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Many vertebrates have distinctive blue-green bones and other
tissues due to unusually high biliverdin concentrations—a phe-
nomenon called chlorosis. Despite its prevalence, the biochemical
basis, biology, and evolution of chlorosis are poorly understood. In
this study, we show that the occurrence of high biliverdin in an-
urans (frogs and toads) has evolved multiple times during their
evolutionary history, and relies on the same mechanism—the pres-
ence of a class of serpin family proteins that bind biliverdin. Using
a diverse combination of techniques, we purified these serpins
from several species of nonmodel treefrogs and developed a pipe-
line that allowed us to assemble their complete amino acid and nucle-
otide sequences. The described proteins, hereafter named biliverdin-
binding serpins (BBS), have absorption spectra that mimic those of
phytochromes and bacteriophytochromes. Our models showed that
physiological concentration of BBSs fine-tune the color of the animals,
providing the physiological basis for crypsis in green foliage even un-
der near-infrared light. Additionally, we found that these BBSs are
most similar to human glycoprotein alpha-1-antitrypsin, but with a
remarkable functional diversification. Our results present molecular
and functional evidence of recurrent evolution of chlorosis, describe
a biliverdin-binding protein in vertebrates, and introduce a function
for a member of the serpin superfamily, the largest and most ubiqui-
tous group of protease inhibitors.

The green coloration of vertebrates is normally attributed to a
particular spatial arrangement of chromatophore cells in

their skins (1). Using a complex multilayered system of structural
and pigmentary components inside of the cells, animals can at-
tain a diverse array of hues. Interestingly, hundreds of frog
species have translucent skins, partially or completely devoid of
melanophores and other pigmentary cells (2, 3). In these species,
it is expected that other extracellular pigments and structures
may account for the vivid colors they can display. In fact, recent
studies have demonstrated the importance of noncellular, sub-
cutaneous (s.c.), and glandular chromophores and fluorophores
in the development of amphibian blue-green coloration (2).
Among the extracellular pigments, it is known that many am-
phibian species have distinctive blue-green pigments in blood,
lymph, other soft tissues, and bones, a phenomenon known as
physiological chlorosis (4), that is prevalent in numerous arboreal
species and renders them a characteristic blue-green hue (2, 3)
(Figs. 1 and 2A). Previous studies have shown that this coloration is
caused by high concentrations of the pigment biliverdin (BV) (4, 5),
which is the first intermediate of heme catabolism from senescent

red blood cells. In birds (6, 7) and at least some amphibians (8), fish
(9), and reptiles (10), BV is the end product of heme catabolism
and is excreted directly without further reduction to bilirubin (BR).
In most mammals though, BV is rapidly reduced to BR and
promptly excreted, thus making BV normally undetectable in their
bile or blood even under extreme hemolytic conditions (11). In
fact, BV concentrations reach detectable values in humans only
when some conditions are met: severe cirrhotic pathologies, bile
duct obstructions, and impairment of metabolic function (12–14).
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Remarkably, chlorotic frog species show plasma BV concentra-
tions at least four times larger than in the described pathologies (4,
12–14), and at least 200 times larger than in nonchlorotic species
(4). Interestingly, attempts to induce chlorosis in nonchlorotic
species by hemolysis or direct injection of BV have been un-
successful, with the animals immediately excreting the excess BV
(5, 15). These observations suggest an unusual physiology of
chlorotic frogs.
The function of BV in animals is controversial (11), and it was

initially only regarded as an intermediate product of heme ca-
tabolism in vertebrates. However, some evidence has shown that
it may be a potent hydrophilic antioxidant (17, 18). Besides frogs,
large BV concentrations have been documented in fish (19) and
lizards (20, 21), but its function has remained a mystery. Indeed,
little is known about the physiology and evolution of chlorosis,
and its occurrence has remained an enigma in amphibian biology
for more than a century.
In this report, we combined protein purifications, RNA-seq,

ancestral character reconstruction, and optical modeling to
better understand chlorosis. We show that chlorosis is highly
prevalent within amphibians, and that it evolved multiple times
along the evolutionary history of frogs. We isolated a serpin
protein that binds BV, identified as the IXα isomer, and is re-
sponsible for its observed high concentration in chlorotic ani-
mals. The described serpin, called biliverdin-binding serpin
(BBS), is a highly expressed glycoprotein belonging to the most
diversified clade of the serpin superfamily, the largest group of
protease inhibitors in nature (22–26). We also show that the
binding of BV to the serpin changes its coloration, modulating the
shape and intensity of absorbance in the visible region. Using
Boana punctata as an animal model, we demonstrate that BBSs
play a crucial role in the fine-tuning of their coloration, explaining
not only the green hue of the animals, but also the existence of a
red-edge change of their reflectance profile, which makes them
unnoticeable against the foliage where they live. This report thus
provides insights into serpin function diversification, showing dif-
ferent serpins that independently evolved the ability to bind BV.
We also show that biliverdin has a strong function in vertebrate
camouflage, which demonstrate a clear function for BV and
upending the common belief that BV is only a waste product of
heme catabolism.

Results and Discussion
Multiple Evolutionary Origins of Chlorosis in Frogs. To understand
the evolution of physiological chlorosis, we first undertook a
comprehensive survey of its occurrence across anurans. The ex-
istence of blue-green pigmentation in the bones and soft tissues
of frogs has been documented in hundreds of species from dif-
ferent clades (3–5). Our survey showed that it is present in more
than 430 anuran species (SI Appendix, Table S1), distributed
among 11 families (Arthroleptidae, Centrolenidae, Craugastor-
idae, Hemiphractidae, Hylidae, Hyperoliidae, Limnodynastidae,
Mantellidae, Myobatrachidae, Ranidae, Rhacophoridae). We
inferred that chlorosis evolved at least 41 times during anuran
evolutionary history (Fig. 1 and SI Appendix, Discussion). Indeed,
with the exception of glassfrogs (Centrolenidae), we documented
multiple origins of physiological chlorosis within most other
families (Fig. 1 and SI Appendix, Figs. S1 and S2). Of the species
known to have chlorosis, 99% are treefrogs or are nested within
treefrog clades (e.g., the aquatic Pseudini hylids).

Purification and Identification of Biliverdin-Binding Serpin from
Boana punctata. To study the biochemical origin of the blue-
green coloration of frogs, we used B. punctata as a model. We
chose this species because 1) its plasma BV concentration was
reported in a previous study (205 μM) (4), and 2) some of the
optical properties of its skin, muscle, and lymph were thoroughly
studied in a previous work (2). B. punctata s.c. lymph is blue-green,

which is easily observable through its translucent skin (2)
(Fig. 2A). We extracted lymph samples and interstitial fluid from
skin and muscle tissue, and performed chemical extractions fol-
lowed by size exclusion separation to isolate the blue-green phase.
After removal of the yellow components [e.g., hyloins (2) and
carotenoids], we traced the remaining blue coloration to a protein
that we termed “biliverdin-binding serpin” (BBS) (Fig. 2 A and B).
The purified protein (∼95% purity) had a molecular weight of
∼50 kDa (Fig. 2 B and C) and was conformationally homogeneous
with a folded core as indicated by circular dichroism, fluorescence
spectroscopy, and size exclusion chromatography (SI Appendix,
Fig. S3). Due to the lack of genomic sequence data in available
databases, we identified the BBS via a combination of peptide
mass fingerprint analysis (PMF), manual de novo amino acid se-
quencing of some of selected fragments using matrix-assisted laser
desorption/ionization–time of flight tandem mass spectrometry
(MALDI-TOF/TOF), and Edman sequencing of the N terminus
(SI Appendix, Fig. S4). The resulting peptide dataset (SI Appendix,
Fig. S4C) was subjected to MSBlast (27), which identified the
biliprotein as a member of the glycoprotein serpin superfamily,
particularly of the alpha-1-antitrypsin-like clade (α1-AT). Since
serpins of this group are normally expressed in the liver (28), to
obtain the complete nucleotide sequence, we extracted total RNA
from this tissue and converted it to a complementary DNA
(cDNA) library. Then we designed degenerate primers based on
de novo and EDMAN amino acid sequences and proceeded with
3′ rapid amplification of cDNA ends and thermal asymmetric
interlaced polymerase chain reaction (SI Appendix, Fig. S4D).
Based on the complete amino acid sequence, we found that the
BBS of B. punctata is a glycoprotein (Fig. 2D and SI Appendix, Fig.
S5 and Table S3) from the Clade A serpin superfamily, showing a
45% identity to human α1-AT and ∼17–33% identity to other
human serpins of the same clade (Table 1).

Identification of BV Isomer from B. punctata BBS. Considering the
existence of multiple BV isomers in nature, with different oc-
currences across animal taxa as well as ontogenetic changes
during their development (29–31), we first characterized the
isomery of BV from BBS in B. punctata. BV was extracted from
BBS with organic solvents in mild acidic conditions (Fig. 2E),
and it also dissociated form the apoprotein during liquid chro-
matography (Fig. 2F), suggesting a noncovalent association.
High-resolution molecular-weight determination showed a
mass-to-charge ratio (m/z) compatible with that of BV (observed
m/z 583.2536, theoretical m/z for C33H34N4O6 plus one proton
[M + H]+ is 583.2551, Δm/z = 2.5 ppm). We used ultraviolet-
visible (UV-VIS) spectrophotometry (SI Appendix, Fig. S6A),
one-dimensional (1D) and two-dimensional (2D) nuclear mag-
netic resonance (NMR) of the derivatized pigment (SI Appendix,
Fig. S6B and Table S2) and liquid chromatography coupled to
diode array detection and electrospray ionization tandem mass
spectrometry (LC-DAD-MS/MS) (SI Appendix, Figs. S7A and
S8). BV in B. punctata was identified as the IXα isomer, the same
isomer detected in eggs from nonchlorotic species (32, 33) (SI
Appendix, Fig. S6). Using the complete amino acid sequence and
the BV absorbance, we determined the stoichiometry of apo-
protein/BV to be 1:1. Absorbance spectra of BBS showed a Soret
(390 nm)/Q(667 nm) ratio of 1.05 ± 0.05, which is compatible
with a partially extended BV conformation inside the protein
core (34) (SI Appendix, Discussion). This ratio is about three
times smaller than the expected value for free helical BVs at
physiological pH (35) (Soret/Q = 3.2).

BBSs Identification and Gene Expression across Evolutionary Origin of
Chlorotic Frogs. To evaluate the generality of the results obtained
for B. punctata, we studied eight other species from different
clades of chlorotic frogs. We purified the BBSs from lymph and
bones and extracted liver tissue for RNA-seq analyses. BV was
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identified as the IXα isomer in all of the studied species and was
noncovalently bound to the apoproteins (SI Appendix, Fig. S7 B
and C). The ratio of absorbance Soret/Q ranged from 1.0 to 1.5,

which was consistent with the partially extended chromophore
conformation predicted in B. punctata inside the protein matrixes
(Fig. 3 and SI Appendix, Fig. S9), suggesting a highly conserved
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mode of BV binding. The BBSs had molecular weights in the
range of 46 to 54 kDa (Fig. 3 and SI Appendix, Fig. S10). In some of
the species, BBS from bones was the same as that from lymph, while
in others they were different isoforms or paralogs (SI Appendix, Fig.

S11 andDiscussion). The intrinsic multiplicity of clade A serpins (13
paralogs in humans, 9 paralogs in Xenopus tropicalis) (24, 36) im-
plies several difficulties for the accurate de novo assembly of the
sequences. Indeed, if the divergence among the sequences is low,
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considerable uncertainty is normally present in the assemblies (37)
and the sequences are not reliable (e.g., many of them are chi-
meras). To overcome this, we implemented an iterative assembly
approach based on RNA-seq read frequency, followed by PMF of
the purified BBSs and tandem mass spectrometry to corroborate
the sequences (SI Appendix, Fig. S12 and Tables S3–S12). In all of
the species, lymphatic BBSs were identified as clade A serpins, with
maximum identity to human α1-AT (SI Appendix, Fig. S13 and
Table S13). Expression values ranged between 104–105 fragments
per kilobase per million (SI Appendix, Table S14) indicating that
BBSs are highly expressed in chlorotic frogs. Altogether, these
findings introduce a class of carrier serpins, which broadens the
repertoire of the already known ligand-binding proteins of the
serpin superfamily, such as corticosteroid binding globulin (CBG) in
several vertebrates and thyroxine-binding globulin (TBG) present in
some mammals (38, 39).
Our discovery that in all of the studied species BV is bound to

at least one member of the clade A serpins raises the question
about the homology of the different BBSs (see SI Appendix for
details). The scarcity of highly curated amphibian sequences, in
addition to the large number of clade A paralogs in vertebrate
genomes (36), precludes any conclusion on the evolutionary re-
lationships of BBSs based on amino acid or nucleotide se-
quences. Indeed, broad phylogenomic studies have shown that it
is not possible to do one-to-one orthology comparisons for many
of the serpins of the group (36).
However, analyses of BBSs sequences assembled in this study

provide some evidence to hypothesize about their homology. Our
results revealed that BBSs sequence identities are ∼80 to 85% be-
tween different genera of glass frogs (Centrolenidae) (SI Appendix,
Fig. S13 and Table S13) whereas they range from 44 to 54% be-
tween different hylid species in which chlorosis evolved in-
dependently. These results are consistent with a common origin of
chlorosis in centrolenid frogs and may also support the common
origin—and thus the orthology—of their BBSs (Fig. 1). On the other

hand, the results obtained for hylids suggest that it is likely that
different serpin paralogs are responsible for physiological chlorosis in
the different clades where it evolved independently (SI Appendix,
Fig. S13, Table S13, and Discussion). The only exception might be
the case of the closely related B. punctata and Boana cinerascens,
whose BBSs sequences share 75% identity (SI Appendix,Discussion).
These results suggest that different serpin paralogs are likely re-
sponsible for physiological chlorosis in the different groups where it
evolved independently. The fact that in at least some of the species
there are two different BBSs, one in lymph and one in bones, sup-
ports the observation that multiple, different serpin paralogs may be
responsible for chlorosis (SI Appendix, Fig. S11).

Functional Diversification of Serpins and the Mechanistic Basis of
Green Coloration in Frogs. Pathological hyperbiliverdinemia in
humans has only been described in a limited number of condi-
tions (12–14), with bile duct obstruction. In chlorotic anuran
species, however, anatomical observations cannot account for
any morphological cause of the accumulation (5) (SI Appendix,
Fig. S14), and there are no signs of increased hemolysis revealed
by up-regulation of heme oxygenase (SI Appendix, Table S15 and
Discussion). The fact that BV is bound to a serpin could change
the normal BV excretion rates, which is supported by the fact
that BV injected into nonchlorotic species can be easily excreted
without increase in plasma concentration (5, 15). The high ex-
pression of BBSs, combined with their recurrent evolution, raise the
question of their potential biological functions. Indeed, the fact that
they modulate the spectral absorbance of isolated BV (Fig. 2E)
could have an effect on animal coloration. Within amphibians,
several chlorotic species have translucent skins, completely or par-
tially devoid of melanophores and other chromatophore cells (2, 3)
(Fig. 2A and 3). Thus, BBSs as well as other skin interstitial fluid
and s.c. lymph pigments may be important in the overall coloration
of anurans, complementing the role of dermal chromatophores (2).
To test this, we evaluated the influence of BBSs in crypsis in B.
punctata. We first measured reflectance spectra of different native
plants from where they rest during the day or perch at night (2) and
found that these plant spectra closely matched those of the frog
(Fig. 4 A and B). The reflectance match extends to the red and
near-infrared regions of the spectrum, showing a clear, red-edge
sharp change in reflectance with an inflection point at 695–700
nm, comparable to that in plants (40). The absorbance spectrum of
the visible band of BBS overlaps with the region of lower re-
flectance (600–670 nm) of the animals (Fig. 4 A and B), which
suggests a putative role of BBS in color modulation. To test this, we
employed an optical model based on the same anatomical structural
organization described in previous studies (2) (Fig. 4C). This con-
sisted of four layers of tissue: an outer skin layer (S), a s.c. lymphatic
sac containing lymph (L), dorsal muscle (M), and a broadband
reflector composed from an underlying layer of connective tissue
with guanine crystals (CCL) (2). We simulated the expected re-
flectance under three scenarios: 1) 0.7 mm path length of s.c. lymph
+ skin with BBS at a physiological concentration of 104 μM (n =
12, range 88–204 μM), 2) the same path length with the same
concentration of free helical BV at neutral physiological pH, and 3)
with neither BV nor BBS. Only the occurrence of s.c. BBS in
combination with an underlying broadband reflector (CCL) can
account for the fine-tuning of the frog’s reflectance spectra and thus
provide a mechanism to explain the red edge effect and the satu-
rated green coloration on chlorotic frogs. Thus, it provides the
anatomical and biochemical basis to understand how the animal can
naturally camouflage in the surrounding green vegetation. The re-
peated evolution of BBSs with similar absorption profiles in arbo-
real frogs (SI Appendix, Fig. S9), in combination with the scarcity of
chromatophore cells, suggest that this mechanism is the outcome of
ecological and evolutionary processes and provide the mechanistic
basis to understand the evolution of cryptic leaf coloration in
chlorotic frogs (41).

Table 1. Sequence identity between B. punctata BBS and
human Clade A serpins

UniProt Accession Number| Protein Name
Identity,

%
Identity Protein

Core, %

P01009j SerpinA1 alpha-1-antitrypsin 41.7 45.47
P20848j SerpinA2 putative alpha-

1-antitrypsin-related protein
32.6 36.16

P01011j SerpinA3 alpha-1-
antichymotrypsin

32.1 35.61

P29622j SerpinA4 kallistatin 31.9 35.61
P05154Ij SerpinA5 plasma serine protease

inhibitor
32.3 35.06

P08185j SerpinA6 corticosteroid-binding
globulin

32.9 35.89

P05543j SerpinA7 thyroxine-binding
globulin

32.0 35.06

P01019j SerpinA8 angiotensinogen 17.3 19.45
Q86WD7j SerpinA9 30.9 32.23
Q9UK55j SerpinA10 protein Z-dependent

protease inhibitor
25.2 29.04

Q86U17j SerpinA11 31.2 34.8
Q8IW75j SerpinA12 vaspin 33.3 37.8

Sequence identities are shown considering the complete alignments
(Identity, %) or excluding the poorly conserved leader sequences and signal
peptides in the N-terminal region of the protein (Identity Core, %) (23).
Protein core was defined from the N terminus of the first alpha helix to
the C terminus of the protein (see SI Appendix, Fig. S5 for an interpretation
of the secondary structure composition of the serpins). The position of the
first alpha helix was based on the alignment to human α1-AT (23).
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Other BBSs Functions. Our results highlight the fact that the
functional study of chlorosis goes beyond the study of elevated
BV concentrations, to understanding the influence of biliproteins
on ecologically relevant traits. Our work presents a comprehensive
report on the identity, sequence, and function of an amphibian
serpin (SI Appendix, Discussion) and describes an entire group of
previously unknown BV carriers in animals. Even though we
showed a clear role of these serpins in anuran color tuning, there
may be other functions for BBSs, especially in the few chlorotic
species without translucent skin that have normal chromatophores
distribution (e.g., functions mediated by their serpin nature). The
serpins are a superfamily of proteins (350–500 amino acids in size),
normally serine proteases (in humans 27/36 serpins) (24) with a
conserved fold and a unique mechanism of action (42). This in-
volves a drastic conformational change and is highly dependent on
proteases recognition of the reactive center loop (RCL) sequence
and length (43) (SI Appendix, Fig. S14). The sequence identity of
BBSs to human α1-AT, a common neutrophil elastase inhibitor
during inflammatory processes, suggests that BBSs may have an
inhibitory function too. However, a detailed analysis of BBS se-
quences showed that there are atypical amino acid substitutions in
the RCL for B. punctata, B. cinerascens and Hyloscirtus phyllogna-
thus, which are known to preclude the inhibitory mechanism
(44–46), making uncertain their role as protease inhibitors. Other
roles of BBSs may be related to the function of the noninhibitory
hormone carriers CBG and TBG, which includes the transport of
their ligands to target organs. For instance, it is known that CBG is
involved in the proteinase-triggered release of steroids to sites of
inflammation (39). An analogous function of BBSs can include a

delivery system of BV to sites of inflammation, where it could act
as an antioxidant (17, 18) or free radical scavenger (47).

Materials and Methods
Full experimental details including citations are provided in the SI Appendix.

To study the prevalence and distribution of chlorosis in amphibians, we
identified those species that show clear accumulations of green lymph and/or
green tissues (many times evident in the oral mucosa and inguinal region) or
green bones (often evident by transparent phalanges, humerus, femur,
tibiofibula, maxilla, and premaxilla). We surveyed the taxonomic literature of
all extant anurans and utilized colleagues with expertise on the relevant
taxonomic groups.

To infer the number of independent origins of chlorosis during the evo-
lutionary history of anurans, we performed ancestral character re-
construction using the phylogenetic results of Jetz & Pyron (16) (Fig. 1) to
have a general perspective and recent, densely sampled phylogenetic hy-
potheses for several families. The ancestral character reconstruction was
done using Fitch optimization (48) as implemented in TNT (49, 50). Phylo-
genetic tree graphical editing was done using the iTOL webserver (51).

For the study of the origin of green coloration on soft tissues and bones,
we selected 11 chlorotic species. We purified BBSs and performed RNA-seq
from nine of them: Family Hylidae: Aplastodiscus leucopygius, B. puncata, B.
cinerascens, H. phyllognathus, Pseudis minuta, and Sphaenorhynchus lac-
teus; family Centrolenidae: Chimerella mariaelenae, Espadarana proso-
blepon and Nymphargus posadae. Additionally, we purified BBSs from
Boana atlantica and Aplastodiscus flumineus.

BBSs purification was assessed by PAGE, high-performance liquid chroma-
tography (HPLC), MALDI-TOF. For B. punctata BBS, we also performed circular
dichroism, fluorescence spectroscopy, and size exclusion chromatography.

Structural characterization of the isolated BV was performed by 1D and 2D
NMR and LC-DAD-MS/MS. To characterize the BBSs, we performed trypsinization
of the isolated proteins followed by peptide mass fingerprinting, de novo
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Fig. 3. MALDI-TOF and UV-VIS spectra of BBS from selected chlorotic species. BBSs are highly concentrated in soft tissues of chlorotic animals and can
normally be seen through the skins, which are partially devoid of chromatophore cells. Purified BBSs of these selected species were analyzed by MALDI-TOF.
Molecular weights range from 46 to 54 kDa (SI Appendix, Fig. S9 and Table S3). Absorbance spectra of the same BBSs (phosphate buffer 0.01 M, pH 7) show
similar features to those in B. punctata (Fig. 2E). Absorbance peaks are shifted compared to those of isolated BV (Fig. 2E) and have maxima at 390 nm (Soret
band) and 667 nm (Q band). Ratio of absorbance Soret/Q ranges from 1 to 1.5, which suggests a partially extended chromophore conformation inside the
protein matrix (SI Appendix, Fig. S10 and Discussion) and a putative conserved mode of BV binding to the serpin.
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sequencing of MALDI TOF-TOF spectra of selected peptides, and MSBLAST
searches. For B. punctata, we also performed Edman sequencing of the N ter-
minus. To obtain the full sequence of the proteins, we assembled hepatic
transcriptomes using a custom pipeline, mapped the peptide masses to the as-
sembled sequences and verified the matches by MSMS. With the complete
protein sequences, we used BLASTP against different databases for identification
of the apoproteins.

To assess the influence of BBS in coloration, we considered the same
anatomical model published elsewhere (2). Since chlorosis was normally as-
sumed to be a product of biliverdin accumulation, we compared the influ-
ence of isolated biliverdin with that of BBSs in the overall animal coloration.
Diffuse reflectance and transmittance of plant species were obtained by
means of a spectrophotometer (UV3101PC; Shimadzu) equipped with an
integrating sphere (ISR-3100; Shimadzu).

All procedures involving animals were carried out according to the reg-
ulations specified by the Institutional Animal Care and Use Committee of the
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Res C/D
140/00), and by Conselho Nacional de Controle de Experimentação Animal,
Ministério da Ciência, Tecnologia e Inovação, Brazil. Collection permits were
issued by Secretaria de Medio Ambiente, Ministerio de Aguas, Servicios
Públicos y Medio Ambiente, Province of Santa Fe, Argentina (021-2011 and
063–2013), Ministerio de Ecologiá, Province of Misiones, Argentina (010-
2015), and Instituto Chico Mendes de Conservação da Biodiversidade/SISBIO
(Permits 41508–8, 50071–1, 50071–2, A1FC113).

Data Availability. The RNA-Seq data generated and analyzed in this study are
available in the National Center for Biotechnology Information (NCBI) Se-
quence Read Archive (SRA), BioProject ID number PRJNA625657 (https://
www.ncbi.nlm.nih.gov/bioproject/625657). Biliverdin-binding serpin nucleo-
tide sequences reported in this paper were deposited into GenBank under
accession numbers MT358317-358325.

ACKNOWLEDGMENTS. C.T. was supported by a Human Frontier Science
Program (LT 000660/2018-L) postdoctoral fellowship and a Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET) doctoral fellowship.
A.E.B. and M.L.L. were supported by São Paulo Research Foundation
(FAPESP) postdoctoral fellowships (#2014/20915-6, # 2017/ 23725-1, #2017/
26162-8). A.E.B., M.G.L., J.F., L.B.C., S.E.B. are CONICET researchers. This re-
search was supported by grants of Agencia Nacional de Promoción Científica
y Tecnológica, Proyecto de Investigación Científica y Tecnológica 2011-1895,
2013-404, 2013-1895 (to L.B.C.), 2014-1022, and 2015-820, CONICET grant
11220150100394CO, the Universidad de Buenos Aires, Universidad de Bue-
nos Aires Ciencia y Técnica 20020170100037BA, FAPESP, and FAPESP/Fundação
Grupo Boticário de Proteção à Natureza (grants #2013/50741-7, #2012/10000-5,
#2013/50741-7, #2014/50342-8, and #2018/15425-0), Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) (306623/2018-8). Fieldwork
in Ecuador was funded by Secretaría Nacional de Educación Superior, Ciencia,
Tecnología e Innovación del Ecuador (SENESCYT) (Arca de Noé initiative; S.R.R.
and Omar Torres, principal investigators), and a grant from Dirección General
Académica Pontificia Universidad Católica del Ecuador. We thank the Duke
Computer Cluster for providing computational resources and Jesse Delia,
Vaclav Gvozdik, Alan Channing, Alexander Devin Edmonds, Alex Haas, and
Taran Grant, for kindly authorizing the use of their photographs. We thank

Wavelength (nm)

)
%( ecnatcelfe

R

10

20

30

40

50

60

10

20

30

40

50

60

10

20

30

40

50

60

ecnabrosbA

0.2

0.4

0.6

0.8

1Eichornia
crassipes
       abaxial 

Eichornia
crassipes
        adaxial 

Pistia
stratiotes

Salvinia 
biloba

10

20

30

40

50

60

)
%( ecnat ce lf e

R

500 600 700

Muscles
CCL

Skin
Lymph

700600500400

Wavelength (nm)

10

20

30

40

50

60

10

20

30

40

50

60

B CA

B. punctata reflectance
Model: Lymph with BBS

B. punctata reflectance
Model: Lymph with BV

B. punctata reflectance
Model: Lymph with no pigments

10

20

30

40

50

60

Fig. 4. Influence of BBS in B. punctata coloration. (A) Reflectance spectra of frogs obtained from (2) (solid line) and different plants (dotted line) from their
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crassipes during daytime. (B, Lower) Background is displayed in grayscale to highlight the frog position. (C) A simplified model of reflectance for the frogs to
evaluate the influence of BBS in coloration. Light is reflected at the air skin interphase, transmitted through the translucent skins, and red and blue light are
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control experiments with isolated biliverdin (Middle graph) or with lymph devoid of BBS (Bottom graph). Solid lines: reflectance of six individuals. Dashed line:
modeled reflectance for six independent skin samples.
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