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Abstract

Square lattices with Ising spins at the sites and �J exchange interactions between nearest

neighbors are one of the realizations of the Edwards–Anderson model originally proposed to

mimic spin glasses. Such systems produce a complex configuration space due to frustration

originated in local competing fields. Reaching exact results for physical parameters is limited

to the ground states of small systems. Due to this complexity it is unavoidable to use numerical

methods subject to controlled error to attempt a good approximation for large enough

systems. Here we make use of the thermodynamic integration method to obtain energy and

remnant entropy for lattices 20� 20 with variable concentration x of ferromagnetic bonds. It

turns out that both energy and entropy reach their minima at x ¼ 0:0 and 1.0 growing towards
the symmetric point x ¼ 0:5 in a similar way, leading to an almost linear relationship between
entropy and energy.

r 2004 Elsevier B.V. All rights reserved.

PACS: 05.10.Ln; 05.50.+q; 65.40.Gr; 75.10.Nr

Keywords: �J Ising lattices; Spin glasses; Computational simulation
see front matter r 2004 Elsevier B.V. All rights reserved.

.physa.2004.09.023

nding author.

dresses: froma@unsl.edu.ar (F. Romá), fnieto@unsl.edu.ar (F. Nieto),
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1. Introduction

The thermodynamic integration method (TIM) [1] has been applied to calculate
ground state properties for �J Edwards–Anderson systems [2–5] with equal amount
of ferromagnetic (F) and antiferromagnetic (AF) interactions. Recent results show
that good accuracy can be obtained when sources of errors are treated separately
which allows to grow in system size [6]. In the present paper we focus on square
lattices of 400 spins (20 � 20), varying the concentration x of ferromagnetic bonds in
the interval [0.0,1.0], namely between a pure AF and a pure F system, going over
several intermediate situations. The aim is to calculate and discuss two main ground
state properties as functions of x: ground state energy per bond and associated
remnant entropy per bond.
Frustrated systems, like �J Ising lattices under consideration, are complex

systems due to randomness and frustration leading to high ground state energies and
large degeneracies. Exact calculations based on exhaustive scanning of the whole
ground manifold (GM) are limited to small systems only [7–11]. To get results for
larger systems (over a 100 spins say), approximate methods have to be invoked. One
such method is TIM, which become more reliable after error sources are kept under
control.
In the next section, we briefly review the method and its main characteristics;

additionally, systems are also defined reminding their most relevant known
properties. In Section 3 we present and discuss the results. Finally, the last section
is devoted to conclusions.
2. Methodology and systems

The way TIM is applied to systems with complex configuration space was recently
presented in the literature [6], so we merely sketch here the main considerations for
its use.
The starting point is the usual equation from the thermodynamics:

1

T
¼

qS

qU

� �
N

; (1)

where T is the absolute temperature, U is the total internal energy, S is the entropy
and N is the total number of active centers in the sample. By integrating the above
equation, it is possible to obtain the remnant entropy per bond, SiðNÞ [6]:

SiðNÞ ¼
ln 2N

2N
þ

Z 0

1

UiðN; tÞd
1

t

� �
¼
ln 2

2
þ I iðNÞ ; (2)

where UiðN ; tÞ is the mean energy at temperature t and the subindex indicates the ith
sample. Here we have made use of the fact that for any Ising system formed by N
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spins we have

lim
T!1

SðN;TÞ ¼ ln 2N : (3)

In the present application, we deal with square lattices, with Ising spins at the sites
and exchange interactions or bonds to nearest neighbors that can be either F in
proportion x; or AF in proportion (1	 x). Size will be 400, all in square arrays of 20
spins along each direction. For each concentration x; a total of M ¼ 500
independent samples were prepared (each sample is a random distribution of F
and AF bonds). Concentration x was varied within the interval [0.0,1.0]. Then, a
total of 22,500 samples were numerically calculated handling the sources of error as
already reported in literature [6]. Additionally, a finer variation of x was done for the
interval [0.0,0.2] to discuss and compare with analytic expressions valid for local
fields in the way presented below.
Each spin is subjected to different possible local fields due to competition among

random F and AF interactions. Not all interactions can be simultaneously satisfied
and some of them remain frustrated even in the ground states. Frustration raises
energy and increases degeneracy making even ground state characterization a very
difficult problem. Ground state degeneracy is associated to remnant entropy which is
one of the aims of the present calculation.
The numerical procedure for evaluating the thermodynamical quantities

corresponding to a given sample is the following:
(a)
 A concentration x is set.

(b)
 A random sample is generated.

(c)
 A dummy temperature t is chosen.

(d)
 The average energy, UiðtÞ; is measured by means of a Monte Carlo process.

(e)
 t is varied at small intervals and process (d) is repeated.

(f)
 A curve UiðtÞ versus 1=t is constructed in the whole range of temperature.

(g)
 The integral I i from Eq. (2) corresponds to the area under this curve between

t ¼ 1 down to t ¼ 0: Then entropy SiðNÞ can be readily calculated according to
this expression.
By iterating this procedure for M samples, we obtain SM 
 hSiðNÞi: Then
concentration x is varied and previous procedure starts at point (a) above, so the
function SMðxÞ is generated to any desired degree of continuity. Additionally, the
method is capable of determining UM ðxÞ; the averaged energy over M samples as a
function of the concentration x:
Independently of previous numeric approach, analytic local field calculations can

be done in the limits of x ! 0:0 and x ! 1:0: The former case means that all bonds
are AF except a very few ones with a negligible probability of being neighbors to
each other. Then such F bonds are frustrated, which leads to

UMðx ! 0:0Þ ¼
	2Nð1	 xÞ þ 2Nx

2N
¼ 	1þ 2x : (4)
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Equivalently for the case x ! 1:0; we get

UMðx ! 1:0Þ ¼ 	1þ 2ð1	 xÞ : (5)

For these two extremes the remnant entropy can be calculated using this local field
approximation in the following way. Let us suppose that the first few free spins n

(those that can be flipped without energy change) are scattered through the lattice,
independent of each other. Then the degeneracy associated to their random
orientation is w ¼ 2n and the expression for the remnant entropy per bond is given by

SM ðxÞ ¼
lnð2nÞ

2N
¼ n

lnð2Þ

2N
: (6)

To have a free spin it is necessary that two of bonds converging onto it are frustrated
and the other two are satisfied, which means a weight x2ð1	 xÞ2 in either extreme.
There are 6 geometrical distributions of bonds fulfilling this condition. Then the total
number of free spins can be approximately given by

nðx ! 0:0Þ ¼ nðx ! 1:0Þ ¼ 6Nx2ð1	 xÞ2 ; (7)

which immediately leads to

SM ðx ! 0:0Þ ¼ SMðx ! 1:0Þ ¼ x2ð1	 xÞ2 lnð8Þ : (8)

Upon combining Eqs. (4), (5) and (8), we get the relationship:

SM ðUM ! 	1:0Þ ¼ ð1	 U2
M Þ

2 ln 8

16
: (9)

3. Results and discussion

The dependence of the ground energy per bond as a function of the concentration
of F bonds x is shown in Fig. 1 for lattice size 20 � 20. Results of numerical
simulations, corresponding to 500 samples for each concentration x are shown by
Fig. 1. Ground energy per bond as a function of the concentration of F bonds x; for size 20 � 20. Circles

represent average results after numeric simulation over 500 samples for each x value. Solid lines

correspond to the approximate expressions valid at the extremes of the interval.
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Fig. 2. Remnant entropy per bond as function of x following the same approach used in Fig. 1.
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means of circles, while the analytic expressions based on local field approximations
valid for the extreme values of x are presented by solid lines following Eqs. (4) and
(5). As it can be noticed, the result is 	1:0 in both extremes, where no frustration is
present. As x departs from the extreme values, energy raises linearly at the beginning
curving then to form a plateau, with the value UM ðxÞ 
 	0:7 in the range [0.25,0.75].
This result is similar to the exact one obtained for x ¼ 0:5 in a previous work [6]. It is
also consistent with extensive approximate numerical calculations that focus
precisely on the value UM ð0:5Þ ¼ 	0:703 of this parameter, leaving other physical
features out of consideration to tackle larger sizes [12].
Entropy results obtained by numerical analysis using TIM are shown by symbols

in Fig. 2, where we also present the approximate analytic results based on local fields,
Eq. (8), by means of solid lines. As it can be seen, remnant entropy goes to 0.0 at the
extremes of the interval for x; which is the expected value for both the singlet
ferromagnetic and antiferromagnetic states. From these extreme values, remnant
entropy grows (quadratically in the onset of the variation) towards the center of the
interval, showing a plateau with the value SiðxÞ 
 0:04 for the interval [0.25,0.75],
which is in good agreement with elaborate calculations done at the point x ¼ 0:5
[6,13–18].
In Fig. 3 we plot SMðUMÞ: It can be seen that the numerical results (symbols) tend

to a linear function towards the center of the interval, departing from the dependence
found in Eq. (9). However, if a closer examination is done for really small values of
x; such polynomial dependence is revealed as it is shown in the inset of Fig. 3, where
it is seen that notorious deviations between the approximate expression given by Eq.
(9) and numerical results occur for x40:07 or xo0:93; corresponding to
concentrations at which free spins are not longer independent of each other.
4. Concluding remarks

The variation of the ground energy per bond UM ðxÞ for �J Ising lattices is
reported by means of an improved Monte Carlo simulation designed for the accurate
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Fig. 3. Remnant entropy as a function of the ground energy.
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use of the TIM [6]. Numerical calculations and approximate analytic expressions
based on local fields agree well in the range xo0:07 and x40:93: Results in the range
0:25oxo0:75 are very little sensitive to x: In particular, at x ¼ 0:5 (by far the most
popular case treated in the literature) we recover the values UMðxÞ 
 	0:7 and
SMðxÞ 
 0:04 found by other methods [6,12–18].
The ratio SMðxÞ=UMðxÞ provides a very interesting insight as it is found that a

linear relationship dominates towards the center of the interval, where both
magnitudes tend to be constant. However, towards the extremes of the interval, a
polynomial relationship holds as it is predicted from the approximation where free
frustrated bonds are independent of each other, while, at the same time, free spins
are independent of each other. To our knowledge results for remnant entropy
reported here, namely SMðxÞ; correspond to those in which simultaneously the
following conditions are met: largest lattice size (20�20), largest variation of
concentration in the interval (45 different values of x were tried in the interval) and
largest number of samples for each concentration of x (500 independent randomly
prepared samples). This makes the values and tendencies reported here very reliable.
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