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Abstract.  Percolation and jamming of linear k-mers (particles occupying k 
adjacent sites) on two-dimensional square lattices with impurities have been 
studied by numerical simulations and finite-size scaling analysis. The model 
oers a simplified representation of the problem of percolation in amorphous 
solids, where the presence of defects in the system is simulated by introducing 
a fraction of imperfect bonds ρ, which are considered forbidden for deposition. 
The dependence of percolation and jamming thresholds on the concentration 
of defects was investigated for dierent values of k, ranging from 2 to 64. The 
results obtained show that: for each fixed value of k, percolation can occur when 

ρ is smaller than a certain value ρ*k ; and in the range ρ ρ0 *
k⩽ ⩽ , the percolation 

threshold is practically independent of the fraction of defects. The behavior of 

ρ*k  as a function of k indicates that the percolation of linear k-mers on square 

lattices is impossible even for an ideal lattice if k 5500⪆ . Critical exponents were 
also calculated to show that the universality class corresponding to ordinary 
percolation is preserved.
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1.  Introduction

Percolation is currently a very active field of research in science and technology [1–3]. 
In physics, percolation theory has been used to study metal–insulator phase transitions, 
fluid flow in random media, sol–gel transitions and failures in complex networks, just to 
mention some applications [1–3]. Percolation models have also been used to understand 
many chemical, biological and social phenomena [2, 4, 5].

In the classical percolation model, a single lattice site (or a bond connecting two 
sites) is occupied with probability θ∈ 0, 1[ ] or empty (non-occupied) with probability 
θ−1 . Nearest-neighbor occupied sites (bonds) form structures called clusters. The main 

idea of percolation theory is based on finding the minimum concentration of elements 
(sites or bonds) for which a cluster extends from one side to the other of the lattice. 
This particular value of the concentration rate is named the critical concentration or 
percolation threshold θc, and determines a phase transition in the system. For the pre-
cise value of θ θ= c, at least one spanning cluster connects the borders of the system [1]. 
This geometric transition is a second-order phase transition and can be characterized 
by well-defined critical exponents.

More general percolation problems can be formulated by including the deposition of 
k-mers (objects occupying more than one site (bond) on the lattice). Computer simula-
tion of this process is usually realized by using the random sequential adsorption (RSA) 
procedure. The RSA model is well described in the literature and has been investigated 
extensively in recent decades [6–10]. In this framework, the quantity of interest is the 
fraction of lattice sites covered at time t by the deposited particles θ t( ). When extended 
objects are randomly and irreversibly deposited on a lattice, a limiting or jamming 
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state is generated in which no more objects can be deposited due to the absence of free 
space of appropriate size and shape, being θ θ∞ ≡ <t 1j( → ) . Accordingly, θ ranges from 
0 to θj for objects occupying more than one site, and the interplay between RSA and 
percolation must be considered.

Several important contributions regarding percolation and jamming of k-mers have 
been reported over the last 25 years [11–19].

In [11], linear k-mers with a length in the interval k  =  1, ..., 20 were randomly and 
isotropically deposited on a two-dimensional (2D) square lattice. By computer simula-
tions, the authors found that the percolation threshold decreases with increasing chain 
length k. A similar behavior was observed by Cornette et al [12, 13] for sizes k ranging 
from 1 to 15. In addition, an exhaustive calculation of the critical exponents revealed 
that the problem belongs to the random percolation universality class regardless of the 
size of k used in the experiment.

Leroyer and Pommiers [14] extended the study of linear k-mers on square lattices to 
larger particle sizes (k values up to 40). The authors found that the percolation thresh-
old initially decreases, goes through a minimum around k  =  13–15, and then increases 
as the length of the segments increases. Bonnier et al [15] also investigated the deposi-
tion of linear k-mers (with k between 2 and 512) on a square lattice and found that the 
jamming concentration monotonically decreases and tends to 0.660(2) as the length of 
the rods increases.

Vandewalle et al studied percolation and jamming phenomena for straight rigid rods 
of size k on square lattices [16] and found that, for values of k between 2 and 10, the 

ratio θ θ/p j (θp being the percolation threshold) remains constant θ θ ≈/ 0.62p j , regardless 
of the length of the particle. Based on this finding, the authors suggested that both 
critical phenomena (percolation and jamming) are intimately related.

Kondrat and Pekalski [17] extended the study of [16] to larger lattices (lattice size 
L  =  30, 100, 300, 1000 and 2500) and longer objects ( k1 2000⩽ ⩽ ). The results obtained 
revealed that: as reported in [15], jamming coverage decreases monotonically approach-
ing the asymptotic value of θ = 0.66 1j ( ) for large values of k; the percolation threshold 
is a nonmonotonic function of the size k—it decreases for small rod sizes, goes through 
a minimum around k  =  13 and finally increases for large segments; and the ratio of the 

two thresholds θ θ/p j has a more complex behavior—after initial growth, it stabilizes 
between k  =  3 and k  =  7, and then grows again.

Lebovka et al [18] studied anisotropic RSA of straight rigid rods on 2D square 
lattices. In this model, vertical and horizontal orientations occur with dierent prob-
abilities, and the degree of anisotropy of the system can be characterized by an order 
parameter measuring the dierence (normalized) between the number of line segments 
oriented in the vertical direction and the number of line segments oriented in the 
horizontal direction. The authors investigated the eect of k-mer alignment on jam-
ming properties and found important dierences with respect to the isotropic case. In 
the limit of isotropic systems (order parameter equal to zero), the results obtained by 
Lebovka et al are in excellent agreement with previous simulation data in [17].

Recently, percolation of partially ordered linear k-mers on square lattices has been 
intensively studied for values of k varying from 1 to 512 and lattice sizes up to L  =  1024 
k [19]. In the case of isotropic systems, Tarasevich et al confirmed that the percolation 
threshold initially decreases, passes through a minimum at k  =  13 and then increases 

http://dx.doi.org/10.1088/1742-5468/2015/10/P10011
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with increasing k. In addition, the authors determined that the percolation phase transi-
tion only exists for values of k between 1 and approximately ×1.2 104. For > ×k 1.2 104, 
percolation cannot occur, even at (maximal) jamming concentration.

In the previously discussed works, the surface was considered to be chemically 
homogeneous and smooth. However, real systems generally present inhomogeneities 
due to the irregular arrangement of surface and bulk atoms, the presence of various 
chemical species, etc, which can significantly aect the structure of the substrate. In 
contrast to the statistics for simple particles, the degeneracy of arrangements of poly-
atomic species is strongly influenced by the structure of the lattice space. Hence, it is of 
interest and of value to enquire as to how a heterogeneous lattice structure influences 
the main percolation properties of k-mers.

From the theoretical point of view, heterogeneous surfaces are generally modeled 
by lattices with a fraction of defects (or impurities) [20–24]. Two previous articles from 
our group [22, 23] were devoted to the study of percolation and jamming properties 
of extended objects deposited on lattices with the presence of impurities. In [22], the 
problem of linear k-mers of sites (straight rigid particles occupying k consecutive sites) 
and self-avoiding walk (SAW) k-mers of sites (chains of k adjacent sites generated by 
a SAW) deposited on a defective square lattice was studied. The defective lattice was 
built by randomly selecting a fraction of sites which were considered forbidden for 
deposition. The problem of linear and SAW k-mers of bonds deposited on square lat-
tices with a fraction of defective bonds was investigated in [23].

In both papers [22, 23], simulations were performed for k-mer sizes ranging from 2 to 
9. For each value of k, the results showed the existence of a critical fraction of impuri-
ties cc, above which percolation becomes impossible. Each curve of cc as a function of 
k allowed a phase diagram to be built separating a percolation from a non-percolation 
region. Thus, four phase diagrams were obtained corresponding to linear k-mers of 
sites, SAW k-mers of sites, linear k-mers of bonds and SAW k-mers of bonds. In all 
cases, theoretical extrapolations of the curves of cc(k) indicated that the critical concen-
tration of impurities tends to a finite saturation value for large values of k, ∞ =c kc( → )  
finite. These findings would suggest that, even for species of large size, the system has 
a percolation regime for an appropriate value of impurity concentration.

In a recent paper, Tarasevich et al [24] extended the study of linear k-mers of sites 
on square lattices with defective sites to larger particle sizes (k values up to 128). The 
authors confirmed the results reported by Cornette et al [22] for small k-mer sizes and, 
based on an accurate extrapolation of the results obtained for large k-mers, found that 
percolation of k-mers is impossible even for an ideal lattice if the length k exceeds a 
certain critical value.

In [24], a model of linear k-mers with defects (k-mers containing a fraction of non-
conducting defects) on an ideal square lattice was also studied. In this case, k-mer 
sizes ranging from 2 to 256 were considered. For each size k, a critical concentration of 
defects was found. Above this concentration, percolation is impossible. The behavior 
of the critical concentration of defects as a function of k revealed that the percolation 

of very large k-mers ( ×k 6 103⪆ ) on square lattices is impossible even for ideal k-mers.
In the limit of large values of k, the results in [22–24] are consistent with previous 

work on homogeneous lattices [11–14, 17, 19]. Namely, numerical simulations for small 
k-mer sizes and corresponding theoretical extrapolations [11–13] predict the existence 
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of percolation phase transition in the full range of k; in contrast, extrapolations from 
computer experiments with larger k-mers [14, 17, 19] indicate that percolation is impos-
sible if k exceeds a certain critical value. Direct confirmation of this conjecture requires 
very time-consuming simulations for very large k-mers and it is still an open problem.

Despite these recent results, the problem of linear k-mers of sites on lattices with a 
fraction of defective bonds has not been considered up to now. In this case, the defects 
represent a variable connectivity, as inspired by the problem of percolation on the sur-
face of amorphous solids. Following this line of thought, a simplified statistical model 
for percolation of k-mers on the surface of amorphous solids is presented in this contri-
bution. Here, the substrate is represented by a 2D square lattice of M sites and B  =  2M 
bonds connecting neighboring sites. Each bond can be either a regular bond or a defec-
tive bond. Defective and regular bonds are randomly distributed with concentration ρ 
and ρ−1 , respectively. In this way, the degree of disorder of the surface is tunable by 
selecting the value of ρ. Linear k-mers are deposited randomly, sequentially and irre-
versibly on the substrate with the following restriction: the k consecutive empty sites 
selected for deposition of a k-mer must be connected by (k  −  1) regular bonds.

The paper is organized as follows: the model is described in section 2. The kinetics 
and jamming coverage are studied in section 3. The percolation properties are presented 
in section 4: simulation scheme, section 4.1; dependence of the percolation threshold 
on the size k and the lattice disorder degree ρ, section 4.2; and analysis of the critical 
exponents and universality class, section 4.3. Finally, conclusions are given in section 5.

2. Model

Let us consider the substrate represented by a 2D square lattice of = ×M L L sites 
(vertices) and B  =  2M bonds connecting neighboring sites. Each bond can be either a 
regular bond or a defective (or imperfect) bond. Defective and regular bonds are ran-
domly distributed with concentration ρ and ρ−1 , respectively (see figure 1). In this 
way, the degree of disorder of the surface is tunable by selecting the value of ρ. The 
model oers a simplified representation of an amorphous solid, where the presence of 
defects in the system is simulated by introducing a fraction of imperfect bonds. In the 
extreme limit where ρ = 0, the ideal homogeneous surface is recovered.

In the filling process, linear k-mers (with k 2⩾ ) are deposited randomly, sequentially 
and irreversibly on an initially empty lattice. The deposition procedure is as follows. 
Given a lattice of linear dimension L and disorder degree ρ ( ρ− −L lattice): (i) one of 
the two (x, y) possible lattice directions and a starting site are randomly chosen; (ii) if, 
beginning at the chosen site, there are k consecutive empty sites connected by (k  −  1) 
regular bonds along the direction selected in (i), then a k-mer is deposited on those sites. 
Otherwise, the attempt is rejected. A Monte Carlo step (MCS) is completed after we 
repeat (i) and (ii) M times. When N rods are deposited, the concentration is θ = kN M/ . 
Figure 1 shows a typical configuration corresponding to 6 mers (solid circles surrounded 
by ellipses) on a ×10 10 square lattice with ρ≈ 0.15 and θ = 0.54. Solid lines represent 
regular bonds (defective bonds are absent) and crosses correspond to empty sites.

http://dx.doi.org/10.1088/1742-5468/2015/10/P10011


Percolation and jamming of linear k-mers on lattices with the presence of impurities

6doi:10.1088/1742-5468/2015/10/P10011

J. S
tat. M

ech. (2015) P
10011

3. Kinetics and jamming coverage

Due to blocking of the lattice by the already randomly deposited dimers, the limiting 
or jamming coverage θ θ≡ = ∞tj ( ) is less than that corresponding to the close packing 
(θ < 1j ). Note that θ t( ) represents the fraction of lattice sites covered at time t by the 
deposited objects. Consequently, θ ranges from 0 to θj for objects occupying more than 
one site. Jamming coverage depends on the size of the deposited object [10, 15–18, 24] 
and, in this case, also depends on the degree of disorder of the lattice.

It is well known that it is a quite dicult matter to analytically determine the value 
of the jamming coverage for a given lattice. For some special types of lattices, geo-
metrical considerations enable their jamming thresholds to be derived exactly [25]. For 
systems which do not present such a topological advantage, jamming properties have 
to be estimated numerically by means of computer simulations.

In order to calculate the jamming thresholds, the probability θWL( ) that a lattice of 
linear size L reaches a coverage θ will be used [26]. In the simulations, the procedure to 
determine θWL( ) consists of the following steps: (a) the construction of an ρ− −L lattice 
(initially empty) and (b) the deposition of particles on the lattice up to the jamming 
limit θj. The jamming limit is reached when it is not possible to adsorb any more k-mers 
on the surface. In the latter step, the quantity θmi( ) is calculated as

θ
θ θ
θ θ

=
>

⎧
⎨
⎩

m
1 for

0 for .
i

j

j
( )

      ⩽
     � (1)

Figure 1.  Typical configuration corresponding to 6 mers (solid circles surrounded 
by ellipses) on a ×10 10 square lattice with ρ≈ 0.15 and θ = 0.54. Solid lines 
represent regular bonds (defective bonds are absent) and crosses correspond to 
empty sites.

http://dx.doi.org/10.1088/1742-5468/2015/10/P10011
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n runs of steps (a) and (b) are carried out to obtain the number θm( ) of them for which 
a lattice reaches a coverage θ,

∑θ θ=
=

m m .
i

n

i

1

( ) ( )� (2)

Then, θ θ=W m n/L( ) ( )  is defined and the procedure is repeated for dierent values of 
L and ρ. A set of n   =  105 independent samples is numerically prepared for several val-
ues of the lattice size (L/k  =  128, 256, 384, 512, 640). The L/k ratio is kept constant 
to prevent spurious eects due to the k-mer size in comparison with the lattice linear 
size L. In addition, and given that the system is disordered, all the above calculations 
are repeated over 100 replicas of the system for each value of ρ, and all quantities are 
finally averaged over them.

For infinite systems ( ∞L → ), θWL( ) is a step function, being 1 for θ θj⩽  and 0 for 
θ θ> j. For finite values of L, θWL( ) varies continuously between 1 and 0, with a sharp 
fall around θj. As shown in [26], the jamming coverage can be estimated from the curves 
of the probabilities WL plotted versus θ for several lattice sizes. In the vicinity of the 
limit coverage, the probabilities show a strong dependence on the system size. However, 

at the jamming point, the probabilities adopt a nontrivial value W*
L, irrespective of 

system sizes in the scaling limit. Thus, plotting θWL( ) for dierent linear dimensions 

L yields an intersection point W*
L, which gives an accurate estimation of the jamming 

coverage in the infinite system.
In figure 2, the probabilities θWL( ) are shown for dierent values of L/k (as indi-

cated) and two typical cases: k  =  2 and ρ = 0 (right); and k  =  2 and ρ = 0.15 (left). 
From inspection of figure 2 (and from data not shown here for the sake of clarity), 
it can be seen that: for each k and ρ, the curves cross each other at a unique point 

W*
L; those points do not modify their numerical value for the dierent cases studied, 

Figure 2.  Curves of WL as a function of the density θ for several values of L/k (as 
indicated) and two typical cases: k  =  2 and ρ = 0 (right); and k  =  2 and ρ = 0.15 

(left). The horizontal dashed line shows the W*
L point. Vertical dashed lines denote 

the jamming thresholds in the thermodynamic limit.

http://dx.doi.org/10.1088/1742-5468/2015/10/P10011
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being ≈W* 0.51L ; and those points are located at very well defined values in the θ-axes 

determining the jamming threshold for each k and ρ, θ ρj k, , . In the case of figure  2, 

θ =ρ= = 0.906 81 5j k, 0, 2 ( ) and θ =ρ= = 0.875 76 9j k, 0.15, 2 ( ).
The procedure of figure  2 was repeated for k between 2 and 64, and ρ varying 

between 0 and 1. The curves corresponding to k  =  24, k  =  32, k  =  48 and k  =  64 were 
calculated for L/k  =  128 and L/k  =  256, requiring an eort that almost reached the 
limits of our computational capabilities. The results are shown in figure 3. In the limit 
of ρ = 0, the standard RSA model is recovered and the values obtained of θ ρj k, ,  coincide 
with those reported in [15–18, 24]. These results validate our program and calculation 
method.

For each value of k, θ ρj k, ,  decreases as the disorder degree ρ increases. The larger 
the value of k, the more remarkable the eect is. On the other hand, as k is increased, 
the values of θ ρj k, ,  decrease over the full range of ρ. This situation can be better 
visualized in figure 4, where θ ρj k, ,  is plotted as a function of k with ρ as parameter. 
Extrapolating these values to infinite k-mer size, two well dierentiated regimes can be 
observed. First, for ρ = 0, θ ρ=j k, 0,  follows the behavior predicted by Bonnier et al [15]: 

θ = + −ρ= k k0.660 1.071/ 3, 47/j k, 0,
2 (k 48⩾ ), being θ =ρ= =∞ 0.660 2j k, 0, ( ), the result for 

the limit coverage of an ideal square lattice by infinitely long k-mers1. Second, for ρ> 0, 

Figure 3.  Jamming coverage θ ρj k, ,  as a function of the disorder degree ρ for linear 
k-mers on square lattices with k between 2 and 64, as indicated. All lines are a 
guide for the eyes.

1 In the case of 0ρ = , the values of θj obtained in the present paper (k ranging from 2 to 64) improve (one order 
of magnitude approximately) previous calculations in [15]. With respect to the behavior of the jamming coverage 
for long k-mers, our results are consistent with the prediction of Bonnier et al. [15]. However, more extensive 
simulations ( �k 64) are required to obtain a more accurate determination of jθ  in the limit of ∞→k . Future work 
will be conducted in this direction.

http://dx.doi.org/10.1088/1742-5468/2015/10/P10011
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θ ρj k, ,  tends to 0 as k is increased for all studied values of ρ. In other words, for each value 
of ρ> 0, there exists a finite size ≡k k0( ) such that θ =ρ 0j k, ,  for k  >  k0.

As explicitly shown in figure 4, k0  <  64 for ρ0.1 1⩽ ⩽ . In the case of small impurity 
concentrations, and even though more extensive simulations are required to confirm the 
existence of the limit value k0, the curves show a clear change in slope when passing 
from an ideal system ρ = 0 to a disordered system ρ> 0 (see the curves corresponding 
to ρ = 0.025 and ρ = 0.05). While the saturation value θ =ρ= =∞ 0.660 2j k, 0, ( ) is predicted 
for ρ = 0 and k tending to infinity, a limit value equal to zero is expected for finite k 
and ρ> 0.

4. Percolation

4.1. Simulation scheme

With the space of the parameters θ and ρ determined, the percolation properties of the 
system will be studied in the following.

As was already mentioned, the central idea of percolation theory is based on finding 
the minimum concentration θ for which a cluster extends from one side of the system to 
the other. This particular value of the concentration is called the critical concentration 
or percolation threshold and determines a well defined phase transition in the system. 

Figure 4.  Jamming coverage θ ρj k, ,  as a function of k for dierent values of the 
concentration of impurities ρ: ρ = 0, solid circles; ρ = 0.025, open circles; ρ = 0.05, 
solid squares; ρ = 0.1, open squares; ρ = 0.15, solid up triangles; ρ = 0.2, open up 
triangles; ρ = 0.3, solid down triangles; ρ = 0.4, open down triangles; ρ = 0.5, solid 
diamonds; ρ = 0.6, open diamonds; ρ = 0.7, solid left triangles; ρ = 0.8, open left 
triangles; and ρ = 0.9, solid right triangles. All lines are a guide for the eyes.

http://dx.doi.org/10.1088/1742-5468/2015/10/P10011
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We are interested in determining: the dependence of the percolation threshold on the 
size k and the lattice disorder degree ρ; and the universality class of the phase transi-
tion occurring in the system.

Finite-scaling theory gives us the basis to determine the percolation threshold and 
the critical exponents of a system with a reasonable accuracy. For this purpose, the 

probability θ= ρR RL k
X
, , ( ) that an ρ− −L lattice percolates at a concentration θ of occu-

pied sites by rods of size k can be defined [1, 27, 28]. Here, the following definitions can 
be given according to the meaning of X:

	•	 θρRL k
R D
, , ( )( ) : the probability of finding a rightward (downward) percolating cluster,

	•	 θρRL k
U

, , ( ): the probability of finding either a rightward or a downward percolating 
cluster,

	•	 θρRL k
I
, , ( ): the probability of finding a cluster that percolates both in a rightward 

and downward direction, and

	•	 θρRL k
A
, , ( )  =   θ θ+ρ ρR RL k

U
L k
I1

2 , , , ,[ ( ) ( )].

Computational simulations were applied to determine each of the previously 
mentioned quantities. Each simulation run consists of the following steps: the con-
struction of a square lattice of linear size L, disorder degree ρ and coverage θ; and 
cluster analysis using the Hoshen and Kopelman algorithm [29]. In the latter step, 
the size of largest cluster SL is determined, as well as the existence of a percolating 
island.

A total of ρmL,  independent runs of this two-step procedure were carried out for each 

lattice size L and disorder degree ρ. From these runs a number ρmL
X
,  of them present a 

percolating cluster; this is done for the desired criterion among =X R D I U A, , , , . Then, 

θ =ρ ρ ρR m m/L k
X

L
X

L, , , ,( )  is defined and the procedure is repeated for dierent values of L, 

θ, ρ and k.

In addition to the dierent probabilities θρRL k
X
, , ( ), the percolation order parameter P 

and the corresponding susceptibility χ have been measured [30, 31],

=P S M/ ,L⟨ ⟩� (3)

and

χ = −S S M/ ,L L
2 2[⟨ ⟩ ⟨ ⟩ ]� (4)

where SL represents the size of the largest cluster and ...⟨ ⟩ means an average over simu-
lation runs.

In our percolation simulations, we used =ρm 10L,
5 and all the calculations were 

repeated over 100 replicas of the system. In addition, for each value of θ and ρ, the 
eect of finite size was investigated by examining square lattices with L/k  = 128, 256, 
384, 512, 640. As can be appreciated, this represents extensive calculations from the 
computational point of view. From this, finite-scaling theory can be used to determine 
the percolation threshold and the critical exponents with reasonable accuracy.
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4.2. Percolation threshold

The standard theory of finite-size scaling [1, 27, 28] allows for various ecient routes to 
estimate the percolation threshold from simulation data. One of these methods, which 

will be used here, is from the curves of θρRL k
X
, , ( ).

In figure 5, the probabilities θρRL k
I
, , ( ), θρRL k

U
, , ( ) and θρRL k

A
, , ( ) are presented for two 

typical cases: (a) k  =  2 and ρ = 0.15 (left); and (b) k  =  5 and ρ = 0.15 (right). In order 
to express these curves as a function of continuous values of θ, it is convenient to fit 

θρRL k
X
, , ( ) with some approximating function through the least-squares method. The 

fitting curve is the error function because θ θρRd /dL k
X
, , ( )  is expected to behave like the 

Gaussian distribution [28]

R Ld

d

1

2
exp

1

2
,

L k
X

L k
X

c k
X

L k
X

, ,

, ,

, ,

, ,

2
( )

θ π

θ θ
=

∆
−

−

∆
ρ

ρ

ρ

ρ
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎭

� (5)

where θ ρ Lc k
X
, , ( ) is the concentration at which the slope of θρRL k

X
, , ( ) is the largest and 

∆ ρL k
X
, ,  is the standard deviation from θ ρ Lc k

X
, , ( ).

Once the values of θ ρ Lc k
X
, , ( ) have been obtained for dierent lattice sizes, a scaling 

analysis can be conducted [1]. Thus, we have

θ θ= ∞ +ρ ρ
ν−L A L ,c k

X
c k
X X

, , , ,
1/( ) ( )� (6)

Figure 5.  Fraction of percolating lattices ( )θρRL k
X
, ,  (X   =  I, U, A as indicated) as a 

function of the concentration θ for k  =  2, ρ = 0.15 (a) and k  =  5, ρ = 0.15 (b), and 
dierent lattice sizes: L/k  =  256, circles; L/k  =  384, up triangles; L/k  =  512, down 
triangles; and L/k  =  640, diamonds. Curves corresponding to L/k  =  128 are not 
shown for clarity. The vertical dashed line denotes the percolation threshold θ ρc k, ,  
in the thermodynamic limit.
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where AX is a non-universal constant and ν is the critical exponent of the correlation 
length, which will be taken as 4/3 for the present analysis, since (as will be shown in 
section 4.3) our model belongs to the same universality class as random percolation [1].

Figure 6 shows plots towards the thermodynamic limit of θ ρ Lc k
X
, , ( ) according to equa-

tion (6) for the data in figure 5. From extrapolations it is possible to obtain θ ∞ρc k
X
, , ( ) 

for the criteria I, A and U. Combining the three estimates for each case, the final val-
ues of θ ∞ρc k, , ( ) can be obtained. Additionally, the maximum of the dierences between 

θ θ| ∞ − ∞ |ρ ρc k
U

c k
A

, , , ,( ) ( )  and θ θ| ∞ − ∞ |ρ ρc k
I

c k
A

, , , ,( ) ( )  gives the error bar for each determina-

tion of θ ∞ρc k, , ( ). In this case, the values obtained were: θ ∞ =ρ= = 0.5619 1c k, 0.15, 2( ) ( ) and 

θ ∞ == = 0.4881 1c k, 0.15, 5( ) ( ). For the rest of the paper, we will denote the percolation 
threshold for each size k and each disorder degree ρ by θ ρc k, ,  (for simplicity we will drop 
the ‘ ∞( )’).

The procedure of figure 6 was repeated for k  =  2 and a wide range of values of ρ. 
The results, which are collected in figure 7, represent the θ ρ− −phase diagram cor-
responding to a system of dimers on a square lattice with defective bonds. The curve 
of θ ρc k, ,  (open circles) extends from the point ρ θ= =ρ= =0, 0.562 1c k, 0, 2[ ( )] on the left 
to the intersection point between the curves of percolation and jamming thresholds 

ρ θ≈ ≈= =* 0.7355, * 0.5619k k2 2[ ] (solid star) on the right, where θ =ρ= = 0.562 1c k, 0, 2 ( ) repre-

sents the percolation threshold for dimers on a ideal square lattice, and ρ*k  corresponds 

to the critical concentration of defects at which percolation is possible only at jamming 
coverage.

As reported in [24] for a model of linear k-mers of sites on square lattices with defec-
tive sites, the curve of θ ρc k, ,  is almost insensitive to the fraction of impurities ρ. This line 

Figure 6.  Extrapolation of ( )θ ρ Lc k
X
, ,  towards the thermodynamic limit according 

to the theoretical prediction given by equation (6). Triangles, circles and squares 

denote the values of ( )θ ρ Lc k
X
, ,  obtained by using the criteria I, A and U, respectively. 

Dierent values of k and ρ are presented: (a) k  =  2, ρ = 0.15; and (b) k  =  5, ρ = 0.15.
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divides the space of allowed values of θ in a non-percolating region ( θ θ< < ρ0 c k, , ) and 
a percolating region (θ θ θ< <ρ ρc k j k, , , , ). The region above the curve of θ ρj k, ,  (solid circles) 
corresponds to a forbidden region of the θ-space.

The line separating percolating and non-percolating regions was calculated for k 

ranging from 2 to 64, and dierent values of ρ between 0 and ρ*k . As mentioned in sec-

tion 3, the curves corresponding to k  =  24, k  =  32, k  =  48 and k  =  64 were calculated for 

L/k  =  128 and L/k  =  256. The results are shown in figure 8. The dashed line joins the 

limit points ρ θ*, *
k k[ ]. Percolation occurs when ρ is smaller than ρ*k , and θ varies between 

θ ρc k, ,  and θ ρj k, , .
For a better visualization of the data, the results corresponding to k-mer sizes 

between 2 and 9 are shown in figure 8(b), and the results corresponding to values of 

k between 16 and 64 are shown in figure 8(a). The complete curve ρ θ* *
k k( ) is presented 

in the inset of figure 8(a). As in figure 7, the percolation thresholds are practically 
independent of the fraction of defects for all values of k. Accordingly, the minimum 

observed in ρ θ* *
k k( ) reproduces the minimum reported in [19] for the percolation thresh-

old of linear k-mers on homogeneous square lattices.

As k is increased, the length of the interval ρ0, *
k[ ] decreases and, consequently, the 

percolation phase transition tends to disappear. This behavior can be observed more 

clearly in figure 9, where the dependence of ρ*k  as a function of k is reported. The results 

obtained in the present work (blue solid stars) are compared with those reported by 
Cornette et al [22] (red open stars) and Tarasevich et al [24] (black solid circles) for 

Figure 7. θ ρ− −phase diagram corresponding to a system of dimers on a square 
lattice with defective bonds. The curve of θ ρc k, ,  (open circles) divides the space of 
allowed values of θ in a non-percolating region ( θ θ< < ρ0 c k, , ) and a percolating region 
(θ θ θ< <ρ ρc k j k, , , , ). The region above the curve of θ ρj k, ,  (solid circles) corresponds to 
a forbidden region of the θ-space. The intersection point between the curves of θ ρc k, ,  

and θ ρj k, ,  (solid star) corresponds to the critical concentration of defects ρ*k  at which 

percolation is possible only at jamming coverage.
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a model of linear k-mers of sites on square lattices with defective sites. As in [24], our 
simulation data ( k2 64⩽ ⩽ ) were fitted by the function

ρ =
−

+

α α

αa
k k

b k
* ,k

m
� (7)

with = ±a 0.000 03 0.000 01, α = ±1.31 0.04, = ±b 1.04 0.25 and = ±k 5518 500m . 
These parameters strongly depend on the smallest value of k used in the fitting (in this 

case, k  =  2). In order to analyze the behavior of ρ*k  for long k-mers, it is more conve-

nient to plot ρ*k  versus α−k  for k km→ . This is shown in the inset of figure 9, where the 

solid line corresponds to the linear fit of the simulation data (stars). The value of the 
critical length estimated from the point at which the solid line cuts the abscissa axis is 
consistent with that obtained from equation (7).

From an analysis of figure 9, the following conclusions can be drawn. First, for 

each size k, the corresponding value of ρ*k  is lower in the case of lattices with defec-

tive sites as compared with the case of lattices with defective bonds. This finding 

indicates that the percolation transition for linear k-mers of sites is more sensitive to 
the presence of defective lattice sites than defective lattice bonds. Second, the value 
of km obtained in the present work coincides, within numerical error, with the value 
reported in [24], = ±k 5900 500m . Our result reinforces the conjecture that percola-

tion of linear k-mers on square lattices is impossible even for a lattice without any 

defects if ×k 6 103⪆  [24].

Figure 8. θ ρc k, ,  as a function of ρ for k ranging from 2 to 64, and dierent values 

of ρ between 0 and ρ*k . The curves corresponding to k  =  16, k  =  24, k  =  32, k  =  48 

and k  =  64 are shown in part (a) and those corresponding to k  =  2, k  =  3, k  =  4, 

k  =  5, k  =  6 and k  =  9 are shown in part (b). As discussed in the text, the dashed 

line joins the limit points [ ]ρ θ*, *
k k  (stars).

http://dx.doi.org/10.1088/1742-5468/2015/10/P10011


Percolation and jamming of linear k-mers on lattices with the presence of impurities

15doi:10.1088/1742-5468/2015/10/P10011

J. S
tat. M

ech. (2015) P
10011

4.3. Critical exponents and universality class

In this section, the critical exponents ν, β and γ will be calculated. Critical exponents 
are of importance because they describe the universality class of a system and allow 
related phenomena to be understood.

The standard theory of finite-size scaling allows various methods to be used to esti-
mate ν from numerical data. One of these methods is from the maximum of the func-
tion in equation (5) [1],

θ
∝ρ ν

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R
L

d

d
.

L k
X
, ,

max

1/
� (8)

In figure 10(a), θρ
⎡⎣ ⎤⎦Rln d /dL k

A
, , max

( )  has been plotted as a function of Lln [ ] (note the 

log–log functional dependence) for the two cases studied in previous figures. According 
to equation (8) the slope of each line corresponds to ν1/ . It can be observed that the 
slopes of the curves remain constant (and close to 3/4) for all studied cases. Thus, 
ν = 1.36 3( ) for k  =  2 and ρ = 0.15; and ν = 1.34 2( ) for k  =  5 and ρ = 0.15. These results 
coincide, within numerical errors, with the exact value of the critical exponent of ordi-
nary percolation ν = 4/3.

Once we know ν, the exponent γ can be determined by scaling the maximum value of 

the susceptibility equation (4). According to finite-size scaling theory [1], the behavior 

Figure 9. ρ*k  as a function of k. Comparison of the results obtained in the present 

work (blue solid stars) and those reported by Cornette et al [22] (red open stars) 
and Tarasevich et al [24] (black solid circles) for a model of linear k-mers of sites 
on square lattices with defective sites. The solid line fitting the simulation data 

(blue solid stars) corresponds to the function in equation (7). Inset: ρ*k  versus α−k  

for →k km. The blue solid line corresponds to the linear fit of the simulation data 
(blue solid stars).
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of χ at criticality is χ χ= γ νL u/ ( ), where θ θ= − ρ
νu Lc k, ,

1/( )  and χ is the corresponding 

scaling function. At the point where χ is maximal, u  =  constant and χ ∝ γ νLmax
/ . Our 

data for χmax are shown in figure 10(b). The values obtained are γ = 2.42 4( ) for k  =  2 
and ρ = 0.15; and γ = 2.40 3( ) for k  =  5 and ρ = 0.15. Simulation data are consistent 
with the exact value of the critical exponent of ordinary percolation, γ = 43/18.

Further to this, the standard way to extract the exponent ratio β is to study the 
scaling behavior of P at criticality [1],

= ′β ν−P L P u ,/ ( )� (9)

where θ θ=| − |′ ρ
νu Lc k, ,

1/  and P  is the scaling function. At the point where θPd /d  is 

maximal, u  =  constant and

θ
= ∝′β ν ν β ν− + −⎜ ⎟

⎛
⎝

⎞
⎠

P
L P u L

d

d
.

max

/ 1/ 1 /( )( ) ( )
� (10)

The scaling of θPd /d max( )  is shown in figure 10(c). From the slopes of the curves, the 
following values of β were obtained: β = 0.15 2( ) for k  =  2 and ρ = 0.15; and β = 0.15 2( ) 
for k  =  5 and ρ = 0.15. These results agree very well with the exact value of β for ordi-
nary percolation, β = 5/36.

Figure 10.  (a) Log–log plot of ( )θρRd /dL k
A
, , max

 as a function of L/k for k  =  2, ρ = 0.15 

(solid circles) and k  =  5, ρ = 0.15 (open circles). According to equation (8) the slope 
of each line corresponds to ν =1/ 3/4. (b) Log–log plot of χmax as a function of L/k 
for k  =  2, ρ = 0.15 (solid circles) and k  =  5, ρ = 0.15 (open circles). The slope of 

each line corresponds to γ ν =/ 43/24. (c) Log–log plot of ( )θPd /d max as a function 
of L/k for k  =  2, ρ = 0.15 (solid circles) and k  =  5, ρ = 0.15 (open circles). According 
to equation (10), the slope of each curve corresponds to ( )β ν− =1 / 31/48.
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The protocol described in figure 10 was repeated for k between 2 and 64, and ρ 
varying between 0 and ρ*k  (these data are not shown here for brevity). In all cases, the 

values obtained for ν, γ and β clearly indicate that, independently of the size k and 
the disorder degree ρ, this problem belongs to the same universality class as random 
percolation.

Scaling behavior can be further tested by plotting θρRL k
X
, , ( ) versus θ θ− ρ

νLc k, ,
1/( ) , 

β νPL /  versus θ θ| − |ρ
νLc k, ,

1/  and χ γ ν−L /  versus θ θ− ρ
νLc k, ,

1/( )  and looking for data col-

lapsing [1]. Figure  11 shows the excellent collapse of curves of ρRL k
A
, , , P (upper left 

inset) and χ (bottom right inset) for a typical case (k  =  5 and ρ = 0.15) and dierent 

lattice sizes, as indicated. The plots were made using the value θ =ρ= = 0.4881 1c k, 0.15, 5 ( ) 
calculated above and the exact values of the critical exponents of ordinary percolation 
ν = 4/3, β = 5/36 and γ = 43/18. This leads to independent controls and consistency 
checks of the values of all the critical exponents.

5. Conclusions

Percolation and jamming properties in RSA of linear k-mers on square lattices with 
the presence of impurities have been studied by numerical simulations and finite-size 

Figure 11.  Data collapsing of the percolation probability, ( )θρRL k
A
, ,  versus 

( )θ θ− ρ
νLc k, ,

1/ , for k  =  5 and ρ = 0.15. Upper left inset: data collapsing of the 

percolation order parameter, β νPL /  versus θ θ| − |ρ
νLc k, ,

1/ , for k  =  5 and ρ = 0.15. 

Bottom right inset: data collapsing of the susceptibility, χ γ ν−L /  versus ( )θ θ− ρ
νLc k, ,

1/ , 

for k  =  5 and ρ = 0.15. The plots were made using θ =ρ= = 0.4881c k, 0.15, 5  and the 
exact percolation exponents ν = 4/3, β = 5/36 and γ = 43/18.
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scaling analysis. The contaminated lattice was built by randomly selecting a fraction of 
bonds (ρ) of the lattice that were considered forbidden for deposition. The model oers 
a simplified representation of the problem of percolation in amorphous solids, where 
the presence of defects in the system is simulated by introducing a fraction of defective 
bonds.

The dependence of jamming coverage θ ρj k, ,  on disorder degree ρ was studied for k 
ranging from 2 to 64. θ ρj k, ,  decreases as the fraction of impurities increases for a fixed 
value of k; and θ ρj k, ,  is a monotonic decreasing function of k for a fixed value of ρ. In 
the latter case, two well dierentiated regimes were observed: for ρ = 0, θ ρ=j k, 0,  follows 
the behavior reported by Bonnier et al [15], with a finite value of saturation in the 
limit of infinitely long k-mers, θ =ρ= =∞ 0.660 2j k, 0, ( ); and for ρ> 0, θ ρj k, ,  tends to 0 as k is 
increased and there exists a finite size ≡k k0( ) such that θ =ρ 0j k, ,  for k  >  k0.

Once the space of the parameters θ and ρ had been determined, complete percola-
tion phase diagrams were obtained for values of k between 2 and 64. The main char-
acteristics of the phase diagrams are the following. The jamming coverage plays an 
important role in the system considered here. In fact, the curve of θ ρc k, ,  as a function of 
ρ, which divides the space of allowed values of θ in a non-percolating region and a per-
colating region, is limited only by the envelope function θ ρj k, , , being almost insensitive 
to the concentration of defects. Thus, percolation can occur when ρ is smaller than a 

certain value ρ*k , where ρ*k  is the fraction of impurities at which the curves of θ ρc k, ,  and 

θ ρj k, ,  intersect.

Analysis of the dependence of ρ*k  as a function of k revealed that there exists a finite 

value = ±k 5518 500m  such that ρ =* 0km
. The value of km obtained in the present work 

coincides, within numerical error, with the value reported in [24] for a system of lin-
ear k-mers deposited on a square lattice with defective sites. Our result reinforces the 
conjecture that percolation of linear k-mers on square lattices is impossible even for a 

lattice without any defects if ×k 6 103⪆  [24]. However, more simulations are necessary 
in order to obtain direct confirmation of this conjecture.

Finally, accurate determination of the critical exponents revealed that the problem 
belongs to the same universality class as random percolation regardless of the values of 
ρ and k considered.
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