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bstract

Invasion percolation with trapping (TIP) is studied on two kinds of pore networks. The first class of them is the one generated through the dual
ite bond model [I. Kornhauser, R.J. Faccio, J.L. Riccardo, F. Rojas, A.M. Vidales, G. Zgrablich, Structure characterization of disordered porous
edia, Fractals 5 (3) (1997) 355–377; S. Cordero, I. Kornhauser, A. Dominguez, C. Felipe, J.M. Esparza, F. Rojas, R.H. López, A.M. Vidales, J.L.
iccardo, G. Zgrablich, Site–bond network modeling of disordered porous media, Part. Part. Syst. Charact. 21 (2004) 101–116] (DSBM). This
odel allows different strengths of correlations among the elements of the lattice in such a way that patches of sites and bonds with similar sizes

re structured as correlations are set up. The typical size of these patches depends on the strength of correlations.
The other class is a set of networks with a chessboard-like structure, i.e., patches are the “black” and “white” squares of a chessboard. Each

quare is made with bonds of similar sizes sampled from the same bond distribution. Black squares have sites sampled from the lower half part of
he site distribution and sites in white squares belong to the other half.

When a network is built, both models have the constraint imposed by a construction principle (CP) that forbids a bond to be greater than any of

he sites to which it is connected. This is a common used assumption in modeling porous networks.

The aim of this paper is to find whether the global patchy structure is responsible of the patterns found in TIP, or it is the local constraint imposed
y the CP, which prevails. To this end, we measure different quantities, such as fractal dimensions, trapped fluid island distributions and invaded
olume ratio, among others.
 2006 Elsevier B.V. All rights reserved.
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. Introduction

Spatial correlations are most of the time present in real porous
edia, from geological formations to mesoporous catalyst sup-

orts. This natural fact makes transport processes features more
ttractive, although modeling becomes more complicated.

A great amount of work has been done to characterize these
orrelated structures and much is still lacking to do [2–6].

One of the underlying problems when modeling a transport-
n porous-media process is the statement of a network model.

ny assumption made in the model introduces approximations

nd/or simplifications to the real situation. Thus, it is crucial to
stablish which are the main parameters affecting the physics of

∗ Corresponding author. Tel.: +54 2652 436151; fax: +54 2652 436151.
E-mail address: avidales@unsl.edu.ar (A.M. Vidales).
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he problem under consideration in order to avoid unnecessary
omplications in describing it.

How does one introduce spatial correlations in a model of
orous media and how will they affect the behavior of trans-
ort and reacting properties through the medium is a standing
roblem in many physicochemical applications. A great amount
f these phenomena is related to the dynamical description that
ffers invasion percolation (IP) through disordered site–bond
etworks, i.e., the porous medium is represented by sites (pore
odies) and bonds (pore necks) arranged together in a particular
attice configuration [6–8].

It has been demonstrated [1,3,4,6] that the introduction of
pace correlations in the network of pores, affects the way in

hich invasion is performed. This fact is revealed by the change
f fractal exponents in the scaling of transport quantities, among
ther features [3,6,9]. Many models have been used to introduce
orrelations in a porous medium and to analyze transport prop-

mailto:avidales@unsl.edu.ar
dx.doi.org/10.1016/j.colsurfa.2006.10.067
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rties in it [2–4]. Among these models, we have particularly
orked with the DSBM and found interesting behavior. On the
ther hand, the study of transport properties on chessboard-like
etworks has captured the attention of researchers [10].

The common feature in DSBM and chessboard models is that
he topography of the network presents “patches”, i.e., regions
hat are made by the assembly of elements (sites and connecting
onds) that have similar sizes (radii). In DSBM, those regions are
haracterized by a spatial correlation length, r0, which depends
n the overlap, Ω, between site and bond distributions, as we will
ee in the next section. This feature, joint to the local constraint
hat says that the size of any bond in the network is at the most
qual to the size of either of the sites it connects, brings on the
eneration of space correlations of different extent, depending
n the radii density distributions of the lattice elements. In the
ase of a chessboard topography, the two kinds of square patches
re made with sites of different size, as will be better explained
elow. Here, the local constraint that a bond is always smaller
r at least equal to the sites connected to it also exists. In this
ast model, patches are imposed by the chessboard structure.

This work analyses the effect of the presence of patches on
P in two-dimensional networks. Our objective is to establish
hich of the two topographic features affects the more the IP
atterns: local constraints (CP) that finally develop long range
orrelations conforming patches of extent r0, or it is just presence
f regions of elements of different alternating sizes (chessboard
squares”) no matter what causes these topographic features.

In the next section, we will present the two model networks
sed in our study. Section 3 will show some IP features and
uantities of our interest. Section 4 will explain the simulation
lgorithms employed. Section 5 will show results and conclu-
ions.

. DSBM and chessboard models

As briefly explained above, two models were chosen to study
he effect of correlations on IP patterns.

The DSBM has been explained elsewhere [1,2] but here, we
ill give the main aspects which are needed to understand our
urposes and results. The interested reader can get deeper details
n previous papers [1,11–14].

Let S(R) and B(R) be the distribution functions associated
ith the site and bond size R, and FS(R) and FB(R) the corre-

ponding probability density functions, such that

(R) =
∫ R

0
FS(R′) dR′; B(R) =

∫ R

0
FB(R′) dR′ (1)

here R′ is the variable of integration. The way in which sites and
onds are connected to form the network is given by the joint
robability density function, F(RS, RB), of finding a site with
ize RS ∈ (RS, RS +dRS) connected to a bond with size RB ∈ (RB,
B +dRB). The two basic laws describing the DSBM are:
(R) − S(R) ≥ 0 (2)

(RS, RB) = 0 for RS < RB (3)

o
a
(
s
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he second law is often called the CP because Eq. (3) implies a
aw of a local nature and expresses the fact that the size RB of
ny bond cannot be bigger than that of the two connected sites.
n this way, when the network is constructed, the sizes of sites
nd bonds that are joint together must follow this statement. If
he joint probability function is expressed as

(RS, RB) = FS(RS)FB(RB)Φ(RS, RB) (4)

hen, the correlation function Φ carries the information about
he site–bond assignation procedure in the network. If we denote
y Ω the overlapping area between the site and bond probability
ensity functions, the function Φ has the following properties:
i) ΦΩ→0 (RS, RB) = 1, ∀RS, RB, meaning that in this limit sites
nd bonds are distributed completely at random, and (ii) ΦΩ→1
RS, RB) ∝ δ (RS − RB) ∀RS, RB, sites and bonds group together
n macroscopic patches, each having a value of R. Then, the over-
apping Ω is the fundamental parameter describing the topology
f the network in this model.

This behavior also suggests that Ω must be related to some
orrelation length (which would be a physically more mean-
ngful parameter), characteristic of the decay of the spatial
orrelation function defined as

(r) = 〈RS(
r0)RS(
r0 + 
r)〉 = 〈RB(
r0)RB(
r0 + 
r)〉 (5)

n fact, it is expected that C(r) decays approximately as
(r) ≈ exp(−r/r0) where r0 is the correlation length (measured

n lattice constants). Monte Carlo simulations have shown that
he correlation length r0 is related to the overlapping Ω through
he relation [14]:

0 ≈ 2Ω2

(1 − Ω)2 (6)

e observed that r0 → 0 for Ω → 0 and r0 → ∞ for Ω → 1.
The problem of numerical generation of DSBM networks has

een intensively investigated. We employ here the method pre-
ented in [13] for the Monte Carlo generation of such networks.

In Fig. 1, we show two characteristic square lattices gener-
ted through DSBM. The top network is uncorrelated, as the
ray scale homogeneity indicates. The bottom one corresponds
o a high degree of correlation. This fact is made evident by
he different gray scale zones (patches) as a result of the self-
rganization of the elements in order to achieve the CP. Dark
ray are patches with smaller sites and light gray patches are
ade of big sites. This topography introduces a border line

hrough out the whole network, a feature that will be crucial
hen a fluid is trying to percolate in it. What is the real impor-

ance of this border line is one of the questions to answer in this
ork.
The chessboard model was defined as follows. A square

ite–bond network was simulated. Here, we also had two size
ensity distributions, one for sites and the other for bonds. The
ond distribution was always at the left of the one for sites. No

verlapping area was allowed (see Fig. 2a). The coupling of sites
nd bonds followed the CP. The two characteristic square patches
“white” and “black” squares on a chessboard) were obtained by
eparating the density site distribution in two classes: those sites
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Fig. 1. Two characteristic square lattices generated through DSBM. The top
network is uncorrelated (Ω = 0), as the gray scale homogeneity indicates. The
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displacement of one fluid by another one in a porous medium.
ottom one corresponds to a high degree of correlation (Ω = 0.9). The gray scale
sed is explained in Fig. 2.

ess than Rc and those greater than Rc, as shown in Fig. 2a.
igger sites were chosen to form “white patches” and smaller
nes to built “black patches”. Because there was no overlap-
ing area among distributions, the assignment of bonds was
asy to perform. Fig. 2b shows the appearance of the net-
ork once it was generated. Let l be the size of each of the
atches and L is again the size of the network. In this way,
ark gray squares (patches) are made of sites that are always
maller than the ones belonging to light gray squares. This fact
ntroduces a border line that has to be overcome by the fluid
n order to go from a “smaller sites” zone to a “bigger sites”

ne. How does this border line affect the passage of the per-
olating fluid through the system is another question to answer
ere.

W
w
n

ig. 2. (a) Bond and site distribution density functions. The gray scale for sites
ndicates their size. (b) Appearance of the network once it was generated. The
ize of each of the patches, l, is indicated.

. Invasion percolation concepts

We used here the standard formalism of IP theory [15–17].
n particular, we simulated invasion patterns where the defend-
ng fluid was incompressible, thus, the formation of islands of
he defending fluid surrounded by the invading one, might be
resent. In this way, we simulated TIP. The invader occupies the
mallest site at the left side of the network and proceeds to invade
he smallest neighbor linked to the already invaded site. Going
n with this invasion algorithm, an invading irregular front is cre-
ted. Each new invasion step is performed by checking the sizes
f empty elements (sites or bonds) in contact with this front. The
uid always penetrates the smallest element at the frontier. As

nvasion proceeds, the defender “escapes” through the right side
f the network. If the invader surrounds elements with defending
uid, “escape” is not possible and the surrounded fluid becomes

rapped. In this way, an invasion cluster is developed that has
ractal characteristics and, the first time this cluster touches the
ight side of the network we would say that it has percolated. This
act defines the so-called percolation threshold. To associate this
rocess with a classical physical problem, let think about the
hen water is injected very slowly into a porous medium filled
ith oil, capillary forces dominates viscous ones (low Reynolds
umbers). Thus, the dynamics is determined by the local pore
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Table 1
Fractal dimension for several lattices

Lattice z Df

Site (NTIP) 1.8959

Site (TIP)
Hexagonal 3 1.831
Square 4 1.825

r
d

t
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F
p

Triangular 6 1.89
Star 8 1.896

adius. Capillary forces are stronger at narrower pores: water
isplaces oil easier from the smallest available pore.

If one measures the fractal dimension, Df, of the cluster at
hreshold stage, would find that Df = 1.82 for a square lattice.

f trapping is not allowed (compressible fluids, no trapping IP,
TIP) the value of Df is a little bit higher, see Table 1 and Ref. [6].
Recently, Knackstedt et al. [6] found a non-universal behavior

f IP in two-dimensional systems. It appears that Df varies with

s
p
a
P

ig. 3. Snapshots of the characteristic patterns appearing during the invasion proces
atch sizes of 32 lattice units (Ω = 0.8); (c) chessboard model patterns for l = 1; (d) ch
cochem. Eng. Aspects  300 (2007) 122–128 125

oordination number z for TIP. As z increases from four (square
attice) to eight (star lattice) the fractal dimension increases and
pproximates almost exactly to its value for NTIP, as shown
n Table 1. They concluded that increasing connectivity causes
rapping effects to decrease.

We will show below that not only connectivity, but also cor-
elations, may cause non-universal behavior in Df.

A question arising here is whether it is only the fractal dimen-
ion of the percolating cluster that changes or there are another
imensions that behave non-universal. One of them might be
he random walk dimension Dw that relates the scaling behavior
f the characteristic size λ of a random walk performed onto
fractal network after t time steps (λ ∝ t1/Dw ). The other one

ould be the so-called spectral or fracton dimension, Ds, i.e.,
he one that surges whenever a physical quantity depends on the

ystem’s connectivity or branching properties [18]. It relates the
robability P(t) for a particle, performing a random walk onto
heterogeneous system, to be back at the origin at time t, i.e.,
(t) ∝ t−Ds/2.

s. In (a) DSBM, with patch sizes of 1 lattice unit (Ω = 0.5); (b) DSBM, with
essboard model patterns for l = 32. Gray scale represents sizes as before.
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. Simulation algorithms

All the simulations involved averaging over several random
alks on several different clusters. The clusters were grown to a

ize of 1,000,000 sites. The quantities shown in this section have
een averaged over sets ranging from 1000 to 10,000 samples,
epending on the size of the network (32 < L < 1024).

Assuming that a network corresponding to one of the two
odels explained previously has been generated, we proceed to

imulate an invasion process. The network will have a character-
stic patch size that will be related to the degree of correlation,
n the case of DSBM, or will have to do with the size of the
quares, l, in the case of the chessboard model.

The simulation algorithm employed for invasion is basically
s follows:

Initially, the network is filled with the defending fluid.
The invading fluid advances through the network by invading

the smallest element (even a site or bond) at the left edge of
it.
The list of all invaded sites and bonds at the interface between
both fluids is actualized.

a
m
s
o

ig. 4. Island distribution functions for the chessboard lattice and DSBM. Plots at th
ith different l. The right-down plot corresponds to DSBM.
sicochem. Eng. Aspects 300 (2007) 122–128

The invading fluid proceeds by invading the smallest element
belonging to that list.
This procedure is repeated until the invaded elements (sites
and bonds) form a cluster that “spans” the network, i.e.,
the cluster is able to connect the left edge of the lat-
tice with its right one. This point is named “breakthrough
stage”.
Trapping of the defender can occur because incompressibility
is assumed.

Fig. 3 shows snapshots of the characteristic patterns appear-
ng during the invasion process. In (a) and (b), we see the invasion
ver networks generated by DSBM, with patch sizes of 1 and 32
attice units, respectively. As indicated, these patch sizes corre-
pond to an overlapping area Ω = 0.5 and 0.8, respectively. As
xplained earlier, Ω is the overlapping area between site and
ond density distributions.

Snapshots (c) and (d) are the corresponding patterns for l = 1

nd 32 in the chessboard model. The gray scale has the same
eaning as before but it is worthy to make it clear that in all

napshots the gray scale for still not invaded sites was conserved;
nce a site was invaded, it color was turned to black and if it was

e top (left and right) and left down corner correspond to the chessboard model
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rapped it turned to white, thus, black points represent the invader
uid, white regions, the isolated defender.

. Results and discussion

We have measured different quantities of interest. In Fig. 4,
e show the island distribution functions for both models. In
ig. 4, right-down corner plot, we can appreciate that the island
istribution for DSBM decays exponentially with the size of
he islands, s, for all values of correlation strength. Here r0 = 0

eans that the invasion was performed on a random site–bond
etwork. The case r0 = 1 corresponds to a very low correlation
patches have a characteristic size of the order of one element).
n the other hand, r0 = 32 corresponds to a great strength of

orrelations, i.e., patches on the network have a characteristic
ize of 32 elements. Inside these patches, sites and bonds have
ery similar sizes among each other.

In the other three plots of Fig. 4, we clearly appreciate the
hessboard effect on the creation of island of different sizes. The
xistence of a regular configuration for the distribution of site
nd bond sizes all over the network in “square” patches, makes
ome island sizes to be absent. This feature is more pronounced
or low l. For example, for l = 1, islands of size two (two sites)
an not appear because we need two nearest neighbors to be iso-
ated in order to make them; this means (because l = 1) a “small
lass” site plus a “big class” site together. But this configura-
ion is only possible if the fluid prefers to invade a big class
ite instead of a small class one. This, of course, is forbidden
y the simulation rules themselves. The same reasoning can be
ollowed for more complicated cases, explaining the absence of
ther sizes for islands in networks with l = 1 and other values of
. This feature in the shape of island distributions is distinctive
f chessboard networks and is not present in DSBM ones.

Taking a look over the complete behavior of Ns versus s in the
hessboard model shown in Fig. 4, one sees also an exponential
ecay for the number of island as s increases.

In order to calculate Df, we made linear regressions on M
ersus L plots for the two models. M is the mass of the percolating
luster and L is the size of the network. For the chessboard model,
ata for l 1, 2, and 16 were collected. For DSBM, networks
ith r0 = 0–32 were inspected. Fig. 5a and b shows the results
btained for Df for chessboard and DSBM, respectively. We also
lot the values of Dw and Ds.

As previously pointed out [4], as correlation increases in
SBM networks, Df changes from 1.82 (uncorrelated case) to
.89 (fractal dimension for IP without trapping). On the other
and, Df for chessboard networks seems to remain unchanged.
his fact demonstrates that it is the presence of a local restric-

ion, spread out all over the network in the form of patches,
he responsible of a change in the fractal dimension of the per-
olating cluster. This patches are in some sense “connected”
o each other by this local law and this makes it possible to
hange percolation properties like Df. It is not just the presence

f patches, without any connection among each other that favors
he invasion.

For DSBM networks, considering the error in the measure-
ents, it is not conceivable to establish a concrete dependence

b
d
c
p

xtent of patches is indicated through the values of r0. (b) Dimensions Dw, Df,

s for the chessboard model as a function of the size of the patch, l. Dashed
ines are to guide the eye.

f Dw on the spatial correlations, so we do not show plots of
t. However, for low correlations it seems that the Alexander
rbach (AO) [19] conjecture is accomplished up to Ω = 0.7 and,

s correlations grow further, we observe a trend to lower values
hat have to be checked further. It is worth to remember that the
O conjecture received much attention for its intriguing relation
etween static and dynamic exponents. This conjecture based on
umerical evidence was originally made for a percolating clus-
er. Imagine a random walk on a percolating cluster. The fractal
imensionality of the walk is, as explained above, Dw. If Ds is
he fractal dimension of the percolating cluster AO conjecture
tates that the ‘fracton’ dimension Ds, given by Ds = 2Df/Dw,
as its mean field value Ds = 4/3 for any value of the Eucledian
imensionality D.

For chessboard networks, it can be concluded that the expo-
ents are not affected by the presence of a strongly correlated
urface and the AO is accomplished by the system [20].

Finally, Fig. 6 shows the behavior of the invaded volume, Vs,
s a function of the degree of correlation and/or the size of the
atches, for both models. For the case of DSBM there is a maxi-
um for r0 ≈ 2 resembling the already observed non-monotonic

ehavior found in [9] where the creation rate of islands had
minimum for this extent of correlations. This is a particular

spect of correlated networks and is not present in the chess-

oard model where the behavior of the volume is monotonically
ecreased as the size of the patches is bigger. The existence of a
ompetition between local correlations and global extent of the
atches explains the presence of this maximum. The absence
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f correlation spread in the chessboard model causes a continu-
us decrease of the invaded volume as bigger regions of porous
pace are avoided by the invader fluid.

. Conclusions

.1. For DSBM networks

Results indicate that the fractal dimension of the invasion
ample-spanning cluster is non-universal for DSBM. It depends
n correlation strength r0. The dynamic of the invasion process
s affected by the presence of correlations and, as a direct con-
equence the fractal dimension of the invasion cluster changes.

The invaded volume fraction presents a maximum at low
orrelations. The existence of a competition between local corre-
ations and global extent of the patches explains the presence of
his maximum. The fact that local correlations spread out mak-
ng network elements to join together to make patches, affects
he filling performance for intermediate values of r0 and does
hange percolation exponents.

.2. For chessboard networks

Fractal dimension of sample-spanning clusters does not
hange with l. The same occurs for spectral dimension, Ds, and
andom walk dimension, Dw.
The dynamic of the invasion process is not affected by l. The
ualitative behavior found for the filling process dynamics is
n agreement with the quantitative independence of Ds and Dw.
he invaded volume fraction decays considerably as l increases

[
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ue to the absence of correlation spread. Thus, the filling per-
ormance is lower than the corresponding one for DSBM.
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