples were treated with proteinase K for 1 h at 55�C (50 mM

EDTA, 200 mM Tris pH 8, 100 mg/mL proteinase K). DNA was purified by phenol/chloroform extraction and precipitated at �20�C
overnight with ethanol. DNA was resuspended in 50 mL of DNase/RNase free water. The promoter region of Arhegf2 (�800 pb of

TSS) was amplified by qPCR using SYBR Green master mix (Life Technologies), using the following primers Fw: ACAGAGAAATGG-

GAGGCCTTG; Rv: AACATTTGAGCTCGCTGAGG. 4 mL of DNAwere used for each qPCR.Arhgef2H3K9me2 levels are shown as the

% of the input normalized by total H3 signal.

Imaging and post-imaging analysis
Imaging was done using a Zeiss LSM 800 confocal microscopy. FRET analyses were done using an Olympus IX81inverted micro-

scope equipped with a DSU device, as previously described in FRET methods. Post-imaging analysis and quantifications were

done in Fiji-ImageJ (NIH, USA).

QUANTIFICATION AND STATISTICAL ANALYSIS

Results are the mean ± standard error median (SEM) of at least 3 independent neuronal cultures. To check normal distributions, a

Shapiro-Wilk test was applied before statistical procedures. For parametric distributions, a Student’s t test or ANOVA was applied,

whereas eitherMann-Whitney’s or Kruskal-Wallis’s test for non-parametric. The number of biological replicates (N) from independent

pregnant rats (for neuronal cultures) or mice (for IUE assays), are detailed in the corresponding figure legends. Asterisks in each figure

represent significance level: *p < 0.05, **p < 0,01, ***p < 0,001, ns = non significant. Statistics and plots were done using GraphPad

Prism 6.
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