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A general algorithm for the free vibration analysis of stepped and tapered beam type structures with
multiple elastic supports is developed in this work. The analytical formulation is based on the Ritz
method and on the use of orthogonal polynomials within the framework of the first order shear deforma-
tion beam theory. To verify the validity and convergence of the general algorithm several numerical
examples are analyzed. A further example concerned with the determination of the dynamical properties
of a bell tower is also presented and compared with the finite element method and experimental results.
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1. Introduction

Several structures typically used in practice engineering can be
represented as multispan beams, being the development of model-
ing tools for the study of the dynamic behavior of these structures
of great interest. The finite element method allows representing
with great detail the geometric dimensions of a structure, the stiff-
ness and mass distributions obtaining realistic numerical, but
involving a high computational cost. This computational work in-
creases, when different complicating effects such as stepped or ta-
pered cross sections are included. In addition, continuous models
may imply more complex considerations in the formulation but,
in general, require less computational work and less time computa-
tional preprocessing for their resolution.

Several methods have been developed to investigate the free
vibrational response of Timoshenko beams. Farlghaly [1] presents
an analytical study of a system of elastically supported multi-span
uniform Timoshenko beams in which the beam system is loaded
with end as well as intermediate concentrated masses. Relative
span and relative thickness parameters are defined and included
in the analytical formulation allowing the determination of natural
frequencies of stepped beams. Although the exact natural frequen-
cies for systems of two and three spans have been computed, the
analytical procedure requires a particular solution for each case.
Tong et al. [2] presents the step-reduction method to analyze the
ll rights reserved.
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free vibrations of tapered beams which is based on replacing the
non-homogeneous beam with variable cross section by a number
of homogeneous stepped beams with constant cross-section. Lin
and Chang [3] analyze the free vibration of a multi-span
Timoshenko beam with an arbitrary number of flexible constraints
by considering the compatibility requirements on each constraint
point and using a transfer matrix method. Lin [4–6] determined
the natural frequencies and mode shapes of uniform Bernoulli
and Timoshenko multi-span beams carrying a number of various
concentrated elements including masses and springs.

The present work is oriented to the development of computa-
tional tools that can be used to analyze the dynamic behavior of
beam type structural elements. Following this objective, a general
algorithm to determine the dynamical behavior of variable thick-
ness thick beam structures, based on the Ritz method, is developed
generalizing and extending the methodology proposed by Nallim
and Grossi [7] for Bernoulli beam analysis. This analytical formula-
tion uses characteristic orthogonal polynomials as approximating
functions [8] and allows the study of beams with various compli-
cating effects such as stepped and tapered cross sections, presence
of arbitrarily placed concentrated masses and different support
conditions, including elastic rotational and translational
constraints. In addition, the problem is solved considering the
shear strains through the Timoshenko theory for thick beams. In
order to validate the algorithm and its computational implementa-
tion, natural frequencies for different cases presented by Rossi
et al. [9] and by Tong et al. [2] are compared with results obtained
using the proposed formulation and three-dimensional finite ele-
ment models.
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Fig. 1. Beam with different complicating effects.
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Finally, the proposed algorithm is used for the analysis of the
bell tower of the church Nuestra Señora de la Candelaria de la
Viña placed in Salta city (Argentina). The model was calibrated
with experimental measurements of natural frequencies under
environmental vibration [10–13]. The results determined using
the present method are compared with results from a three-
dimensional finite element model, showing that the computational
work needed to solve the problem is considerable lower.

2. Proposed algorithm for dynamic study of beams

The proposed algorithm for the dynamic study of beams is
based on the Ritz method, using the orthogonal polynomial shape
functions proposed by Bhat [8]. In a previous work, Nallim and
Grossi [7] developed a general algorithm to determine the natural
frequencies of beams with several complicating effects, including
variable thickness, presence of an arbitrarily placed concentrated
mass and different end conditions. This previous work is now
extended and generalized considering the shear strains through
the incorporation of the Timoshenko theory for thick beams, vari-
able stepped and tapered cross sections, and also the presence of
elastic restraints at arbitrary positions (see Fig. 1). In these cases,
the strain energy Ub and kinetic energy T of a beam are given
respectively by:

Ub ¼
Z ‘
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where ‘ is the total length of the beam, Að�xÞ is the cross-sectional
area, q is the material density, Ið�xÞ the moment of inertia, wð�x; tÞ
is the transverse displacement and wð�x; tÞ is the rotation of the beam
sections.

Let us consider the beam shown in Fig. 1, defined by a number
Ns of spans. To simplify the theoretical framework the dimension-
less variable x ¼ �x

‘
is introduced. The ends of the beam can be elas-

tically restrained against rotation and translation and classical end
conditions (free, simply supported or clamped) can be generated as
particular cases. Also, rotational springs t and translational springs
s attached to the beam in different points are considered in the
analysis. Each beam span q is defined between coordinates xq

and xq+1 (q = 1, . . . , Ns). The longitudinal elastic modulus Eq, shear
modulus Gq, density qq and the shear correction factor jq are
constant in each span, while the area Aq(x) and moment of inertia
Iq(x) may vary linearly. Therefore, considering a beam with rectan-
gular cross section with width bq(x) and depth hq(x), it is possible to
define the corresponding variable area and moment of inertia
though the next set of equations:
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AqðxÞ ¼ bqðxÞhqðxÞ ¼ Aq½1þ cbqðx� xqÞ�½1þ chqðx� xqÞ�;
AqðxÞ ¼ bqðxÞAq; Aq ¼ bqhq ð6Þ

In free vibrations of the beam, the transverse deflection w(x, t)
and the normal rotation of w(x, t) can be expressed as:

wðx; tÞ ¼WðxÞeixt wðx; tÞ ¼ WðxÞeixt ð7Þ

where WðxÞ and W(x) are the amplitudes defined by approximation
functions and x is the angular frequency. Each approximating func-
tion must be continuous, have a continuous first derivative, and
must satisfy the geometric boundary conditions of the system.
Based on the work of Bhat [8] and Nallim and Grossi [7], the approx-
imation functions are defined by:

WðxÞ ¼
Xn

i¼1

cipiðxÞ WðxÞ ¼
Xn
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di
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‘
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where ci and di are arbitrary coefficients to be determined and pi(x)
and ui(x) are sets of n orthogonal polynomials. The process to
assemble the orthogonal polynomials is detailed in Nallim and
Grossi [7].

For the beam depicted in Fig. 1 and taking into account Eq. (7),
the maximum strain energy is expressed as:

Umax ¼ Ub;max þ Ur;max þ Ut;max ð9Þ

where Ub,max is the maximum strain energy due to bending of the
beam, Ur,max is the maximum strain energy of rotational springs
and Ut,max is the maximum strain energy of translational springs.
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Considering the maximum shear strains, the strain energy of the
beam is obtained using Eqs. (1) and (7) as
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The maximum strain energies associated with the deformation
of the rotational springs and translational springs result:

Ur;max ¼
r1

2‘2

XNr

j¼1

hrot
j W xr

j

� �h i2
ð11Þ

Ut;max ¼
t1

2

XNt

j¼1

htras
j W xt

j

� �h i2
ð12Þ

where rj and tj are the jth rotational and translational spring con-
stants, Nr and Nt are the total number of each type of springs with
hrot
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rj
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and htras
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.

The maximum kinetic energy of the beam is given by:
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Finally, the maximum kinetic energy of the attached masses is
given by:
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where mi is the magnitude of the ith attached mass, Nm is the total
number of masses attached and hm

j ¼
mj

m1
.

The Rayleigh quotient for the analyzed mechanical system is
defined by the following expression:
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The expression of X2 in Eq. (15) is, therefore, depending on the
parameters ci and di that have been introduced in this equation due
to the assumed shape functions. The necessary condition for the
minimization of X2 with respect to the coefficients ci and di are
@X2
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¼ 0 and @X2
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¼ 0. From these two conditions the following sys-

tem of 2n equations is obtained:
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The solution of Eq. (16) leads to the following eigenvalue
problem:

½K�fzg ¼ X2½M�fzg ð17Þ

The solution of Eq. (17) results in approximations to the first n
natural free vibration frequencies of the mechanical system. Final-
ly, if the cross sections of the beam in each span are constant the
functions aq(x) and bq(x) are eliminated from the Eq. (16).
3. Convergence analysis

The results summarized in Table 1 are used to analyze the con-
vergence of eigenfrequencies based on the number of coordinate
functions employed for the deflection and rotation. All results pre-
sented correspond to the natural frequencies of a rectangular cross
section cantilever beam with a length–hight ratio equal to 10. For
comparison purpose, results of finite element method using 3D so-
lid elements in SAP2000 [14] are also included in Table 1. It is ob-
served that for the frequencies associated with the lower modes,
convergence is achieved using a smaller number of orthogonal
polynomials than for the higher modes. In addition, results with
reasonable accuracy are obtained, at least to the third mode, using
8 polynomials.



Table 1
Dimensionless natural frequencies used for convergence analysis.

b = 0.5 h Xi ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1A1L4=E1I1

q
Þxi
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A1‘
2 )h1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
12g1

p
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v = 0.3 ffiffiffiffiffiffig1
p ¼ 1

1200

Freq. Sap2000 3D model Results using the algorithm according
to the number of polynomials
2 4 6 7 8 9 10 11 12

X1 3.5355 4.3900 3.4897 3.4884 3.4884 3.4884 3.4884 3.4884 3.4884 3.4884
X2 21.2042 51.8700 21.0019 20.9071 20.9070 20.9069 20.9069 20.9069 20.9069 20.9069
X3 55.8402 79.8207 55.5640 54.9953 54.9928 54.9884 54.9884 54.9884 54.9884
X4 101.4533 176.8732 103.1940 102.0666 99.8254 99.7928 99.7477 99.7475 99.7472
X5 154.6768 233.9861 161.1656 158.0084 152.2514 152.0756 151.8493 151.8466
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4. Numerical examples

4.1. Example 1: natural frequencies of cantilever stepped beam

A cantilever stepped beam is analyzed in this section. Table 2
summarizes the first five dimensionless natural frequencies ob-
tained with the method developed in this paper and with a finite
element model defined in Sap2000 [14] (FEM) using frame
elements. The frequency coefficients are also compared with the
exact natural frequencies obtained by Rossi et al. [9]. After a con-
vergence analysis it was found that the best results are obtained
using 96 frame elements in the Sap2000 model while only 10 poly-
nomials were needed in the approximating functions for the pres-
ent method.

4.2. Example 2: natural frequencies of clamped–clamped tapered beam

A clamped–clamped tapered beam is analyzed in this section.
The first four dimensionless natural frequencies calculated with
the method developed in this paper and with a finite element mod-
el [14] using 3D solid elements are included in Table 3. In the
Sap2000 model [14], after a convergence analysis, 10,240 solid ele-
ments are employed, while only 10 polynomials are used in the
present method. In addition, the results obtained using the stepped
reduction method presented by Tong et al. [2] are shown in that ta-
ble for comparison purpose. It can be noticed that the present
method provides a better agreement to the 3D model results.
5. Free vibration analysis of a bell tower

5.1. Experimental analysis

The algorithm developed in Section 2 is applied here to the
dynamical analysis of a real structure: the bell tower of the church
‘‘Nuestra Señora Candelaria de la Viña’’ (Salta, Argentina), built in
1895. Fig. 2 shows a picture of the tower and the side and top
layouts.

The numerical models were calibrated using the first natural
frequencies of the tower determined from ambient vibration tests.
This experimental procedure is based on the determination of the
dynamical properties of a structure from the analysis in the
frequency domain of the acceleration caused by environmental
vibrations and measured at different points of the structure. One
advantage of this method is that no special equipment is required
to generate the excitement of the structure because the environ-
mental vibrations are always present.

The method takes into account that for structures with low
damping and well separated modes of vibration, the peaks in the
Fourier transform or power spectral density (PSD) of the measured
accelerations (caused by environmental vibrations), match the nat-
ural frequencies [10,11].

For the measurement of accelerations a 12-channel digital re-
corder model K2 of Kinemetrics Inc. and two triaxial accelerome-
ters are used [15]. Fig. 3 shows the layout of the accelerometers
located at the top level of the tower (26.8 m high), one is inside
the body of the recorder (Accel 1) and the other is independent
and connected to it by a cable (Accel 2). Each accelerometer can
measure accelerations in three orthogonal directions.

Taking into account the support conditions of the analyzed
structure and that in this study the experimental determination
of the modal shapes was not necessary; it was considered that
the measurement of the accelerations only at the top of the tower
was sufficient to define the natural frequencies of the bell tower
[10].

Several ambient vibration tests during 30 min each were per-
formed, saving data at a velocity of 200 samples per second.
Fig. 4 shows the power spectral density function for acceleration
record measures in one test in the North–South direction. The
power spectral density was computed using a one-sided autospec-
tral density function [16] implemented in the PSD program version
2.3.2 of Kinemetrics [17].

Table 4 shows the first three natural frequencies obtained from
the peaks of the records for the North–South (x) and East–West (y)
directions. Even though peaks may be distinguished for higher fre-
quencies, it was considered that due to inevitable noise present in
the signal there is some uncertainty in identifying natural frequen-
cies in this range.
5.2. General considerations for the numerical analysis

Two numerical models for obtaining the dynamic behavior of
the bell tower are described in this section. The first one is based
on the finite element method and the second one in the algorithm
proposed in this paper. In the formulation of both models the fol-
lowing considerations are adopted:

(a) The base of the tower is fixed.
(b) The entire tower is built using unreinforced masonry with a

uniform density of 1900 kg/m3 and Poisson ratio equal to
0.15.

The models are defined following the tower geometry. An
equivalent global elastic modulus E is obtained by applying the fi-
nite element and the analytical methods for different E values until
a minimum difference between experimental and numerical fun-
damental frequencies is obtained [11–13].



Table 2
Dimensionless natural frequencies for stepped beam case.
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v = 0.3
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p

Frequencies Exact solution (Rossi et al. [9]) Present method Sap2000

0.0267 X1 3.80 3.80 3.81
X2 20.72 20.86 20.88
X3 51.68 52.04 52.63
X4 96.39 96.44 99.02
X5 148.97 149.82 154.16

0.04 X1 3.77 3.77 3.79
X2 19.80 19.90 20.11
X3 47.35 47.62 48.92
X4 84.14 84.21 87.84
X5 125.06 125.47 131.26

Table 3
Dimensionless natural frequencies for tapered beam case.
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Xi ¼ ð
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E = 210 GPa
G = 80 GPa

ffiffiffiffiffiffig1
p ¼ 0:02866

Frequencies Present method Sap2000 3D model Stepped reduction method (Tong et al. [2])

X1 15.65 16.06 15.64
X2 41.07 42.36 40.92
X3 76.07 78.90 75.54
X4 118.22 123.21 116.96
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5.3. Finite element model

The modeling of the tower with 3D finite element is performed
using SAP2000 [14]. The body of the tower was modeled with 8-
node solid elements, while 4 nodes shell elements were used for
the dome. The model consists of 8213 nodes, 5563 solid elements,
144 plate elements, resulting in 24,630 degrees of freedom. The
minimum difference between the natural frequency measured
and calculated is obtained for an elastic modulus of the material
equal to 1.96 GPa. This value is between the typical ranges of the
elastic modulus of unreinforced masonry. Table 5 shows the fre-
quencies and associated vibration modes of the structure deter-
mined with this numerical model.
5.4. Model based on the Ritz method

Fig. 5 and Table 6 summarize the simplifications and parame-
ters adopted for the determination of natural frequencies employ-
ing the proposed algorithm. The dome of the tower is represented
by means of a lumped mass attached to the tower at the top end by
a large rigidity and zero density elements. The magnitude of the
lumped mass is determined as the sum of the masses of the dome’s
architectural and structural components and the length of the ele-
ment to which it is attached is defined considering the position of
the dome mass center. The part of the tower corresponding to the
belfry (span 4) contains important openings in their sides, so it is
difficult to determine the exact shear correction coefficient. Due
to variations of this coefficient have a little influence on the results
the coefficient is taken equal to 5/9.
Once the geometry is defined the modulus of elasticity of the
model is found following the procedure described in Section 5.2.
The natural frequencies corresponding to the first two modes are
depicted in Table 7.
5.5. Comparison of experimental and analytical results

Table 8 summarizes the first natural frequencies determined
experimentally and those obtained with the numerical models in
the x direction (North–South). The results obtained with the 3D fi-
nite element model allows identifying flexural and rotational
modes, by comparing these results with the experimental mea-
surements it is concluded that the first two experimentally deter-
mined frequencies correspond to flexural modes, while the third
corresponds to a torsional mode. The proposed analytical algo-
rithm considers only displacements in the plane, so it is not possi-
ble to determine the rotational modes.

From the analysis of results it can be considered that both
methods represent with a good degree of approximation the real
dynamic behavior of the tower. The differences between the ana-
lytical and experimental results are mainly attributed to the uncer-
tainty about the exact definition of the geometry of the tower, and
the lack of uniformity in both the density distribution and the elas-
tic modulus of the material (which are assumed as uniform).

Once the models have been calibrated, the finite element meth-
od gives better approximations for the higher modes allowing a
more detailed definition of the structural elements and considering
a three-dimensional behavior. Despite this, the algorithm based on
the Rayleigh–Ritz method has the advantage of requiring much



Fig. 2. View and scheme of the bell tower.

Fig. 3. Arrangement of accelerometers.

Table 4
Natural frequencies determined experimentally.

Accelerometer Accel 1 Accel 2

Direction x y x y

f1 1.37 1.37 1.37 1.37
f2 4.10 3.91 4.10 3.91
f3 5.08 5.08 5.08 5.08
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less computational effort, both in regard to preprocess (data entry)
and the resolution time.
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Fig. 4. Power spectral density function for accel
6. Conclusions

A general algorithm, based in the variational Raleigh–Ritz meth-
od, for the analysis of thick beams with various complicating ef-
fects is presented in this work. The proposed algorithm allows
the determination of natural frequencies of beams including shear
strains in the kinematics by means of the Timoshenko beam
theory. The general algorithm is validated comparing the natural
frequencies calculated with exact and approximated results pre-
sented in the literature and also with finite element models,
showing a rapid convergence and very good agreement.
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Table 5
Frequencies and modal shapes-3D finite element model.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

f1 = 1.37 Hz f2 = 1.37 Hz f3 = 4.36 Hz f4 = 4.42 Hz f5 = 5.25 Hz
Flexural in x Flexural in y Flexural in x Flexural in y Torsional

Fig. 5. Simplified scheme of the tower.

Table 6
Sections properties for algorithm analysis.

Span Area
(m2)

Inertia
(m4)

Density (kg/m3) Shear
coefficient, j

6 1 � 106 1 � 106 (23,000 kg concentrate
mass)

5/6

5 13.80 36.07 1900 5/9
4 6.26 21.51 1900 5/9
3 13.80 36.07 1900 5/9
2 27.51 86.52 1900 2/3
1 41.28 206.08 1900 17/24

Table 7
Frequencies of the model based on Rayleigh–
Ritz method (Hz).

Mode Frequency

Mode 1 1.37
Mode 2 4.87

Table 8
Comparison of frequencies obtained from different methods (Hz).

Frequency Experimental MEF 3D Raileigh–Ritz

f1 1.37 1.37 1.37
f2 4.10 4.36 4.87
f3 5.08 5.25 –
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Additionally, the first natural frequencies of the tower of a
church are determined by means of environmental vibration test-
ing using only the acceleration measurement recorded in the high-
est accessible point. The natural frequencies of the bell tower using
the proposed analytical formulation and the finite element method
are also obtained. It is noticeable that the proposed method re-
quires less computational work to represent the dynamic behavior
of the tower.

Finally, it is important to point out that the proposed algorithm
results a useful tool for studying dynamic behavior of beam type
structures with precision and simplicity. It should be noted that
a good definition of the mechanical and geometrical properties
leads to more accurate determination of frequencies employing
this method.
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