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Abstract

The hyline tribe Lophyohylini includes 87 species of treefrogs, of which cytogenetics aspects

have been studied in less than 20% of them. In order to evaluate the evolution of some of its

chromosome characters (NOR position, C-bands, and DAPI/CMA3 bands), we studied the

karyotypes of 21 lophyohylines, 16 of them for the first time, and analyzed them in a phylo-

genetic context. Most species showed similar karyotypes regarding chromosome number

(2n = 24) and morphology (FN = 48), excepting Phyllodytes edelmoi and Osteocephalus

buckleyi with 2n = 22 (FN = 44) and 2n = 28 (FN = 50), respectively. The NOR location was

variable among species and provided valuable phylogenetic information. This marker was

located in pair 11 in all species of Trachycephalus, Itapotihyla langsdorffii, and Nyctimantis

arapapa, representing the plesiomorphic condition of Lophyohylini. Besides, other apo-

morphic states were recovered for the clades comprising N. rugiceps and N. siemersi (NOR

in pair 5), and Dryaderces pearsoni, Osteocephalus, and Osteopilus (NOR in pair 9). Phyllo-

dytes presented variation for NORs position; they were in pair 2 in P. edelmoi, pair 7 in P.

melanomystax, and pair 8 in P. gyrinaethes and P. praeceptor. Polymorphisms in size, num-

ber, and activity of this marker were observed for N. siemersi, Osteocephalus fuscifacies,

and some species of Trachycephalus. Remarkably, in N. siemersi NORs were detected on

a single chromosome in the two specimens studied by this technique, raising the question of

how this complex polymorphism is maintained. Interstitial telomeric sequences were found
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in P. edelmoi, P. melanomystax, and Osteocephalus buckleyi, and their presence seems to

be not related to the chromosome reorganization events. Finally, some species showed

spontaneous rearrangements, possibly as a consequence of an uncommon phenomenon in

anuran cytogenetics: the presence of fragile sites or secondary constrictions not associated

with NORs. We propose that this rare feature would have played an important role in the

evolution of this group of frogs. From the evidence obtained in this and previous studies, we

conclude that Lophyohylini presents a complex chromosome evolution.

Introduction

Treefrogs of the subfamily Hylinae are essential components of Neotropical anuran diversity,

currently comprising 724 species [1], arranged in seven tribes [2]: Cophomantini, Dendropso-

phini, Hylini, Lophyohylini, Pseudini, Scinaxini, and Sphaenorhynchini. Lophyohylini con-

sists of 87 species that are widely distributed in Middle and South America [1, 3]. The

monophyly of this tribe is well supported, mostly by molecular characters [3–11]. Blotto et al.

[3] recently performed the most inclusive phylogenetic analysis for Lophyohylini and recov-

ered three major clades: (1) An early diverging one composed of Itapotihyla and Phytotriades;
(2) A clade including Trachycephalus, closely related to Corythomantis and Nyctimantis (rede-

fined by them to include all species formerly in Aparasphenodon, Argenteohyla and one species

of Corythomantis), and (3) A clade composed of Tepuihyla as a sister taxon of Dryaderces and

Osteocephalus, plus Osteopilus and Phyllodytes. Although the monophyly of all recognized gen-

era currently in Lophiohylini is well-supported by previous studies, it is not the case for its

major clades that are still poorly supported.

Several contributions have studied chromosome evolution in different clades of Hylinae

(e.g., [12–17]). More recently, Schmid et al. [18] summarized most cytogenetic information

known for Hylidae, further contributing with novel karyotypes for 14 species of Hylinae (2

Cophomantini, 2 Hylini, 2 Scinaxini, and 8 Dendropsophini).

The available chromosomal information for Lophyohylini is very sparse and restricted to

only 19% of the included taxa, corresponding to 16 species of 7 genera [19–22]. All studied

species have diploid karyotypes, being the most extended haploid number n = 12 [22], pro-

posed as a synapomorphy of Hylinae [4,17].

Among Lophyohylini, the karyotypes of Osteopilus and Phyllodytes are distinctive regarding

the haploid number and morphology of chromosomes. Fusion and fission rearrangements,

involving the plesiomorphic karyotype, were proposed as possible mechanisms for explaining

the variability described in the tribe [19,22]. In Os. wilderi (n = 14) and Os. ocellatus (n = 17),

Cole [23] and Anderson [19] reported increments in chromosome number, resulting in the

occurrence of two and ten pairs of telocentric chromosomes, respectively. On the other hand,

a reduction in chromosome number was observed in Phyllodytes edelmoi and P. luteolus
(n = 11, [22]). Interestingly, in the former species, Gruber et al. [22] reported interstitial telo-

meric sequences or ITS on pairs 1 and 2. Other remarkable features reported in Lophyohylini

are the presence of fragile sites or interstitial secondary constrictions that are not associated

with NORs in Osteocephalus [19] and conspicuous NORs size heteromorphisms in several spe-

cies of the genera Corythomantis, Itapotihyla, Nyctimantis, Phyllodytes, and Trachycephalus
[21,22].

The main goal of this study was to increase the knowledge about the chromosome evolution

of hylids, focusing mainly on Lophyohylini. For this, we surveyed different aspects of the
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chromosome characters, including the number and morphology of chromosomes, differential

banding staining (C-banding, Ag-NORs, DAPI and CMA3 fluorochromes), and mapping of

both ribosomal and telomeric DNA repetitive sequences by fluorescence in situ hybridizations.

We analyzed the karyotypes of 21 species of Lophyohylini, 16 for the first time. Results were

interpreted and discussed based on the most recent and inclusive phylogenetic hypothesis for

this tribe [3].

Material and methods

We analyzed karyotypes of 50 specimens of 21 species of Lophyohylini belonging to the genera

Dryaderces (D. pearsoni), Itapotihyla (I. langsdorffii), Nyctimantis (N. arapapa, N. rugiceps, and

N. siemersi), Osteocephalus (O. buckleyi, O. fuscifacies, O. leprieurii, O. planiceps, O. oophagus,
and O. taurinus), Osteopilus (Os. septentrionalis and Os. vastus), Phyllodytes (P. edelmoi, P. gyr-
inaethes, P. praeceptor, and P. melanomystax), Trachycephalus (T. dibernardoi, T. helioi, T. jor-
dani, and T. typhonius). The collection, euthanization, and preservation of specimens were

carried out with the approval of the Ethical Committee in Animal Use (CEUA–permission

numbers 002/12 and 014/15 UESC, Ilhéus, BA, Brazil) and the following institutions: Argen-

tina, Administración de Parques Nacionales (APN, PD-187/02); Ministerio de Ecologı́a y

Recursos Naturales Renovables (MEyRNR, 048/2013, 072/2014, 061/2015, 073/2016, 035/

2017, 047/2018 and 005/2019), Programa de Recursos Naturales y Medio Ambiente

(PRNyMA, 01/2016); Brazil, Instituto Chico Mendes de Conservação da Biodiversidade (ICM-

Bio, Sistema de Autorização e Informação em Biodiversidade SISBIO, 12920–3). Ecuador,

Ministerio del Ambiente Ecuador 011-2018-IC-FAU-DNB/MA.

The karyotypes of 16 species are studied here for the first time (Dryaderces pearsoni, Nycti-
mantis arapapa, N. rugiceps, Osteocephalus buckleyi, O. fuscifacies, O. oophagus, O. planiceps,
O. leprieurii, O. taurinus, Osteopilus vastus, Phyllodytes gyrinaethes, P. melanomystax, P. prae-
ceptor, Trachycephalus helioi, T. dibernardoi, and T. jordani). Locality data of each specimen

and the cytogenetic techniques employed are indicated in Fig 1 and Table 1, respectively.

Additional information for each sample is given in the S1 File. For O. taurinus, we followed

the phylogenetic hypothesis of Jungfer et al. [11], considering the specimens analyzed in this

study as O. taurinus sensu stricto, and those previously studied from French Guiana by Ander-

son [19] as O. taurinus candidate species 5 [11]. Moreover, because Schmid et al. [18] did not

indicate the collecting site of the specimen from Venezuela studied by them, we could not

determine the precise taxonomic status of that sample as there occur three candidate species

phylogenetically related to O. taurinus in this country (O. taurinus candidate species 2, 3 and

5, [11]).

Mitotic chromosome preparations were obtained from bone marrow and intestinal epithe-

lium [24] and stained with 5% buffered Giemsa solution or submitted to differential staining

methods. We performed silver staining to detect the location of the active nucleolar organizer

regions or Ag-NORs [25] and C-bands to evidence constitutive heterochromatin [26]. Fluores-

cence in situ hybridization (FISH) was carried out on mitotic preparations following Pinkel

et al. [27] protocol: biotin-labeled 18S rDNA probes (BioNick DNA Labeling System, Invitro-

gen) were detected with avidin-Cy3 or avidin-FITC, and telomeric regions were revealed using

all-human telomere digoxigenin-labeled probes (TTAGGG)n (Oncor P4097-DG5), following

manufacturer’s protocol and detected with anti-dig-FICT (or anti-dig-Cy3). The two base-spe-

cific fluorochromes DAPI (4’,6-diamino-2-phenylindole) and CMA3 (chromomycin A3) were

used following Schweizer and Ambros [28] after denatured preparations with FISH procedure

following the modifications of Barros e Silva and Guerra [29]. Chromosomes of Os. septentrio-
nalis and Os. vastus were obtained from cultured lymphocyte cells that were treated with BrdU
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after Wiley et al. [30] and Wiley and Little [31]. We used the terminology proposed by White

[32], considering n as the gametic or haploid chromosome number, 2n as the somatic chromo-

some number, and FN as the fundamental number (i.e., the total number of chromosome

arms per mitotic cell). Because all the karyotyped species in Lophyohylini and almost all Hyli-

dae are diploid, we refer to the gametic number (n) and basic number (x) as equals.

The relative length of mitotic chromosomes and their centromeric index (CI) were

obtained using the software Micromeasure 3.3 [33], terming short and long chromosome arms

as p and q, respectively. Chromosome morphology was classified as metacentric, submetacen-

tric, subtelocentric, and telocentric, as suggested by Green and Sessions [34].

We optimized the haploid chromosome number and NOR position among the lophyohy-

lines (see the S1 Table for chromosome information in Lophyohylini) on the phylogenetic

hypothesis of Blotto et al. [3], following the considerations exposed by Ferro et al. [17]. We

considered the character states n = 11, 12, 14, and 17; and NORs in pairs 2, 5, 7, 9, 11, and 17.

Optimizations were done with TNT v1.1 [35], considering the states of both characters as

unordered transformations.

Results

Most species showed karyotypes with 2n = 24, excepting Phyllodytes edelmoi and Osteocepha-
lus buckleyi that had 2n = 22 and 28, respectively (Fig 2). The morphology of chromosomes of

each species is detailed in the S2 Table. In general, karyotypes had a single pair of homologues

with NOR sites, in most cases associated with secondary constrictions, always staining CMA3
+

(DAPI–) and showing bright hybridization signals with the 18S probe. In all studied species,

heterochromatin was remarkably scarce, and C-bands were associated with the NOR sites or

had centromeric distribution. In the latter situation, almost all species showed centromeric

marks positive for the fluorochrome CMA3 (S1 Fig). See the S1 Table for a summary of cyto-

genetic information for Lophyohylini.

The ancestral character state reconstruction of both characters, the haploid number and

NORs, on the phylogenetic hypothesis of Blotto et al. [3] are shown in Fig 3 and S2 Fig. The

haploid chromosome number of n = 12 was recovered as the plesiomorphic state of

Fig 1. Map of South America showing the collecting localities of the species surveyed in the present study. Santa

Fe (SF), Corrientes (CO), Misiones (MI), Bahia (BA), Maceió (MA), Pernambuco (PE), Pará (PA), Morona Santiago

(MS), Pastaza (PS), Pichincha (PI). For additional voucher information see the S1 File. The map was created using

SimpleMappr (https://www.simplemappr.net), an online tool to produce publication-quality point maps licensed

under CC0 1.0 (Public Domain Dedication).

https://doi.org/10.1371/journal.pone.0234331.g001
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Lophyohylini and n = 14 is an autapomorphy of Osteopilus wilderi. Besides, a NOR on pair 11

is plesiomorphic for the tribe, whereas NORs on pairs 8 and 9 optimized as synapomorphies

of a subclade of Phyllodytes, and the clade including Osteopilus, Phyllodytes, Tepuihyla, Drya-
derces, and Osteocephalus, respectively. Other transformations for both characters are dis-

cussed below.

Phyllodytes

Phyllodytes gyrinaethes, P. melanomystax, and P. praeceptor had karyotypes with 2n = 24

(FN = 48), whereas P. edelmoi had 2n = 22 (FN = 44) (Fig 2A–2D). The NOR sites were located

distally on pairs 2q in P. edelmoi (Fig 2A), 8q in P. gyrinaethes and P. praeceptor (Fig 2B and

Table 1. Studied species and the cytogenetic techniques applied for each one.

Genus Species Locality N Differential Techniques

Dryaderces D. piersoni Brazil. Pará, Jurutı́, Mutúm. 1♀ Ag-NORs, C-bands, DAPI/

CMA3, rDNA

Itapotihyla I. langsdorffii Argentina. Misiones, Iguazú, Puerto Iguazú. 1♂ Ag-NORs, C-bands, rDNA

Nyctimantis N. arapapa Brazil. Bahia, Jequié; Ilhéus, Acuı́pe. 1♂ 1♀ Ag-NORs, C-bands, DAPI/

CMA3, rDNA, telDNA

N. rugiceps Ecuador. Pastaza, Lorocachi. 1♂ Ag-NORs, C-bands, DAPI/

CMA3, rDNA

N. siemersi Argentina. Corrientes, Ituzaingó. 2♂ 1♀ Ag-NORs, C-bands, DAPI/

CMA3, rDNA

Osteocephalus O. buckleyi Brazil. Pará, Jurutı́, Acampamento Barroso; Mutúm. 2♂ 1♀ Ag-NORs, C-bands, DAPI/

CMA3, rDNA, telDNA

O. fuscifacies Ecuador. Morona Santiago, Gualaquiza, Bomboiza. 1♂ 1♀ Ag-NORs

O. leprieiurii Brazil. Pará, Jurutı́, Mutúm; Marabá, Salobo. 2♂ C-bands

O. oophagus Brazil. Pará, Jurutı́, Acampamento Barroso. 1u Ag-NORs, C-bands, DAPI/

CMA3, rDNA

O. planiceps Ecuador. Morona Santiago, Vı́a Patuca-Puerto Morona. 1j Ag-NORs, C-bands, DAPI/

CMA3, rDNA, telDNA

O. taurinus Brazil. Pará, Jurutı́, Acampamento Barroso; Capiranga Plateau. 2♂ 1u Ag-NORs, C-bands, DAPI/

CMA3, rDNA, telDNA

Osteopilus Os.
septentrionalis

Pet trade. 3u Ag-NORs, C-bands, DAPI/

CMA3, rDNA

Os. vastus Pet trade. 4u Ag-NORs, C-bands, DAPI/

CMA3, rDNA

Phyllodytes P. edelmoi Brazil. Alagoas, Maceio. 1♂ Ag-NORs, C-bands, DAPI/

CMA3, rDNA, telDNA

P. gyrinaethes Brazil. Pernambuco, Lagoa dos Gatos, RPPN Pedra D’Antas. 2♀ 1♂ Ag-NORs, DAPI/CMA3, rDNA,

telDNA

P.

melanomystax
Brazil. Bahia, Ilhéus, Ponta da Tulha. 1♂ Ag-NORs, telDNA

P. praeceptor Brazil. Bahia, Una. 1u Ag-NORs, DAPI/CMA3

Trachycephalus T. dibernardoi Argentina. Misiones, Guaranı́, El Soberbio; 25 de Mayo, Puerto Londero. 1♀ 1♂ Ag-NORs, C-bands, DAPI/

CMA3, rDNA

T. helioi Brazil. Pará, Jurutı́, Acampamento Barroso. 2♂ Ag-NORs, C-bands, DAPI/

CMA3, rDNA

T. jordani Ecuador. Pichincha, Puerto Quito. 1u Ag-NORs, C-bands, DAPI/

CMA3, rDNA

T. typhonius Brazil. Pará, Peixe Boi; Belém; Argentina. Misiones, Oberá, San Martı́n; Iguazú, Puerto

Iguazú; Capital, Posadas; Santa Fé, Capital, near San José del Rincón.

3♀ 8♂
1u

Ag-NORs, C-bands, rDNA

N = Number of specimens analyzed. j = juvenile, u = undetermined.

https://doi.org/10.1371/journal.pone.0234331.t001
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2C), and 7q in P. melanomystax (Fig 2D), corroborated by FISH in P. edelmoi and P. gyri-
naethes (Fig 2A and 2B).

C-bands were observed on the centromeres of pairs 2–3, 5, and 7–11 of Phyllodytes edelmoi
(Fig 4A). Fluorescent CMA3

+ bands, additional to the NOR sites, were detected in the centro-

meres of P. edelmoi and P. praeceptor and, in the latter, also on the long arms of pairs 3–4, and

7 (S1 Fig).

Fig 2. Giemsa stained karyotypes of Phyllodytes and Osteocephalus. A. Phyllodytes edelmoi. B. P. gyrinaethes. C. P.

praeceptor. D. P. melanomystax. E. Osteocephalus fuscifacies. F. O. taurinus. G. O. oophagus. H. O. leprieurii. I. O.

buckleyi. J. O. planiceps. Squares show chromosomes bearing the NORs after silver staining (I) and with FISH using a

18S DNA probe (II).

https://doi.org/10.1371/journal.pone.0234331.g002

Fig 3. Ancestral character state reconstruction of the position of NORs (left) and the haploid number (right) in

Lophyohylini on a condensed tree from the phylogenetic hypothesis of Blotto et al. [3]. For the complete

optimizations including all taxa see S2 Fig.

https://doi.org/10.1371/journal.pone.0234331.g003
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In the three species studied by FISH with telomeric DNA probe, Phyllodytes edelmoi (Fig

5A), P. melanomystax (Fig 5B), and P. gyrinaethes (S3 Fig), fluorescent signals were detected in

the distal region of all chromosomes. Additional interstitial telomeric sites (ITS) were observed

in P. edelmoi and P. melanomystax, although varying in the intensity and location of the sig-

nals. In P. edelmoi the ITS were present on one arm of pair 1 and both arms of pair 2, whereas

in P. melanomystax, conspicuous pericentromeric ITS were only on one arm of chromosomes

of pair 1 (Fig 5A and 5B).

Osteocephalus

Osteocephalus fuscifacies, O. leprieurii, O. oophagus, O. planiceps, and O. taurinus, shared kar-

yotypes with 2n = 24 with all bi-armed chromosomes (FN = 48), while a 2n = 28 was observed

in O. buckleyi, with pairs 4, 6, and 7 telocentric (FN = 50) (Fig 2E–2J). The NOR sites were

located interstitially on 9q in O. fuscifacies (Fig 2E), O. taurinus (Fig 2F), O. oophagus (Fig 2G),

and O. planiceps (Fig 2J), and on pair 11q in O. buckleyi (Fig 2I). In O. fuscifacies, the only spec-

imen studied with Ag-NORs (QCAZ 74202), showed them heteromorphic in size. In O.

leprieurii, although it was not possible to detect NORs due to the quality of preparations, con-

spicuous secondary constrictions were observed in an interstitial position on 9q (Fig 2H).

Osteocephalus leprieurii, O. oophagus, and O. taurinus showed similar patterns of C-bands,

characterized by the presence of conspicuous interstitial and telomeric bands on pairs 6p, 8q,

9q, and 12q (Fig 4B–4D). Osteocephalus buckleyi showed C+ bands on all chromosome pairs,

with additional telomeric bands on pairs 11q and 13p (Fig 4E). In the karyotypes of the four

Fig 4. C-banded karyotypes of Phyllodytes and Osteocephalus. A. Phyllodytes edelmoi. B. Osteocephalus taurinus. C.

O. oophagus. D. O. leprieurii. E. O. buckleyi.

https://doi.org/10.1371/journal.pone.0234331.g004

Fig 5. Interstitial telomeric sequences (ITS) in Lophyohylini. Metaphase plates showing ITS detected with FISH

with telomeric DNA probe (using FITC fluorochrome). A. Phyllodytes edelmoi. B. Phyllodytes melanomystax. C.

Osteocephalus buckleyi. The white arrowheads indicate the ITS. It should be noted that in order to improve the

detection of ITS in P. melanomystax, the distal telomeric signals are not visualized in the metaphase shown in (B).

https://doi.org/10.1371/journal.pone.0234331.g005
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studied species with the fluorochromes DAPI and CMA3 (O. buckleyi, O. oophagus, O. plani-
ceps, and O. taurinus), centromeres were CMA3

+, in addition to NOR sites (S1 Fig).

FISH experiments with the telomeric DNA probes showed distal signals in Osteocephalus
planiceps and O. taurinus (S3 Fig), while in O. buckleyi, an additional ITS was detected in the

centromeric region of one of the homologues of pair 12 (Fig 5C).

In three metaphase plates of two specimens of Osteocephalus taurinus (2 of 22 cells in PS

430, 1 of 10 cells in PS 467) chromosome variation were detected resulting from spontaneous

fission and fusion rearrangements (Fig 6A–6C). One cell showed two additional small chro-

mosome fragments, but it was not possible to identify the chromosome/s involved in this phe-

nomenon, as no gross morphological differences were detected in the karyotype (Fig 6A). In

the remaining two cells, on the other hand, chromosome fragments and dicentric chromo-

somes were observed, in which the latter were formed by rearrangements involving non-

homologous chromosomes of pairs 1 and 2 (Fig 6B and 6H), or both homologues of pair 1 (Fig

6C and 6I).

Nyctimantis

All Nyctimantis analyzed shared karyotypes with 2n = 24 (FN = 48). In N. siemersi, the three

specimens studied (2♂ and 1♀) had a single secondary constriction pericentromeric on 5q.

Ag-NORs were studied in the two male specimens (LGE 11192, 11194) and corroborated by

FISH in only one of them, LGE 11192 (Fig 7A). In N. rugiceps the NORs were located pericen-

tromerically on pair 5p (Fig 7B), and in N. arapapa distally on pair 11q (Fig 7C).

Nyctimantis siemersi showed C-bands in the centromeric and pericentromeric regions of all

chromosomes (Fig 7D), with CMA3
+ marks on this position (S1 Fig). In N. rugiceps, hetero-

chromatic bands were restricted to the interstitial regions of chromosome pairs 8q and 11q,

and the pericentromeric regions of 10p (Fig 7E). Similarly, in this species, fluorescent CMA3
+

bands were observed on 5p associated with NORs, and the centromeres (S1 Fig). In N. ara-
papa, all chromosome pairs showed faint centromeric C-bands (Fig 7F) that were, in addition

to the NOR sites, DAPI–/CMA3
+ (S1 Fig). In this species, the FISH with the telomeric probe

showed positive signals on the distal region of all chromosomes (S3 Fig). In a single cell of one

individual of Nyctimantis siemersi (LGE 11194), it was possible to detect a chromosomal break

on pair 5q, involving one chromatid at the interstitial region of the NOR sites (Fig 6D).

Trachycephalus

The four analyzed species of this genus had karyotypes with 2n = 24 (FN = 48). The NOR sites

were located on 11q, interstitially in Trachycephalus jordani, and distally in T. dibernardoi, T.

helioi, and T. typhonius (Fig 8A–8D).

C-bands were mainly distributed on the centromeres of all species (Fig 9A–9D), with addi-

tional bands observed distally on chromosome pair 1p in Trachycephalus jordani (Fig 9A),

interstitially on 4p and 12q in T. helioi (Fig 9C), and distally and interstitially on pairs 8q and

9q in T. typhonius, respectively (Fig 9D).

Trachycephalus jordani, T. dibernardoi, and T. helioi showed centromeric DAPI–/CMA3
+

marks in all chromosomes, whereas in T. dibernardoi the centromeres were also DAPI−but it

was not clear a differential pattern for the CMA3 fluorochrome (S1 Fig).

Additional rDNA sites were detected on chromosomes of pairs 2 and 8 in Trachycephalus
helioi (Fig 8B) and of pairs 7 and 10 in T. typhonius (Fig 8D), which was observed in one speci-

men of each species (PS 294 and LGE 18980, respectively). In both cases, the chromosomes

involved showed positive signals after FISH but were negative for silver Ag-NOR staining. In

T. helioi, bright hybridization 18S signals were present (i) on both chromosomes of pair 2p but
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differing in their location, interstitially in one of the homologues and pericentromerically in

the other; and (ii) pericentromerically on one of the homologues of pair 8p. In T. typhonius,

Fig 6. Spontaneous rearrangements and fragile sites in Lophyohylini. A–C, H, I. Osteocephalus taurinus. D.

Nyctimantis siemersi. E. Trachycephalus typhonius. F. Osteopilus vastus. G. Dryaderces pearsoni. Red arrowheads point

chromosome fragments (A–D), whereas blue arrowheads indicate the secondary constrictions not associated with the

NOR sites (D–G). In (B) and (C), the black arrows show the dicentric chromosomes resulting from spontaneous

rearrangements in O. taurinus, and their respective schematic representation is shown in (H) and (I). Inset: partial

mitotic metaphase of Os. vastus.

https://doi.org/10.1371/journal.pone.0234331.g006

Fig 7. Karyotypes of Nyctimantis. A, D. N. siemersi. B, E. N. rugiceps. C, F. N. arapapa. Conventional staining (left)

and C-bands (right). The squares show chromosomes carrying NOR sites: I. Ag-NORs, II. FISH with 18S rDNA.

https://doi.org/10.1371/journal.pone.0234331.g007
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hybridization was observed in only one of the homologues of chromosomes pairs 7q (pericen-

tromerically) and 10q (interstitially).

Another variation regarding the NOR sites was evidenced for the size of Ag-NORs between

homologue chromosomes in Trachycephalus jordani, T. dibernardoi, and T. typhonius (Fig 8A,

Fig 8. Giemsa stained karyotypes of Trachycephalus, Itapotihyla, Osteopilus, and Dryaderces. A. Trachycephalus
jordani. B. T. helioi. C. T. dibernardoi. D. T. typhonius. E. Itapotihyla langsdorffii. F. Osteopilus septentrionalis. G. Os.
vastus. H. Dryaderces pearsoni. Squares show chromosomes bearing the NORs after silver staining (I) and with FISH

using a 18S DNA probe (II).

https://doi.org/10.1371/journal.pone.0234331.g008

Fig 9. C-banded karyotypes of Trachycephalus, Itapotihyla, Osteopilus, and Dryaderces. A. Trachycephalus jordani.
B. T. dibernardoi. C. T. helioi. D. T. typhonius. E. Itapotihyla langsdorffii. F. Osteopilus septentrionalis. G. Os. vastus. H.

Dryaderces pearsoni.

https://doi.org/10.1371/journal.pone.0234331.g009
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8C and 8D). In T. dibernardoi and T. typhonius, it was possible to detect triplications and quin-

tuplications respectively in good quality mitotic metaphases stained with Ag-NORs, which was

also corroborated by FISH (Fig 8A and 8D). In T. dibernardoi, on the other hand, this tech-

nique was not performed in the specimen that showed the heteromorphism.

Finally, in Trachycephalus typhonius pericentromeric secondary constrictions or fragile

sites were detected on chromosomes of pair 3q that were not associated with NORs or C-

bands (Fig 6E). This feature was found in five specimens of Argentine localities, in both homo-

logues in three samples (homozygosis) or only one chromosome in two of them

(heterozygosis).

Itapotihyla langsdorffii

Itapotihyla langsdorffii had a karyotype with 2n = 24 (FN = 48), with NOR sites located peri-

centromerically on pair 11p (Fig 8E). C-bands were observed on the centromeric regions of all

chromosomes and distally on pairs 1–3q (Fig 9E).

Osteopilus

Osteopilus septentrionalis and Os. vastus shared karyotypes with 2n = 24 (FN = 48), with inter-

stitial NOR sites on pair 9q in both species (Fig 8F and 8G).

The two species had similar patterns of C-bands that were restricted to the centromeres,

with additional heterochromatin present in Osteopilus septentrionalis distally in the long arm

of the largest chromosomes (1–4) (Fig 9F and 9G). DAPI–/CMA3
+ fluorescent bands were

observed interstitially on Pair 9q in both species, coincident with the NOR sites, in the distal

region of most chromosomes of Os. septentrionalis and in all the centromeres in Os. vastus (S1

Fig).

In two specimens of Osteopilus vastus, a conspicuous interstitial secondary constriction not

associated with NOR sites were observed on chromosomes 1p (Fig 6F). Curiously, this second-

ary constriction always involved only one chromatid of such chromosome. In one specimen

(Os.5), it was present on both chromosomes 1 in about half of the analyzed cells (14 of 26

cells), whereas in the other specimen (Os.8), this feature was observed only in one chromo-

some 1 and more infrequently (3 of 48 cells).

Dryaderces pearsoni

This species had a karyotype with 2n = 24 (FN = 48) with NORs located interstitially in pair 9q

(Fig 8H). Heterochromatin showed a centromeric pattern, although conspicuous C-bands

were observed interstitially on pairs 6p, 8q, 9q, and 12q, and distally on 11q (Fig 9H). The cen-

tromeres of almost all chromosomes showed DAPI–/CMA3
+ bands, in addition to the NOR

sites. Both homologues of pair 12q exhibited an extra interstitial secondary constriction not

associated with NORs composed of rich DAPI+/ CMA3
– heterochromatin (Fig 6G, S1 Fig).

Discussion

Cytogenetic information available for Lophyohylini currently comprises data on 31 karyo-

typed species of the 87 species (36%) of the tribe, showing a broad diversity in several chromo-

somal characters. Different haploid numbers were reported for the tribe, although karyotypes

with n = 12 that are composed of all bi-armed chromosomes (FN = 48) are common features

present in all studied genera, and represent the plesiomorphic states for n and FN, respectively

[18, this study]. Reductions were recorded in Phyllodytes edelmoi and P. luteolus (n = 11,

2n = 22, FN = 44), while the opposite, increments were observed in Osteocephalus buckleyi
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(n = 14, 2n = 28, FN = 50), Osteopilus wilderi (n = 14, 2n = 28, FN = 52), and Os. ocellatus
(n = 17, 2n = 34, FN = 48).

Tepuihyla and the monotypic genus Phytotriades (P. auratus) remain the only two genera

of Lophyohylini lacking any cytogenetic information. However, according to different phylo-

genetic hypotheses available for the tribe [3,6,9], whatever haploid and (or) fundamental num-

bers are present in these taxa, the plesiomorphic character states for Lophyohylini, n = 12 and

FN = 48 remain unchanged.

It was suggested that within Lophyohylini (except Osteocephalus taurinus candidate species

5), there is a remarkable discontinuity in the size of the first 5 chromosome pairs and the

remaining 7 [4, 21]. However, this feature is not evident when comparing differences between

the size percentage of the haploid set of pairs 5 and 6 in karyotypes of lophyohylines with

2n = 24 (S3 Table).

Interstitial telomeric sequences in Lophyohylini

Interstitial telomeric DNA sequences or ITS is a frequent phenomenon observed in verte-

brates, and may be the evolutionary consequence of chromosome rearrangements (e.g., inver-

sions or fusions), but also of a variety of molecular mechanisms involving transposition and

amplification of telomeric DNA sequences [24,36,37]. Among anurans, the presence of ITS

has been reported in 45 species (see [24,38, for reviews, this study]).

The ITS have rarely been related to taxa that have undergone a process of chromosome

reduction. However, it is possible to find this association in a few species of Aplastodiscus and

Scarthyla goinorum (Hylidae), and Leptodactylus aff. podicipinus (Leptodactylidae). In Aplasto-
discus, two independent reductions changed the plesiomorphic haploid number of n = 12 to

n = 11 in the species of the A. albofrenatus group, and to n = 10 and n = 9 in the species of the

A. albosignatus group [39–41]. It was stated that the ITS reported in Aplastodiscus may not be

directly related to the chromosome reductions observed in the genus [40]. However, it should

be noted that ITSs were only detected in species with reduced karyotypes and not in A. perviri-
dis, the only taxon with n = 12 studied by FISH with a telomeric DNA probe. Similarly,

Scarthyla goinorum is the only species within Pseudini that has a reduced karyotype (n = 11),

in addition to the presence of ITS on chromosomes of pair 3 [15]. Based on these two facts,

Suárez et al. [15] proposed that the ITS in this species would be directly related to karyotype

reduction. It must be noticed at this point that only one additional species of the tribe with a

non-reduced karyotype (n = 12) had been studied by FISH (i.e., Lysapsus laevis). In Leptodac-
tylus sp. aff. podicipinus (n = 10, 2n = 20), ITS are present in the centromeric region of a small

pair of chromosomes, but centromeric ITS were also confirmed in L. podicipinus, a phyloge-

netically related species that shows the plesiomorphic karyotype of Leptodactylidae (n = 11,

2n = 22, [42]).

In 14 species of lophyohylines telomeric DNA was mapped by FISH, and ITS were present

in 4 of them: Itapotihyla langsdorffii, Phyllodytes edelmoi, P. melanomystax, and Osteocephalus
buckleyi [19,22, this study]. In a similar way to what is observed in almost all other species of

anurans, the heterochromatic ITS (het-ITS) pattern observed in the karyotype of I. langsdorffii
represents an apomorphic condition, which is probably related to dispersion and amplification

mechanisms responsible for the internalization of telomeric-like DNA sequences [22].

Gruber et al. [22] reported ITS in Phyllodytes edelmoi, later described as het-ITSs by Schmid

and Steinlein [38] and Schmid et al. [18]. However, it should be mentioned that according to

the original description, no C-bands were detected for this species [22]. Indeed, we did not

detect for this species positive C-bands apart from those of the centromeres. The similar gross

morphology of pairs 1 and 2 between the studied species of Phyllodytes [22, this study] and the
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presence of ITS in chromosomes of pair 2 in P. melanomystax, suggest that these pairs would

not have participated in the karyotype reduction of the genus (from 24 to 22) and that ITS

would have an earlier evolutionary origin. Nonetheless, we cannot discard further rearrange-

ments involving these pairs of chromosomes (see NOR sites and their phylogenetic informa-

tion in Lophyohylini). The absence of ITS signals in P. gyrinaethes provides evidence to

propose that the ITS of chromosome pair 2 may represent a putative synapomorphy of an

internal clade of Phyllodytes, comprising species with 2n = 22 and 2n = 24. However, a better

sampling is necessary since only 5 of 14 species of the genus were karyotyped, and only three

of them studied by FISH with telomeric DNA.

Among six studied species of Osteocephalus [19, this study] there is a plesiomorphic karyo-

type excepting O. buckleyi (n = 14, 2n = 28, FN = 50). Different sources of evidence (i.e., C-

bands, NORs, chromosome size, and morphology) provide further support that the six minor

pairs are conserved in the clade Osteocephalus + Dryaderces (see below). The presence of peri-

centromeric ITS on both homologues of pair 13 in O. buckleyi would not be associated with

the chromosome reorganization observed in this species, and possibly originated by different

mechanisms.

Fragile sites and their possible role in the chromosomal evolution of

Lophyohylini

The secondary constrictions or chromosome gaps are usually the consequence of chromosome

regions that are associated with the NORs sites, although they can also be formed by constitu-

tive heterochromatin or fragile sites [24]. Fragile sites are defined as specific chromosomal

regions that are prone to break and participate in chromosome rearrangements. Unlike

anurans, this feature has been extensively studied in humans, and depending on their preva-

lence in a population, they can be defined as rare or common fragile sites (see [43] for a

review).

As in other groups of anurans, the occurrence of spontaneous chromosome rearrangements

in natural populations of Hylidae is extraordinarily infrequent and, as far as we know, only

two isolated cases have been documented in addition to the present study. Feitosa et al. [44]

studied the effects of naturally occurring radiation in the frequency of chromosomal rear-

rangements in populations of Aplastodiscus perviridis and Boana albopunctata from Morro do

Ferro (Minas Gerais, Brazil). Additionally, Anderson [19] described chromosomal abnormali-

ties in the two genera of lophyohylines Osteocephalus and Osteopilus.
In this work, we found variation in several species of Lophyohylini regarding secondary

constrictions not associated with NORs in Dryaderces pearsoni, Osteopilus vastus, and Trachy-
cephalus typhonius; spontaneous chromosome rearrangements in Nyctimantis siemersi and

Osteocephalus taurinus; and NORs site polymorphisms in N. siemersi and some species of Tra-
chycephalus. Although we did not systematically evaluate this variation because it was not our

main objective, the frequency of occurrence of this rearrangement is remarkable compared to

other anuran groups and deserves to be discussed.

Anderson [19] highlighted that in specimens of Osteocephalus taurinus candidate species 5

from French Guiana (as O. taurinus), there were fragile interstitial sites in coincidence with

heterochromatic regions in medium-sized and small chromosomes (pairs 6 and 9). We could

also infer the presence of fragile sites in O. taurinus, by the occurrence of spontaneous rear-

rangements that generated dicentric chromosomes and chromosome fragments but involving

the first two chromosomes pairs. Although almost all interstitial heterochromatic bands previ-

ously described by Anderson [19] (inferred from the ideogram figure), were not detected in

the present study for O. taurinus, it is tempting to propose that there is co-location between
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the putative sites where such chromosome breakpoints occurred in O. taurinus and those

interstitial heterochromatic bands of O. taurinus candidate species 5.

A chromatid gap or secondary constriction, not associated with NORs or heterochromatin,

was observed in two specimens of Osteopilus vastus: present on a single chromatid of only one

(heterozygosis) or the two chromosomes of pair 1 (homozygosis). As stated, our cell prepara-

tions of Osteopilus were obtained from lymphocyte cultures submitted to a BrdU treatment.

Although we do not have an explanation about this rare feature, it is interesting to note that all

records in both specimens occurred on precisely the same chromosome region. Under certain

conditions, fragile sites can be induced at a low frequency as single chromatid gaps or breaks

in cultured cells [43]. Although this could be a possible cause for this extraordinary phenome-

non, this was never mentioned in similar studies performing BrdU induction in anurans (e.g.,

[14,21,22,30,31,45–49]). Interestingly, the remarkable similarity between chromosomes 1 and

2 of Os. ocellatus and Os. wilderi, respectively [18,19,23], resembles the morphology of chro-

mosome 1 of Os. vastus if we consider a chromosome fission at that site, which would suggest

that the putative fragile site observed in Os. vastus could have played a role in the chromosomal

evolution of the genus.

Almost all species of Osteopilus share the plesiomorphic karyotype number, with the excep-

tions of Os. wilderi [19] and Os. ocellatus [18,19,23]. The different diploid numbers present in

these two species could be explained by the occurrence of translocations involving whole-arms

(i.e., Robertsonian translocations), although other rearrangements could play a role in the

change of the FN from 48 to 52 observed in Os. wilderi. The phylogenetic relationships of

Osteopilus [3,9] suggest independent origins for the changes observed in Os. ocellatus and Os.
wilderi. However, it must be noticed that the karyotype of Os. marianae (inferred from the

ideogram representation in [19]), differs in chromosome morphology and size from that of

other species of the genus with 2n = 24 chromosomes, particularly regarding pairs 4 and 5. It is

possible that the karyotype of Os. marianae could have had additional rearrangements that

have led to mimic the plesiomorphic state. In this sense, it is essential to study the cytogenetics

of Os. crucialis, the sister species of Os. ocellatus, and also perform differential cytogenetic tech-

niques in Os. marianae.

NOR sites and phylogenetic information

Within Lophyohylini, most species show a single pair of NORs located on small pairs of chro-

mosomes with similar morphology [18, this study]. This condition is also present in Copho-

mantini [17], Scinaxini [13,16], and Hylini [18], suggesting a putative homeology between the

chromosomes carrying this marker [13,14]. Moreover, the BrdU replication banding pattern

information gathered from different neotropical species of hylids strengthens this hypothesis

[21, 49].

Like other groups of Hylidae, the NORs of lophyohylines show interesting variation. First,

their presence in chromosomes of pair 11 that is the plesiomorphic condition, observed in

almost all species of the major clade comprising Trachycephalus, Corythomantis, and Nycti-
mantis, which is also shared by the basal monotypic genus Itapotihyla (i.e., I. langsdorffii)
[21,22,50, this study]; in this context, it would be the most parsimonious condition expected

for its sister taxon Phytotriades auratus. In Nyctimantis, there are two patterns for the chromo-

some location of the NORs. In N. arapapa, N. bokermanni, and N. brunoi, they are terminal on

pair 11q (as pair 10 in [21,22], this study), whereas in N. siemersi and N. rugiceps they are peri-

centromeric on chromosome pair 5 [20, this study]. The NORs on pair 5 observed in N. rugi-
ceps and N. siemersi, would likely have a common origin and are a putative synapomorphy of a

less inclusive clade within Nyctimantis that includes these species. The differences in the
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intrachromosomal position of this marker between them, on 5p and 5q respectively, would

possibly be the consequence of subsequent modifications (e.g., pericentric inversion). Indeed,

this assumption is not unreasonable since both taxa are closely related according to several

phylogenetic studies [3,6–9,51,52]. However, to test this hypothesis, it is still necessary to study

N. galeata and N. pombali included in this clade, and are most closely related to N. rugiceps.
Three genera of the clade composed of Tepuihyla, Osteocephalus, Dryaderces, Osteopilus,

and Phyllodytes [3] share NOR sites localized interstitially on a small-sized metacentric pair of

chromosomes (i.e., pair 9 [19, this study]), differing significantly in size from the pair 11

observed in other lophyohylines. The NORs on pair 9 are found in species of Osteocephalus
(O. taurinus candidate species 5, O. taurinus, O. oophagus, O. planiceps, and O. leprieurii
inferred in this study by the presence of secondary constrictions), Dryaderces (D. pearsoni),
and Osteopilus (Os. dominicensis, Os. septentrionalis, and Os. vastus). Similarly, in Osteocepha-
lus buckleyi and Os. wilderi, despite having a higher number of chromosomes and NORs on

pairs 11 and 9, respectively [19, this study], the similarity between the chromosomes carrying

NORs in these species and those with 2n = 24 also suggest homeology of these elements. In

this way, NORs on pair 9 represents a putative synapomorphy of this poorly supported clade

and remains to be studied in Tepuihyla. Moreover, an interstitial C-band on pair 8 in the spe-

cies of Osteocephalus, including the observations in O. buckleyi (on pair 10), and in Dryaderces
pearsoni [19, this study], represents a putative synapomorphy for Dryaderces + Osteocephalus.

The NORs occur on pair 2 in Phyllodytes edelmoi and P. luteolus [22, this study], pair 7 in P.

melanomystax, and pair 8 in P. gyrinaethes and P. praeceptor (this study). This variation and

additional chromosomal differences (i.e., the morphology of pairs 4, 6, and 7) suggest that

cytogenetics is a promising source of information for the systematics of Phyllodytes; however,

its phylogenetic interpretation is sharply limited by the still sparse and scattered cytogenetic

sampling of the genus.

Polymorphisms for the NOR sites in Lophyohylini

In anurans, polymorphisms for the location and size of the NORs are frequent, and in about

half of the reported cases have been observed with in situ detection with rDNA in addition to

Ag-NOR staining [24,30,39,50,53–65]. This marker was studied in almost all lophyohylines

showing an impressive variation (S1 Table).

In Osteopilus septentrionalis, intra and interchromosomal differences of NORs location

were reported (i.e., interstitial on 9q), due to paracentric inversions of pair 9 and to a reciprocal

translocation in heterozygosis involving pairs 6 and 9, respectively [19]. Although such varia-

tion was not observed in other studies [18,23,66, this study], in the figures provided by Schmid

[66] and Schmid et al. [18] for this species (Fig 8C and 571, respectively), the Ag-NORs marks

are located in a pericentromeric position. Moreover, multiple Ag-NORs were described in Os.
ocellatus [18,19], supporting the idea that the NORs in Osteopilus are highly variable.

Morand and Hernando [20] studied the Ag-NORs in three females of Nyctimantis siemersi,
reporting that 60% of the cells had NORs on one or two chromosomes of pair 5, while the

remaining 40% had them interstitially on one homologue of pair 1. In our study, Ag-NORs

were observed in only one chromosome of pair 5 in two males, corroborated by FISH in one

of them, and inferred by the presence of remarkable secondary constriction in a female. A sim-

ilar feature was reported in the lophyohylines Corythomantis greeningi and Nyctimantis brunoi,
although, in these species, the occurrence of a single Ag-NORs was rejected by FISH [21]. The

complete deletion of the NOR sites, as it is observed in N. siemersi, is infrequent among

anurans ([66]; see [24] for a review), being difficult to understand its high prevalence without a

sex association.
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In Trachycephalus, four species show conspicuous secondary constrictions associated with

Ag-NORs: T. dibernardoi, T. cunauaru (as Trachycephalus sp. in [18,22]), T. jordani, and T.

typhonius, which was additionally confirmed by FISH in the last two species [22, this study].

Heteromorphisms for the size of the NORs were observed in other species of lophyohylines:

Corythomantis greeningi, Itapotihyla langsdorffii, Nyctimantis bokermanni, Osteocephalus fusci-
facies, and P. luteolus [21, this study]. Indeed, the occurrence of variable size between homo-

logs carrying the NOR sites is commonly reported, where unequal crossing between

homologues during the first meiotic prophase would change the position of rDNA clusters

forming tandem multiplications [66,67].

Finally, the lack of silver impregnation affinity in rDNA positive signals after FISH was con-

firmed in this study in the two species of Trachycephalus, T. helioi and T. typhonius, denoting

that were transcriptionally inactivated (see [24] for a review). The presence of polymorphic

silent NOR sites in Anura is an infrequent feature described only in Craugastor fitzingeri [24],

Hyla chrysoscelis, H. versicolor [30], and Scinax tripui [65]. Although this could be the conse-

quence of sampling bias, as the FISH technique is not routinely used on several specimens to

establish a correspondence between the Ag-NOR bands and rDNA sites. Because this feature

has so far been poorly studied in this group, it is still premature to draw conclusions about the

presence and the position of silenced rDNA sites.

Conclusions

Among vertebrates, the chromosome evolution of anurans has traditionally been considered

to be stable due to the apparent high conservatism of karyotypes of several taxa. However, the

recent discovery of significant variation, particularly regarding spontaneous numerical and

structural alterations, has started challenging this idea. For instance, Schmid et al. [24,68]

described unprecedented rates of spontaneous chromosomal anomalies in several species of

direct-developing frogs of the family Hemiphractidae, and particularly of the brachycephaloid

families Craugastoridae and Eleutherodactylidae, reaching frequencies of 0.7%, 10%, and 15%

respectively. In the present study, Lophyohylini shows a complex chromosome evolution as

well, which has led to complex karyotypic changes (Osteopilus, Osteocephalus, and Phyllo-
dytes). The high rate of rearrangements observed in lophyohylines represents reliable evidence

that fissions and reciprocal translocations would be one of the leading candidate mechanisms

responsible for the increase of the 2n and FN found in Osteopilus and Osteocephalus.
Besides, Lophyohylini exhibits other interesting chromosomal variations not solely

restricted to the number, size, and the activity of NORs or the occurrence of ITS, but related to

the presence of chromosomal rearrangements and the intriguing fragile sites. The latter likely

presents a still unreported diversity, since no clear pattern is evident, as they can vary in the

content of heterochromatin or type. For instance, being DAPI+/CMA3
– in Dryaderces pear-

soni, DAPI–/CMA3
+ in Nyctimantis siemersi, neutral for both fluorochromes in Trachycepha-

lus typhonius, or even can vary intrachromosomally as in Osteopilus vastus. The fluorochrome

CMA3 is another promising character that has shown a centromeric CMA3
+ pattern on almost

all studied species of the tribe, excepting Os. septentrionalis, Phyllodytes melanomystax, P. prae-
ceptor, and T. dibernardoi.

In a broad sense, regarding the reported cytogenetic variation, Lophyohylini resembles

what is observed in direct-developing frogs of Brachycephaloidea and Hemiphractidae. Fur-

ther studies in Phytotriades and Tepuihyla and an expanded sampling in the variable genus

Phyllodytes would help to understand the puzzling cytogenetics of these intriguing frogs.
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Marciano-JR, John E. Wiley, Diego Baldo.
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Writing – review & editing: Pablo Suárez, Juan M. Ferro, Cleusa Y. Nagamachi, Dario E. Car-
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