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ORBITS OF HOMOGENEOUS POLYNOMIALS ON BANACH SPACES

RODRIGO CARDECCIA, SANTIAGO MURO

Abstract. We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known

that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show, a simple

and natural example of a homogeneous polynomial with an orbit that is at the same time d-dense (the

orbit meets every ball of radius d), weakly dense and such that Γ ·OrbP (x) is dense for every Γ ⊂ C that

is either unbounded or that has 0 as an accumulation point. Moreover we generalize the construction to

arbitrary infinite dimensional separable Fréchet spaces. To prove this we study Julia sets of homogeneous

polynomials on Banach spaces.

1. Introduction

Let X be a Banach space. A function F : X → X is said to be hypercyclic if there exists x ∈ X such

that its orbit OrbF (x) = {Fn(x) : n ∈ N0} is dense in X. In this case x is called a hypercyclic vector.

The theory of linear hypercyclic operators had a great development in the last decades (see for example

the books on the subject [3, 15]).

As a natural extension of the linear theory on may study orbits of (non linear) homogeneous operators,

or polynomials. The first result in this direction was due to Bernardes [4], where he proved that no

(non linear) homogeneous polynomial on a Banach space can be hypercyclic. From his result, it can be

deduced that associated to each homogeneous polynomial there is a ball (afterwards the limit ball) which

is invariant under the action of the polynomial. Moreover, any orbit which enters the limit ball converges

to 0. Maybe this result was one of the reasons why the theory of the dynamics of non linear, and in

particular, homogeneous polynomials has had a much smaller development than the linear counterpart.

However, the behavior of the orbits induced by a homogeneous polynomial can be highly nontrivial and

it is far from being understood. For example, in [4] Bernardes showed that the orbits may oscillate

between infinity and the boundary of the limit ball. He also proved that every infinite dimensional

and separable Banach space supports supercyclic homogeneous polynomials. More recently Peris, Kim

and Song [16, 17] proved that every separable Banach space of dimension greater than one supports

numerically hypercyclic homogeneous polynomials. This means that there are vectors x ∈ SX , x
∗ ∈ SX∗

for which its numerical orbit, NorbP (x, x
∗) := {x∗(Pn(x)) : n ∈ N0} is dense in C.
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Since any orbit that meets the limit ball converges to 0, no orbit induced by a homogeneous polynomial

is dense in X. But, it is natural to ask how big and complicated can the orbits that never meet the limit

ball be. For example, we can ask whether there exist homogeneous polynomials with orbits which imply

some weaker types of hypercyclicity. In particular we can formulate the following questions:

(1) The Bourdon-Feldman Theorem [8] states that somewhere dense orbits of linear operators are

actually dense. Does there exist homogeneous polynomials in Banach spaces with somewhere

dense orbits?

(2) Feldman [13] showed that if a linear operator is d-hypercyclic for some d > 0 ( i.e. an operator

with an orbit that meets every ball of radius d), then it is hypercyclic. Does there exist d-

hypercyclic homogeneous polynomials in Banach spaces?

(3) Are there weakly hypercyclic homogeneous polynomials (i.e. polynomials with an orbit which is

dense with respect to the weak topology)?

(4) Recently, Charpentier, Ernst and Menet [11] characterized the subsets Γ ⊂ C for which every

Γ-supercyclic linear operator (i.e. operators T such that Γ ·OrbT (x) is dense for some x ∈ X) is a

hypercyclic linear operator. For which Γ ⊂ C are there Γ-supercyclic homogeneous polynomials?

To study these questions we propose a notion of Julia set associated to homogeneous polynomials in

Banach spaces. From its basic properties we deduce that every orbit of a homogeneous polynomial is

nowhere dense. Thus, the Bourdon-Feldman Theorem still holds for homogeneous polynomials. Then,

a careful study of the Julia set of a very simple homogeneous polynomial on ℓp, which is the product

of the backward shift operator and a linear functional, allows us to prove that it is, at the same time,

d-hypercyclic, weakly hypercyclic and Γ-supercyclic for every Γ ⊆ C that is either unbounded or not

bounded away from zero. Moreover all this properties are achieved by the same orbit. Finally, we also

show that such a homogeneous polynomial exists on every separable infinite dimensional Banach space.

It should be mentioned that if the space is a non-normable Fréchet space, then it can support hy-

percyclic homogeneous polynomials. The first to notice it was Peris [21], who exhibited a chaotic ho-

mogeneous polynomial on CN. Later, other examples were presented, on some Köthe Echelon spaces

(including H(D)) [20], on some spaces of differentiable functions on the real line [2] and more recently

on H(C), the space of entire functions on the complex plane [9]. There are also positive results for

hypercyclicity of non-homogeneous polynomials. In [19] the authors proved that every complex sepa-

rable infinite dimensional Banach space supports a non-linear hypercyclic polynomial. More recently

Bernardes and Peris showed in [5] the existence of frequently hypercyclic, chaotic and distributionally

chaotic (non-homogeneous) polynomials for a very wide class of infinite dimensional separable Banach

spaces. There where also some attempts to extend the concept of hypercyclicity to multilinear operators,

see [14, 6].
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2. Julia sets for homogeneous polynomials on Banach spaces

2.1. Preliminaries. Given a topological space X, a function F : X → X is said to be transitive if for

every pair of non empty sets U, V , there exists n ∈ N such that Fn(U) ∩ V 6= ∅. If X is a complete

separable metric space without isolated points, then transitivity is equivalent to hypercyclicity. This

means that there exists x ∈ X whose orbit, OrbF (x) = {Fn(x) : n ∈ N}, is dense in the space. If F is

hypercyclic and the periodic vectors are dense in the space, then F is said to be chaotic.

Given an F -space X, P : X → X is an m-homogeneous polynomial if there exist an m-linear operator

A :

m
︷ ︸︸ ︷

X × . . . ×X → X such that P (x) = A(x, . . . , x). We will deal with continuous polynomials. If X is

a normed space then we can define a norm in the space of m-homogeneous polynomials P(mX;X),

‖P‖ := sup
x∈BX

‖P (x)‖.

Bernardes showed that if X is a normed space, then no (non linear) homogeneous polynomial is

hypercyclic [4] (see also [23, Lemma 1.2] for a related finite dimensional statement). For the sake of

completeness and because we need to define the notion of limit ball, we give a proof of (slightly modified

version of) the mentioned result.

Proposition 2.1. Let X be a normed space, let P be an m-homogeneous polynomial with m ≥ 2 and

let rP = ‖P‖
1

1−m . Then P (rPBX) ⊆ rPBX . Moreover for all y ∈ rPBX , limn→∞ Pn(y) = 0.

Proof. Let x ∈ rPBX ,then

‖P (x)‖ ≤ ‖P‖‖x‖m < ‖P‖‖P‖
m

1−m

= ‖P‖1+
m

1−m = rP .

Let x with ‖x‖ < rP , then

‖Pn(x)‖ <

(
‖x‖

rP

)mn

rP → 0.

�

Corollary 2.2. No homogeneous polynomial of degree ≥ 2 defined on a normed space can be hypercyclic.

Definition 2.3. Let P be an m-homogeneous polynomial on a normed space X. We will say that

rP = ‖P‖
1

1−m is the limit radius of P and that rPBX is the limit ball of P .

2.2. Julia sets for homogeneous polynomials. One distinctive feature of the dynamics induced by

a holomorphic function on the complex plane is that we may partition its domain into two completely

invariant sets: the Julia set, which is closed, non-empty, perfect, with chaotic behavior (and thus, where

the interesting dynamics occur) and the Fatou set, which is open and has regular behavior. Along the

years many generalizations to several variables appeared and there is not a uniform consensus on what

the Julia set means in this context.
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Note that we can naturally partition the dynamical system (P,X) induced by a homogeneous polyno-

mial in two different systems. On the one hand we have AP :=
⋃

n≥0 P
−n(rPBX) = {x ∈ X : Pn(x) →

0}. This set is clearly an open set, P -invariant and is by definition the basin of attraction of zero. On

the opposite side we have its complement, namely Ac
P = {x : ‖Pn(x)‖ ≥ rP ∀n ≥ 0}. Clearly Ac

P is

closed and it is also P -invariant. For the aims of this article, we propose the following.

Definition 2.4. The Julia set associated to the homogeneous polynomial P on a normed space is the set

JP := ∂AP .

As the following easy result shows, any orbit with interesting dynamics must lie in the Julia set.

Proposition 2.5. Let P be an m-homogeneous polynomial on a normed space X. If x /∈ JP then either

limPn(x) = ∞ or limPn(x) = 0.

Proof. Let x /∈ JP and suppose Pn(x) 9 0. Then x /∈ AP and consequently there is some 0 < t < 1 with

tx /∈ AP . This implies by Proposition 2.1 that, for every n, ‖Pn(tx)‖ ≥ rP and therefore ‖Pn(x)‖ =
1

tmn ‖Pn(tx)‖ ≥ 1
tmn rP → ∞. �

Notice that, in particular, periodic vectors and orbits having nonzero accumulation points must belong

to JP .

In the linear operator setting, an irregular vector is a vector that satisfies lim infn ‖T
n(x)‖ = 0 while

lim supn ‖T
n(x)‖ = ∞. This conditions are incompatible for a non-linear homogeneous polynomial on a

Banach space. In view of Proposition 2.1, it is natural to give the following definition of irregular vectors

for homogeneous polynomials. Note that any irregular vector must belong to JP .

Definition 2.6. A vector is irregular for a homogeneous polynomial P if lim infn ‖P
n(x)‖ = rP and

lim supn ‖P
n(x)‖ = ∞.

We may also consider the basin of attraction of infinity. We define RP as the maximal open subset such

that every orbit tends in norm to ∞, that is, RP = {x ∈ X : there exist r > 0 such that ‖Pn(y)‖ →

∞ for every y ∈ Br(x)}. By definition RP is open and contained in AP
c
.

Proposition 2.7. Let P be an m-homogeneous polynomial defined over a normed space X. Then, X is

the disjoint union of AP , JP and RP .

Proof. It suffices to prove that (Ac
P )

◦ = RP . Since RP and is open RP∩AP = ∅ we have that RP ⊆ (Ac
P )

◦.

Reciprocally, if x ∈ (Ac
P )

◦, there exists an ǫ > 0 with Bǫ(x) ∩ AP = ∅. Let y ∈ Bǫ(x), by the last

proposition either Pn(y) → 0 or ‖Pn(y)‖ → ∞. Since y /∈ AP , P
n(y) → ∞. Therefore x ∈ RP . �
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Recall that a function F : Y → Y is said to be quasiconjugate to a function G : X → X if there exist

a continuous factor φ : X → Y , with dense range, such that the following diagram commutes

X

φ
��

G
// X

φ
��

Y
F

// Y

Most of the dynamical properties are preserved under quasiconjugacy.

The dynamical system induced by a linear operator T and λT may be completely different. Indeed,

if ‖λT‖ < 1 then every orbit tends to zero while T can support dense orbits. This is not the case if P is

a homogeneous polynomial. The same phenomenon occurs for bilinear operators (see [14]).

Proposition 2.8. Let P be an m-homogeneous polynomial, m > 1. Then for every λ 6= 0, λP is

quasiconjugate to P under a linear isomorphism.

Proof. Let λ
1

m−1 be any 1
m−1 -root for λ. The following factor works, φ(x) = 1

λ
1

m−1

x. Indeed,

λP

(
x

λ
1

m−1

)

=
λ

λ
m

m−1

P (x) =
1

λ
1

m−1

P (x).

�

The Julia set is preserved under quasiconjugacy provided that the factor is a linear isomorphism.

Lemma 2.9. Let Q and P be homogeneous polynomials such that Q is quasiconjugate to P under a

linear isomorphism. Then φ(AP ) = AQ, φ(JP ) = JQ, φ(RP ) = RQ.

Proof. Since φ is an isomorphism, it is enough to prove that φ(AP ) ⊆ AQ and φ(RP ) ⊆ RQ. Let x ∈ AP ,

then ‖Qn(φ(x))‖ = ‖φ(Pn(x))‖ ≤ ‖φ‖‖Pn(x)‖ → 0. So that φ(x) ∈ AQ. Consider now x0 ∈ RP , and let

ǫ′ > 0 such that ‖Pn(x)‖ → ∞ for all x ∈ Bǫ′(x0). Let ǫ > 0 such that φ−1(Bǫ(φ(x0)) ⊆ Bǫ′(x0). Thus

for y ∈ Bǫ(φ(x0)), ‖Q
n(y)‖ = ‖Qn(φ(φ−1(y)))‖ = ‖φ(Pn(φ−1(y)))‖, and thus ‖Qn(y)‖ → ∞ because φ

is an isomorphism and φ−1(y) ∈ Bǫ′(x0). �

Corollary 2.10. Let P be a non linear m-homogeneous polynomial and λ 6= 0. Then JλP = 1

λ
1

m−1

JP .

Lemma 2.11. If x ∈ AP then tx ∈ AP for all |t| ≤ 1, if x ∈ RP then tx ∈ RP for all |t| ≥ 1.

Proof. Let x ∈ AP and |t| ≤ 1. Then ‖Pn(tx)‖ ≤ ‖Pn(x)‖ → 0. Consequently we have that tx ∈ AP .

Suppose now that x ∈ RP and |t| ≥ 1. There exists ǫ > 0 such that ‖Pn(y)‖ → 0 for all y ∈ Bǫ(x). Let

y ∈ Bǫt(tx), therefore
∥
∥
∥
y

t
− x
∥
∥
∥ ≤ ǫ and ‖Pn(y)‖ ≥ ‖Pn

(y

t

)

‖ → ∞.

�
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The following result shows that the Julia set of a homogeneous polynomial share some of the properties

satisfied by the Julia set of a holomorphic function on the complex plane.

Proposition 2.12 (Properties of JP ). Let P be a non linear homogeneous polynomial. The Julia set

JP satisfies the following properties:

i) it is a closed set with empty interior;

ii) it is P -invariant;

iii) it is perfect;

iv) JPn = JP .

Proof. i) This is clear since JP is the boundary of an open set.

ii) First note that y ∈ AP if and only if P (y) ∈ AP . Thus, if x ∈ JP then P (x) is not in AP .

On the other hand, there exists (an)n ⊆ AP such that an → x. Since P (an) belongs also to AP and

P (an) → P (x), we have that P (x) ∈ JP .

iii) Just note that if x ∈ JP then λx ∈ JP for every |λ| = 1.

iv) It suffices to show that APn = AP . Clearly if P k(x) → 0 then (Pn)k(x) → 0 and therefore

AP ⊆ APn . The converse follows thanks to the existence of the limit ball (Proposition 2.1). If Pnk(x) → 0

then OrbPn(x) meets eventually the limit ball of P and therefore Pn(x) must tend to zero. �

In contrast to the one dimensional case, the Julia set JP may be empty. Indeed, if P ∈ P(2ℓ2; ℓ2)

is defined as P (x) = (x22, x
2
3, x

2
4, . . .), then Pn(x) → 0 for every x ∈ ℓ2. Thus AP = ℓ2 and hence

JP = RP = ∅.

Recall that a set A is completely invariant under P if P (A) ⊆ A and P−1(A) ⊆ A. The Julia set of

a homogeneous polynomials need not to be completely invariant, as we will show in Example 3.19. On

the other hand, under certain conditions on P , JP results completely invariant.

Proposition 2.13. Let P ∈ P(dX;X). If P is open or if RP = ∅ then JP is completely invariant.

Proof. Let x ∈ X such that P (x) ∈ JP . Suppose that x /∈ JP , so that x ∈ AP or x ∈ RP . If x ∈ AP we

have that Pn(x) → 0 and hence P (x) ∈ AP . If RP = ∅ this implies that x ∈ JP . If RP 6= ∅ and x ∈ RP ,

there is some ǫ > 0 so that ‖Pn(y)‖ → ∞ for every y ∈ Bǫ(x). Since P is open, P (Bǫ(x)) is an open

neighborhood of P (x) and Pn(z) → ∞ for every z ∈ P (Bǫ(x)) and hence P (x) ∈ RP . �

Since JP has empty interior, we can extract an easy but important corollary, which may be seen as

an extension to the nonlinear case of the Bourdon-Feldman Theorem [8].

Corollary 2.14. Let X be a normed space, and P ∈ P(mX;X), m ≥ 2. Then the following subsets are

always nowhere dense: any orbit induced by P , the set of irregular vectors, the set of periodic vectors.
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Proof. The periodic and irregular vectors are contained in the Julia set, which is nowhere dense. In

order to be a somewhere dense orbit, the orbit can not tend to infinity or to zero. Therefore it must be

contained in the Julia set, which has empty interior. �

It is natural to ask now how big the Julia sets (or the closure of an orbit) can be. We already know

that it cannot contain interior points. In the next subsection we will see some examples of Julia sets,

but let us first show that no multiple of the limit sphere can be contained in the Julia set. We will need

the following.

Proposition 2.15. Let P be an m-homogeneous polynomial, and let z ∈ JP such that tz ∈ JP with

0 < |t| < 1. Then Pn(z) → ∞. Consequently if x ∈ X, y ∈ OrbP (x) and 0 < |t| < 1, then ty is not an

accumulation point of OrbP (x).

Proof. If tz ∈ JP then ‖Pn(tz)‖ ≥ rP for every n ∈ N. Thus,

‖Pn(z)‖ =
1

|t|mn ‖P
n(tz)‖ ≥

rP
|t|mn → ∞.

For the last assertion, suppose otherwise. It follows that y ∈ OrbP (x) ⊂ JP . Since JP is closed, ty ∈ JP .

Thus, Pn(y) 9 ∞. This is a contradiction since ty is an accumulation point of OrbP (y) �

We will see in the next section that it is possible that the orbit of a point y accumulates at a multiple

ty, for |t| ≥ 1 (we will give an example that accumulates at every such a multiple).

Corollary 2.16. Let P be an m-homogeneous polynomial and let s 6= rP = ‖P‖−
1

m−1 . Then sSX * JP .

In particular, sSX is not contained in the closure of any orbit of P .

Proof. For s < rP the result is a consequence of Proposition 2.1. Suppose that sSX ⊂ JP , for some

s > rP . By Proposition 2.15, if ‖z‖ > s then Pn(z) → ∞. Thus {‖z‖ > s} ⊂ RP , and since JP is

invariant, P (sBX) ⊂ sBX .

Since sm−1‖P‖ = sm−1

rm−1

P

> 1, there is some x0 ∈ SX with ‖P‖ < sm−1‖P‖‖P (x0)‖. Then,

‖P (sx0)‖ >
sm

sm−1‖P‖
‖P‖ = s,

which is a contradiction. �

In the last proposition it was important that s 6= rP , and it is not true for s = rP . Indeed, we have the

following easy example: let X = ℓn∞ = (Cn, ‖ ·‖∞) and let P : X → X be the 2-homogeneous polynomial

defined as P (z1, . . . , zn) = (z21 , . . . , z
2
n). Since ‖P‖ = 1, the limit sphere is the unit sphere and it is easy

to see that it coincides with JP . If n = 1 the polynomial is P (z) = z2 defined in C. In this trivial example

JP = T and, furthermore P |T is the doubling map on the circle, which is mixing and therefore has dense

orbits. We do not know if there exists a non-trivial example of a Banach space X and a homogeneous

polynomial P on X having a dense orbit in its limit sphere. Note that such a polynomial must satisfy
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that rPSX = JP is completely invariant (thus for every x ∈ X, ‖P (x)‖ = ‖P‖‖x‖m) and that P |rPSX
is

transitive.

2.3. Some examples of Julia sets. In the following example, the Julia set contains an affine hyper-

space.

Example 2.17. Let X be a separable infinite dimensional Banach space. Take ϕ ∈ X∗ and x0 such that

ϕ(x0) = 1. Since Ker(ϕ) is an infinite dimensional Banach space, there exists a hypercyclic operator

T : Ker(ϕ) → Ker(ϕ). We define P ∈ P(mX;X) as

P (x) = ϕ(x)mx0 + ϕ(x)m−1T (x− ϕ(x)x0).

Then JP = Tx0 ⊕Ker(ϕ) and P |JP is transitive.

Proof. We start by studying AP and RP . Let x = λx0 + y with |λ| < 1 and y ∈ Ker(ϕ). Since

(1) Pn(x) = λm
n

x0 + λm
n−1T n(y)

we have that ‖Pn(x)‖ ≤ |λ|m
n
‖x0‖+ |λm

n−1|‖T (y)‖n → 0. Thus AP ⊆ {x : |ϕ(x)| < 1}.

Consider in X the following equivalent norm ‖x‖∞ := max{|ϕ(x)|‖x0‖, ‖x − ϕ(x)x0‖}. By Lemma

2.9, RP , AP and JP are invariant under equivalent norms. The set {x : |ϕ(x)| > 1} is open and, by (1),

if |ϕ(x)| > 1, then ‖Pn(x)‖∞ → ∞. Therefore {x : |ϕ(x)| > 1} ⊆ RP , and {x : ϕ(x) ∈ T} = ∂AP = JP .

Finally, let us see that P |Tx0⊕Ker(ϕ) is transitive. Recall that for every open set W ⊆ T, there exists

n0 such that T ⊆Wmn

for every n ≥ n0. Let U and V be open sets in Tx0+Ker(ϕ). By considering the

norm ‖ · ‖∞ in X, we can suppose that U = (U1, U2), V = (V1, V2) with U1, V1 ⊆ Tx0, U2, V2 ⊆ Ker(ϕ),

all of them being open sets. Let n0 ∈ N be with T ⊆ Umn−1
1 for every n ≥ n0. Since T is transitive,

there is n1 > n0 ∈ N with V2 ∩ T
n1(U2) 6= ∅.

Note that, by (1),

Pn1(U1 × U2) = {λm
n1
x0 + λm

n1−1T n1(y) : λx0 ∈ U1, y ∈ U2} = Tx0 × TT n1(U2).

Therefore, Pn1(U1 × U2) ∩ V1 × V2 6= ∅. �

Bernardes proved in [4, Theorem 2] that if X is an infinite dimensional separable Banach space then

there exist a supercyclic homogeneous polynomial acting on X. Notice that the fact that P |Tx0⊕Ker(ϕ)

is transitive implies that in particular P is supercyclic (and also R+-supercyclic). Moreover, such a

polynomial may be also constructed in any separable infinite dimensional Fréchet space. Thus, we have

given a simple proof and an extension of [4, Theorem 2].

Proposition 2.18. For any infinite dimensional separable Fréchet space X, and every natural m ≥ 2

there exists a homogeneous polynomial P ∈ P(mX;X) which is R+-supercyclic.
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Remark 2.19. The study of the dynamics of homogeneous polynomials is closely related to the study

of the iterations of holomorphic and meromorphic mappings on projective spaces. Each meromorphic

mapping on Pk has a lifting to Ck+1 which is a homogeneous polynomial. Moreover, a homogeneous

polynomial on Ck+1 is supercyclic if and only if its associated mapping on the projective space has

an orbit which is dense in Pk. The first example of such a mapping was constructed by Làttes on P1

and this can be also done in Pk, see for example [12]. Thus, we also know the existence of supercyclic

homogeneous polynomials on finite dimensional spaces.

Bernardes in [4, Proposition 5] gave an example of homogeneous polynomial P with an irregular vector

x0. In his example, OrbP (x0) does not have accumulation points and moreover, the sequence (‖Pn(x0)‖)n

is an unbounded sequence of positive numbers whose only accumulation point is rP . Next, we present

an example of a norm one homogeneous polynomial (thus rP = 1), with an irregular vector x such that

OrbP (x) is an affine hyperplane touching the sphere of radius rP = 1, and thus {‖Pn(x)‖ : n ∈ N} =

[rP ,∞).

Example 2.20. Let P be the m-homogeneous polynomial defined in the Example 2.17. We set m = 2,

X = ℓ1, x0 = e1, ϕ = e′1, and T : Ker(ϕ) ≡ ℓ1(N≥2) → ℓ1(N≥2) to be the hypercyclic operator (1 + ǫ)B,

where B is the backward shift on ℓ1(N≥2) and 0 < ǫ < 1.

Then ‖P‖ = 1 and JP = Te1 +Ker(e′1).

Since P |JP is transitive, there exists an orbit whose closure contains an affine hyperspace that meets

the limit ball. In particular there is an irregular vector x such that {‖Pn(x)‖ : n ∈ N} is [1,∞) = [rP ,∞).

Proof. By the previous example, it suffices to prove that ‖P‖ = 1.

Let x be in Sℓ1 and suppose that x = λe1 + γ, where γ ∈ Ker(e′1) and |λ|+ ‖γ‖1 = 1. Therefore

‖P (x)‖1 = |λ2|+ |λ|‖(1 + ǫ)B((γn))‖1 ≤ |λ|2 + (1 + ǫ)|λ|‖((γn)n)‖1,

and λ+ ‖(γn)n‖1 = 1.

Thus, ‖P‖ is less than or equal to the maximum of the function f(s, t) = s2 + (1 + ǫ)st restricted to

s+ t = 1, s ≥ 0 and t ≥ 0. Since 0 < ǫ < 1, this maximum is exactly 1.

On the other hand, P (e1) = e1, and therefore ‖P‖ = 1. �

It is also possible to construct an analogous m-homogeneous polynomial on X = ℓp, 1 < p < ∞,

provided m > (1 + ǫ)p.

In [21] it was shown that the polynomial defined as the backward shift to the power of m, acting on

the (non-normable) Fréchet space CN is chaotic (see also [20]). On ℓp (p < ∞) or c0 the dynamic of

this polynomial is trivial since every orbit converges to 0, i.e. AP is the whole space and the Julia set is

empty. The next example analyzes this polynomial in the space of convergent sequences.
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Example 2.21. Take X = c the space of convergent sequences and consider the m-homogeneous poly-

nomial defined as the backward shift to the power of m, that is, P (x)j = xmj+1. Then AP = {(aj)j :

| limj aj| < 1}, JP = {(aj)j : | limj aj| = 1}, RP = {(aj)j : | limj aj| > 1} and P |JP is transitive.

Proof. Observe first that ‖P‖ = 1 = rP .

Let (an)n ∈ c with L = | lim an| < 1. Let n0 ∈ N such that |an| < δ < 1 for every n ≥ n0. Therefore

‖Pn((an)n)‖∞ ≤ δm
n

→ 0. This implies that {(aj)j : | limj aj | < 1} ⊆ AP . Similarly RP ⊆ {(aj)j :

| lim aj | > 1}. Finally since {(aj)j : | lim aj| = 1} ⊆ ∂AP it follows that JP = {(aj)j : | lim aj| = 1}.

Let us now show that P |JP is transitive. Notice that A := {a+ eiθ1 : a ∈ c00, θ ∈ [0, 2π]} is dense in

JP , where 1 is the vector with [1]i = 1 for all i.

Let U , V be open sets and v + eiθ21 ∈ V ∩ A. Let ǫ > 0 with Bǫ(v + eiθ2) ⊆ V . Since the map

Φ : T → T, Φ(eiθ) = emiθ induces a mixing dynamical system, there is u + eiθ11 ∈ U ∩ A such that the

Φ-orbit of eiθ1 is dense in T. Suppose that u =
∑N

k=1 ukek and v =
∑N

k=1 vkek.

In the following, denote by a
1

n , for each 0 6= a ∈ C and for each n, a 1
n -root of a so that a

1

n → 1, as

n→ ∞. Thus, there exists n0 > N such that for any n ≥ n0, the vector xn belongs to U , where

xn :=

N∑

k=1

(uk + eiθ1)ek +

n∑

k=N+1

eiθ1ek +

N+n∑

k=n+1

(vk−ne
−iθ2 + 1)

1

mn eiθ1ek +

∞∑

k=N+n+1

eiθ1ek.

Therefore

‖Pn(xn)− v − eiθ21‖∞ = ‖
N∑

k=1

(vke
−iθ2 + 1)eiθ1m

n

ek +
∞∑

k=N+1

eiθ1m
n

ek − v − eiθ21‖∞

= ‖
N∑

k=1

vk(e
−iθ2Φn(eiθ1)− 1)ek +

∞∑

k=1

(Φn(eiθ1)− eiθ2)ek‖∞

≤ (‖v‖∞ + 1)|Φn(eiθ1)− eiθ2 |.

Thus, by the election of θ1, we can take n ≥ n0 such that |Φn(eiθ1) − eiθ2 | is arbitrarily small, so that

Pn(xn) belongs to V . �

3. d-hypercyclic, weakly hypercyclic and Γ-supercyclic homogeneous polynomials

No homogeneous polynomial on a Banach space can be hypercyclic, so it is natural to ask for the

existence of weaker notions of hypercyclicity. In this section we will provide a simple and natural

homogeneous polynomial that is at the same time d-hypercyclic, weakly hypercyclic and Γ-supercyclic

for every unbounded or not bounded away from zero Γ ⊆ C. Let us recall some basic definitions.

Let X be a Fréchet space and (ρn)n a fundamental system of seminorms. We will say that a set A ⊆ X

is d-dense for a sequence of positive numbers d = (dn)n provided that for every x ∈ X and every n,

there exists a ∈ A for which ρn(x− a) < dn. We will say that a function P : X → X is d-hypercyclic if
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there exist x such that OrbP (x) is d-dense in X. In this case, we will say that x is a d-hypercyclic vector

for P .

This phenomenon was studied by N. Feldman in [13] in the context of linear operators on Banach

spaces. There he proved that an operator on a Banach space is hypercyclic if and only if it is d-

hypercyclic. With a similar proof it can be proven that, if X is a Fréchet space, then both notions are

still equivalent for linear operators.

A function P : X → X is weakly hypercyclic if there exists x ∈ X such that OrbP (x) is dense

with respect to the weak topology of the space. Since the norm topology is stronger than the weak

topology, it is clear that a hypercyclic function is automatically weakly hypercyclic while the converse

is not necessarily true. In [10] the authors found the first weakly hypercyclic linear operator that is not

hypercyclic.

We will also consider the weaker notion for hypercyclicity called Γ-supercyclicity. If Γ ⊆ C, then we

will say that a function P : X → X is Γ-supercyclic if there exists x ∈ X (called Γ-supercyclic vector)

such that Γ · OrbP (x) is dense in the space. In the special case that Γ = C or Γ is a singleton we

recover the notions of supercyclicity and hypercyclicity respectively. An important result concerning

Γ-supercyclicity, for Γ = T, was due to León Saavedra and Müller [18], where they proved that a linear

operator is T-supercyclic if and only if it is hypercyclic. The case when Γ = R+ is also called positive

supercyclicity (see [22]). The concept of Γ-supercyclicity was recently introduced by Charpentier, Ernst

and Menet in [11]. They proved that the subsets Γ ⊆ C such that Γ-supercyclicity is equivalent to

hypercyclicity are exactly the subsets Γ which are bounded and such that Γ \ {0} is bounded away from

zero.

Every infinite dimensional separable Banach space supports supercyclic homogeneous polynomial (see

[4] or Proposition 2.18), but no homogeneous polynomial can be hypercyclic. This means that there are

C-supercyclic homogeneous polynomials while no polynomial is {∗}-supercyclic. So it is natural to ask

for which subsets Γ ⊆ C it is possible to have Γ-supercyclic homogeneous polynomials on Banach spaces.

3.1. Remarks on d-hypercyclicity. Notice that if x is a d-hypercyclic vector, then x ∈ JP . Indeed,

otherwise Pn(x) → ∞ or Pn(x) → 0 contradicting the d-density of OrbP (x).

If RP 6= ∅, then it contains balls of arbitrary large radius, because if Bǫ(y) ⊆ RP then B|t|ǫ(ty) ⊆ RP

for all |t| > 1. Thus we can find balls with arbitrary large radius not meeting JP . Since a d-hypercyclic

vector must belong to JP , it follows that the polynomial is not d-hypercyclic, and then we have the

following.

Remark 3.1. If RP 6= ∅ then P is not d-hypercyclic.

Proposition 3.2. Let X,Y be Fréchet spaces with fundamental system of seminorms (qn)n and (pn)n

respectively. Let F : X → X and G : Y → Y be continuous functions such that G is a quasiconjugacy of

F via a linear operator Φ : X → Y . If F is d-hypercyclic then G is d̃-hypercyclic for some (d̃n)n. In the
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Banach case we have that G is (d‖Φ‖+ ǫ)-hypercyclic for every ǫ > 0.

X

Φ
��

F
// X

Φ
��

Y
G

// Y

Proof. Let x be a d-hypercyclic vector for F and ǫ > 0. Let Mn and qkn such that pn(Φ(x)) ≤Mnqkn(x)

for every x ∈ X.

Let y ∈ Y and take x0 ∈ X such that pn(Φ(x0)−y) < ǫ. Since x is a d-hypercyclic vector, there exists

l > 0 such that qkn(F
l(x)− x0) < dkn . Therefore

pn(G
lΦ(x)− y) = pn(ΦF

l(x)− y) ≤ pn(ΦF
l(x)− Φ(x0)) + pn(Φ(x0)− y)

≤Mndkn + ǫ := d̃n.

�

3.2. Remarks on weak hypercyclicity. The orbits lying on RP tend to infinity fast. This forces the

orbit to be weakly closed and hence orbits on RP are far from being weakly dense.

Proposition 3.3. Let x /∈ JP . Then OrbP (x) is w-closed.

For the proof we will need the following result, which may be found in [3, Proposition 10.1].

Proposition 3.4. If there are some constants k > 0 and C > 1 such that ‖xn‖ ≥ kCn, then {xn : n ∈ N}

is weakly closed.

Proof of Proposition 3.3. If x ∈ AP , P
n(x) → 0 and therefore {Pn(x) : n ∈ N} is weakly closed. If

x ∈ RP , there is some t > 1 such that x
t ∈ RP . Then ‖Pn(x)‖ = tm

n
‖Pn(xt )‖ ≥ tm

n
rp. By the above

proposition OrbP (x) is weakly closed. �

Corollary 3.5. Let x be a weakly hypercyclic vector for a homogeneous polynomial. Then x ∈ JP .

It is known that homogeneous polynomials are not necessarily weak to weak continuous and therefore

(P, (X,ω)) is not a truly dynamical system. Nevertheless the property of being weakly hypercyclic is

preserved under quasiconjugacy provided that the factor Φ is weak to weak continuous and Φ has weakly

dense range.

Proposition 3.6. Let X,Y be Fréchet spaces, P ∈ P(mX;X), Q ∈ P(mY ;Y ) and Φ : X → Y a weak

to weak continuous map with weakly dense range such that the following diagram commutes.

X

Φ
��

P
// X

Φ
��

Y
Q

// Y
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If P is weakly hypercyclic then so it is Q.

Proof. Let x ∈ X be a weakly hypercyclic vector for P . Since OrbP (x)
ω
= X and Φ is weak to weak

continuous with weakly dense range, we have that Y = Φ(OrbP (x))
ω
= OrbQ(Φ(x))

ω
. �

3.3. Remarks and examples on Γ-supercyclicity. Recall that the set of Γ ⊆ C such that a Γ-

supercyclic operator is automatically a hypercyclic operator are exactly the sets Γ such that Γ is bounded

and bounded away from zero. In the same spirit, if Γ is bounded and bounded away from zero, then no

homogeneous polynomial is Γ-supercyclic.

Proposition 3.7. Let P be a Γ-supercyclic homogeneous polynomial and x a Γ-supercyclic vector. If

Γ is bounded then x /∈ AP and if Γ \ {0} is bounded away from zero then x ∈ AP . In particular no

homogeneous polynomial is Γ-supercyclic if Γ is bounded and Γ \ {0} is bounded away from zero.

Proof. Suppose that x ∈ AP then OrbP (x) is bounded. Hence Γ · OrbP (x) is bounded if Γ is bounded.

Thus x is not a Γ-supercyclic vector.

Suppose that x /∈ AP and that Γ \ {0} is bounded away from zero. By Proposition 2.1, ‖Pn(x)‖ ≥ rP

for every n. Therefore Γ ·OrbP (x)\{0} is bounded away from zero and again x cannot be a Γ-supercyclic

vector. �

A Γ-supercyclic vector is not necessarily in JP . Indeed, in Examples 3.13, 3.15, and 3.14 we show

Γ-supercyclic vectors belonging to AP , JP and RP , respectively.

If the factor Φ is linear, then Γ-supercyclicity is preserved under quasiconjugacy.

Proposition 3.8. Let P,Q be homogeneous polynomials such that Q is quasiconjugated to P under a

linear factor Φ. If P is Γ-supercyclic, then Q is also Γ-supercyclic.

Proof. If Γ · OrbP (x) is dense then Γ · OrbQ(Φ(x)) = Γ · Φ(OrbP (x)) = Φ(Γ · OrbP (x)) is also dense

because Φ has dense range. �

As in the linear case we can define the Γ-transitivity notion. For some examples it will be an useful

tool to prove Γ-supercyclity.

Definition 3.9. Let X be a separable Fréchet space. We say that a polynomial P ∈ P(mX;X) is

Γ-transitive, if for every open sets U and V , there exist n ∈ N and λ ∈ Γ with

λPn(U) ∩ V 6= ∅.

It is easy to prove that Γ-transitivity implies Γ-supercyclity. Moreover, in this case, the set of Γ-

supercyclic vectors is residual. However the converse is false. Indeed, if X is Banach and Γ is bounded

then no homogeneous polynomial is Γ-transitive.
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Proposition 3.10. Let X be a separable Fréchet space and Γ ⊆ X. If P ∈ P(mX;X) is Γ-transitive

then P is Γ-supercyclic.

Proof. Let {Vi}i∈N be a basis for X. For each γ ∈ Γ and each k choose γ
1

mk to be a mk-root of γ.

Consider for all i,

Gi :=
⋃

k,γ∈Γ
γ

1

mk P−k(Vi).

Since P is Γ-transitive, Gi is a dense open set for each i. Therefore, G =
⋂

i∈N
Gi is non empty. Finally

we notice that any point in G is a Γ-supercyclic vector. �

We propose the following criterion to study Γ-transitivity.

Definition 3.11 (Γ-transitivity criterion). We say that P satisfies the supercyclity criterion for (λk)

provided that there are dense sets X0 and Y0 and applications Sk(x) : Y0 → X such that for all x ∈ X0,

y ∈ Y0,

i) Sk(x)(y) → 0 and

ii) λkP
nk(x+ Sk(x)(y)) → y.

Proposition 3.12. Let (X, (ρn)n) be a separable Fréchet space, where (ρn)n is a fundamental system of

nondecreasing seminorms, and let P be a homogeneous polynomial. Then P satisfies the Γ-transitivity

criterion with to respect some (λk) ⊆ Γ if and only if P is Γ-transitive.

Proof. Suppose that P satisfies the Γ-transitivity criterion with respect to (λk). Let U, V be open sets.

Let x ∈ U ∩X0 and y ∈ V ∩ Y0. Since Sk(x)(y) → 0 there is some with x+ Sk(y) ∈ U for large k. Since

λkP
nk(x+ Sk(x)(y)) → y there is some k such that Pnk(x+ Sk(x)(y)) ∈ V .

Suppose now that P is Γ-transitive. Let (xi)i∈N be a dense numerable sequence in X. Let X0 = Y0 =

{xi : i ∈ N}. Fix x, y ∈ X0. For each k ∈ N there is some zk ∈ {w : ρk(x− w) < 1
k} such that for some

nk > nk−1 and λk ∈ Γ we have λkP
nk(zk) ∈ {w : ρk(y − w) < 1

k} . We define Sk(x)(y) = zk − x. Since

zk → x, Sk(x)(y) → 0 while λkP
nk(x+ Sk(x)(y)) → y. �

Example 3.13. Let X be c0 and P : c0 → c0 as P (a)j := amj+1. The polynomial P is Γ-supercyclic for

every unbounded Γ ⊆ C.

Proof. We will apply Criterion 3.11. Let X0 = Y0 = c00 and let x, y ∈ c00. We now define Sk(x)(y). For

λ ∈ C let λ
1

m be any m-root of λ. Let F : c00 → c00 be defined as

F (a)j :=

{

a
1

m

j−1 if j 6= 1

0 if j = 1,

and set Sk(x)(y) =
F k(y)

λ
1

mk

k

, where λk ∈ Γ is chosen so that λ
1

mk

k tends to infinity.
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Since ‖F (y)‖ ≤ max{1, ‖y‖} we get Sk(x)(y) → 0. On the other hand, if k > max{j : xj 6= 0} it

follows that

λkP
k(x+ Sk(x)(y)) = λkP

kSk(x)(y) = P kF k(y) = y.

By Proposition 3.12, P is Γ-transitive and hence Γ-supercyclic. �

The above polynomial cannot provide an example of a Γ-supercyclic homogeneous polynomial when

Γ is a bounded set. Indeed, if Γ is bounded, then by Proposition 3.7 the Γ-supercyclic vector is not in

AP , but in this case AP = c0. The same happens if we consider this polynomial on ℓp, 1 ≤ p < ∞.

However, in the space c of convergent sequences the situation is different.

Example 3.14. Let X = c and P : c→ c defined as P (a)j = (aj+1)
m. Then P is D-supercyclic.

Proof. For A ⊆ N we denote by 1A the characteristic vector of A, i.e.,

1A(j) =

{

1 if j ∈ A;

0 else .

For each λ = reiθ ∈ C let λ
1

n denote the number r
1

n eiθ/n.

We define F : c→ c as

F (a)j :=

{

a
1

m

j−1 if j > 1;

0 if j = 1.

Clearly F is a well defined map and P kF k = Id, for every k ∈ N.

Let (ỹn)n be a dense sequence in c such that (ỹn)n = (yn)n + (ln1sop(yn)c)n, where (yn)n is a dense

sequence in c00, and (ln)n is a sequence in C. Without loss of generality, we may suppose that, for all n,

ln 6= 0 and supp(yn) = [1,m(yn)], where m(yn) := max{j : [yn]j 6= 0}.

We can construct, by induction, a sequence (nk)k ⊆ N satisfying the following properties:

i) nk > m(yk−1) + nk−1,

ii) for all j ∈ nk + supp(yk),

∣
∣
∣
∣
∣

[Fnk(yk)]j

l
1

m
nk

k

− 1

∣
∣
∣
∣
∣
< 1

k ,

iii) for every k > 0, lk
2m

nk < 1 and

iv) for all j < k, and all i ∈ (nk − nj) + supp(yk),

∣
∣
∣
∣
∣
∣

lj



 [Fnk−nj (yk)]i

l
m

nj

m
nk

k

− 1





∣
∣
∣
∣
∣
∣

< 1
k .

Note that it is possible to choose such a sequence (nk)k because all four conditions will be satisfied

once nk is sufficiently large.
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Let x̃ ∈ ℓ∞ be the vector defined as

x̃ =

∞∑

j=1

2Fnj (yj)

l
1

m
nj

j

.

The vector x̃ /∈ c since there are gaps with zeros. By condition ii) the nonzero coordinates of x̃ tend to

2. Therefore we fill the gaps to obtain a well defined vector in c, we define

x = x̃+ 21supp(x̃)c .

By condition i), the supports of the Fnj (yj) are pairwise disjoint. Consequently,

(2) P k(x̃) =
∞∑

j=1

P k





2Fnj (yj)

l
1

m
nj

j




 .

Also, by condition i), it follows that if k > j, then

(3) Pnk(Fnj (yj)) = 0.

We claim that x is a D-supercyclic vector. Indeed, let k be in N. By condition iii) each lk
2m

nk ∈ D and

thus,

∥
∥
∥
∥

lk
2m

nk
Pnk(x)− ỹk

∥
∥
∥
∥

=

∥
∥
∥
∥

lk
2m

nk
Pnk

(
x̃+ 21supp(x̃)c

)
− yk − lk1supp(yk)c

∥
∥
∥
∥

=

∥
∥
∥
∥

lk
2m

nk
Pnk(x̃) +

lk
2m

nk
2m

nkPnk
(
1supp(x̃)c

)
− yk − lk1supp(yk)c

∥
∥
∥
∥
.(4)

Let us observe that N = supp(Pnk(x̃ + 1supp(x̃)c)) = supp(Pnk(x̃)) ∪ supp(Pnk(1supp(x̃)c)). and that

Pnk
(
1supp(x̃)c

)
= 1supp(Pnk(x̃))c . Moreover, since supp(yk) ⊆ supp(Pnk(x̃)), we have also that

1supp(Pnk(x̃)c) − 1supp(yk)c = −1(supp(Pnk(x̃))\supp(yk)).
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Therefore, by equality (2), the above remarks and equation (4),
∥
∥
∥
∥

lk
2m

nk
Pnk(x)− ỹk

∥
∥
∥
∥

=

∥
∥
∥
∥

lk
2m

nk
Pnk(x̃) + lk1supp(Pnk x̃)c − yk − lk1supp(yk)c

∥
∥
∥
∥

=

∥
∥
∥
∥

lk
2m

nk
Pnk(x̃)− yk − lk1(supp(Pnk(x̃))\supp(yk))

∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥

lk
2m

nk
Pnk






∞∑

j=1

2Fnj (yj)

l
1

m
nj

j




− yk − lk1(supp(Pnk(x̃))\supp(yk))

∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥

∞∑

j=1

lk
2m

nk
Pnk





2Fnj (yj)

l
1

m
nj

j




− yk − lk1(supp(Pnk(x̃))\supp(yk))

∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥

∞∑

j=1

lk

l
mnk

m
nj

j

Pnk (Fnj (yj))− yk − lk1(supp(Pnk(x̃))\supp(yk))

∥
∥
∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
∥
∥

∑

j<k

lk

l
mnk

m
nj

j

PnkFnj(yj)

∥
∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥

lk

l
mnk

m
nk

k

yk − yk

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥
∥

∑

j>k

lk

l
mnk

m
nj

j

(
Fnj−nk(yj)

)
− lk1(supp(Pnk(x̃))\supp(yk))

∥
∥
∥
∥
∥
∥
∥

.

By equality (3) the first term of the last expression is zero. Notice also that supp
(
∑

j>k F
nj−nk(yj)

)

=

supp(Pnk(x̃))− supp(yk). Therefore, by property iv),
∥
∥
∥
∥
∥
∥
∥

∑

j>k

lk

l
m

nk

m
nj

j

(
Fnj−nk(yj)

)
− lk1(supp(Pnk(x̃))\supp(yk))

∥
∥
∥
∥
∥
∥
∥

= sup
j>k

sup
i∈nj−nk+supp(yj)







∣
∣
∣
∣
∣
∣
∣

lk





[Fnj−nk(yj)]i

l
m

nk

m
nj

j

− 1






∣
∣
∣
∣
∣
∣
∣







≤ sup
j>k

1

j
=

1

k + 1
→ 0.

This implies that x is a D-supercyclic vector. �

In Example 2.21 we proved that the Julia set of the above polynomial is JP = {x ∈ c : limxj ∈ T}.

Since for each λ ∈ D and each x ∈ JP , limλxj ∈ D, it follows that if x is a D-supercyclic vector then

x ∈ RP .

3.4. Main example. We proceed with the main example of our work. We prove in this subsection

that the 2-homogeneous polynomial P : ℓp → ℓp defined as P = e′1 · B, where B is the backward shift

operator, is weakly hypercyclic, d-hypercyclic for every d > rP and Γ-supercyclic for every Γ ⊂ C such

that Γ is unbounded or not bounded away from zero. The proof is based on properties of its Julia set

JP .
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Theorem 3.15. Let X = c0 or X = ℓp, 1 ≤ p <∞, and let P : X → X defined as

P (x) = x1B(x),

where B : X → X is the backward shift. Then P |JP is chaotic and, if x0 ∈ JP is any vector such that

OrbP (x0) is dense in JP then

(1) x0 is a weakly hypercyclic vector,

(2) x0 is a d-hypercyclic vector, for every d > rP ,

(3) x0 is a Γ-supercyclic vector, for every Γ ⊂ C such that 0 is an accumulation point of Γ.

Moreover, P is also Γ-supercyclic for every unbounded set Γ ⊂ C.

We will prove the theorem for X = ℓp, the proof for X = c0 is similar. We will divide the proof in

several steps. We will prove first that P |JP is chaotic and then that the Julia set JP is d-dense, weakly

dense and that Γ · JP = ℓp for every d > rP and every Γ with zero as an accumulation point. A dense

orbit in JP inherits all the mentioned properties.

Since Γ-supercyclic vectors must belong to AP if Γ is bounded away from zero, the case when Γ is

unbounded (but not necessarily with 0 as accumulation point) will be treated separately.

We start by computing the norm of P . The problem is equivalent to maximizing the function f(x, y) =

xy under the restrictions xp + yp = 1, x ≥ 0, y ≥ 0. Applying Lagrange multipliers it follows that

‖P‖ = 1

2
2
p
. Thus rP = 2

2

p .

Notice that Pn(x) = cn(x)B
n(x), where

cn(x) = x2
n−1

1 · x2
n−2

2 · . . . · xn;

equivalently cn(x) can be recurrently defined by the relations






c1(x) = x1

cn+1(x) = c2n(x)xn+1.

Since c00 ⊆ AP , AP is dense and RP = ∅. By Proposition 2.13 JP must be completely invariant. If

x ∈ JP and |t| > 1 then tx /∈ AP . Since RP = ∅, tx must belong to JP . Thus, we may think JP as an

infinite union of half lines.

Let us first check that JP 6= ∅. The following is a fixed vector for P

x = 2
1

p

(

1,
1

2
1

p

,
1

2
2

p

,
1

2
3

p

, . . .

)

.

Since x is a fixed vector, then it must, by Proposition 2.5, belong to JP . Also, x ∈ rPSX since

‖x‖pp = 2

∞∑

i=0

(
1

2
1

p

)ip

= 2 ·
1

1− 1
2

= 4.
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Proof that P |JP is chaotic. Since JP is closed and P -invariant, by Birkhoff’s transitivity Theorem P |JP
is chaotic if and only if P |JP is transitive and the periodic vectors of P are dense in JP .

Let U, V be nonempty open sets intersecting JP . Let y ∈ V ∩ JP , x ∈ U ∩ JP . Since B
n(x) → 0 and

‖Pn(x)‖ = |cn(x)|‖B
n(x)‖ ≥ rP we have that cn(x) → ∞.

We will perturb x to a vector x̃ in such a way that x̃ ∈ U and for some n, Pn(x̃) = y. Notice that,

since JP is completely invariant, this implies that x̃ ∈ JP . Consider x
n the vector xn =

∑n
i=1 e

′
i(x)ei.

Clearly xn → x in ℓp. Since cn(x) reads only the first n coordinates, cn(x) = cn(x
n). Consider

x̃n = xn + Sn(y)
cn(x)

, where S denotes the forward shift. Since ‖Sn(y)‖p = ‖y‖p and cn(x) → ∞, it follows

that Sn(y)
cn(x)

→ 0 and that x̃n → x. Thus, for large n, x̃n ∈ U . Also,

Pn(x̃n) = cn(x̃
n)Bn

(

xn +
Sn(y)

cn(x)

)

= cn(x)
y

cn(x)
= y.

Therefore we may take x̃ = x̃n for n sufficiently large.

Next we show that the periodic vectors are dense in JP . Let y ∈ JP and ǫ > 0. Since y ∈ JP , there is

some n0 with |cn(y)| > 1 for every n ≥ n0. Consider y
n =

∑n
i=1 e

′
i(y)ei. The vector

ỹn =

∞∑

i=0

Sni(yn)

cn(y)i
= yn +

∞∑

i=1

Sni(yn)

cn(y)i

is n-periodic for P . Indeed

Pn(ỹn) = cn(ỹ
n)Bn

( ∞∑

i=0

Sni(yn)

cn(y)i

)

= cn(y)

∞∑

i=0

BnSni(yn)

cn(y)i

=

∞∑

i=1

Sn(i−1)(yn)

cn(y)i−1
= ỹn.

If n ≥ n0 it is also well defined, because

‖ỹn‖p ≤
∞∑

i=0

‖Sni(yn)‖p
|cn(y)|i

≤
∞∑

i=0

‖y‖p
|cn(y)|i

<∞.

Finally ỹn → y, since

‖ỹn − yn‖p ≤ ‖y‖p

∞∑

i=1

1

|cn(y)|i
→ 0.

�

Proof that JP is d-dense, d > rP . Let x ∈ ℓp. Recall that the vector x = 2
1

p

(

1, 1

2
1
p
, 1

2
2
p
, 1

2
3
p
, . . .

)

belongs

to JP and has norm equal to rP . Denoting sign(0) = 1 we define x̃ as

x̃i = sign(xi)max{|xi|, |xi|}.
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For each i we have that |x̃i| ≥ |xi|. This implies that for each n, ‖Pn(x̃)‖p ≥ ‖Pn(x)‖p ≥ rP and hence

the vector belongs to JP . Also ‖x− x̃‖p ≤ ‖x‖p = rP . �

Proof that JP is weakly dense. Let U = U{ǫ,x0,ϕ1,...ϕn} be a basic weakly open set.

Let 0 6= y ∈
⋂n

i=1 Ker(ϕi). Let M = max{‖ϕi‖} and ǫ̃ = ǫ
M . We consider for each n ∈ N,

yn = n · y + x0. The vector y
n may fail to belong to JP , however we can find a perturbation xn of yn so

that xn ∈ JP ∩ U . Noting again sign(0) = 1 and considering the fixed vector x, we define

xnj := sign(ynj )max{|ynj |,
ǫ̃

rP
|xj |}.

Clearly ‖xn − yn‖p ≤ ǫ̃
rP

‖x‖p = ǫ̃. We claim that for large n, xn ∈ JP . Let k such that yk 6= 0, so

that 0 6= xnk → ∞ as n→ ∞.

The vector

zn =
ǫ̃

rP
(x1, x2, . . . , xk−1, x

n
k , xk+1, . . .)

satisfies that |xnj | ≥ |znj | for every j ≥ 0 and hence if zn belongs to JP so does xn. But

P k(zn) =

(
ǫ̃

rP

)2k ck ((x1, x2, . . . , xk−1, x
n
k , xk+1, . . .))

ck(x)
P k(x) =

(
ǫ̃

rP

)2k xnk
xk
P k(x) =

(
ǫ̃

rP

)2k xnk
xk
x.

Thus for big enough n we get that P k(zn) = λx for some |λ| ≥ 1 and therefore P k(zn) ∈ JP for large n.

Since JP is completely invariant this implies that zn ∈ JP .

Finally xn belongs to U because, |ϕi(x
n − x0)| ≤ ‖ϕi‖‖x

n − yn‖p + |ϕi(y
n − x0)| ≤ ǫ. �

Proof that Γ · JP is dense for every Γ with zero as accumulation point. Let x ∈ ℓp, ǫ > 0 and γ ∈ Γ such

that ǫ
rpγ

> 1. We consider

z =
1

γ
sign(xj)max{|xj |,

ǫ

rP
xj}.

The vector z is in JP since for each coordinate |zj | > |xj| and xj ∈ JP . It is also immediate that

‖γz − x‖p < ǫ.

�

Proof that P is Γ supercyclic for every unbounded Γ. We will apply Criterion 3.11. Let X0 = Y0 be a

dense set of vectors with nonzero coordinates. For x, y ∈ X0 fixed we choose (λn)n ⊂ Γ such that

λncn(x) → ∞. Let xn be the vector xnj = χ[1,n](j)xj , i.e. x
n is the truncation of x. Finally we define

the inverses Fn(x) as Fn(x)(y) = xn − x+ Sn(y)
cn(x)λn

, where S is the forward shift operator. It is clear that
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Fn(x)(y) → 0. Also

λnP
n(x+ Fn(x)(y)) = λnP

n

(

xn +
Sn(y)

cn(x)λn

)

= λncn

(

xn +
Sn(y)

cn(x)λn

)

Bn

(

xn +
Sn(y)

cn(x)λn

)

= λncn(x)
y

cn(x)λn
= y.

�

We end the example by pointing some comments. The first to notice is that we can arrive to d-dense

orbits of arbitrary small radius.

Remark 3.16. For every d > 0 there is some d-hypercyclic homogeneous polynomial.

Proof. Let P be the 2-homogeneous polynomial from the above theorem. By Proposition 2.8, λP is

quasiconjugated to P for every λ 6= 0 under a linear isomorphism of norm 1
|λ| . By Proposition 3.2, this

implies that λP is d-hypercyclic for every d > rλP = rP
|λ| . �

Remark 3.17. Proposition 2.15 says that tx with |t| < 1 is not an accumulation point of OrbP (x). The

example from Theorem 3.15 shows that this does not happen for |t| ≥ 1. Indeed, if x is a point whose

P -orbit is dense in JP , tx is in JP for |t| ≥ 1 and hence it is an accumulation point of the P -orbit of x.

Remark 3.18. The Julia set of the polynomial of Theorem 3.15 satisfies another nice property: the

image of JP under the backward shift is dense in ℓp. This implies that the dense orbit in JP must

satisfy that {B(Pn(x))} = ℓp. Thus, the family {cn(·)B
n+1(·)} is an universal family of homogeneous

polynomials while {cn(·)B
n(·)} = {Pn} has only nowhere dense orbits.

Proof that B(JP ) = ℓp. Let ǫ > 0 and x ∈ ℓp. Let x be a fixed vector that satisfies ‖x‖p = rP . Define

y ∈ ℓp as yn = sign(xn)max{|xn|, ǫ|xn|}. Thus ‖y − x‖p ≤ ǫrP and |yn| ≥ ǫ|xn| for each n. We define

z = e1
ǫ + S(y). Then B(z) = y and z ∈ JP . Indeed, P (z) = y

ǫ which satisfies |ynǫ | > |xn| for each

coordinate n. Thus, P (z) belongs to JP and therefore z is also in JP . �

Recall that a dynamical system (X,F ) is said to be Devaney chaotic if it is transitive, the periodic

vectors are dense and if it has sensitive dependence on the initial conditions. This last condition means

that there exists a neighborhood U of 0 such that for every x ∈ X and every neighborhood V of 0, there

is some n ∈ N and y ∈ x+ V such that Fn(y) /∈ U + Fn(x). On metric spaces, sensitivity on the initial

conditions is implied by the transitivity and the density of periodic vectors and, of course, no nonlinear

homogeneous polynomial on a Banach space can have sensitivity on the initial conditions. But, if we

consider the weak topology on the Banach space, we may have Devaney chaotic polynomials. Indeed, if

P is the polynomial from Theorem 3.15, we already proved that P |JP satisfies that it is transitive and

that the periodic vectors are dense, and moreover we saw that JP is weakly dense in ℓp. Thus, P satisfies

the first two conditions of Devaney chaoticity. To see the last one, just take U = {x ∈ ℓp : |x1| < 1}.
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Then for x ∈ ℓp, V a weak neighborhood of 0, which we may suppose that, for some ǫ > 0 and some n,

V ⊃ {x ∈ ℓp : |xj | < ǫ, j = 1, . . . , n}. define y ∈ ℓp as,

yk =







ǫ/2 if k ≤ n, xk = 0,

xk if k ≤ n, xk 6= 0,

c if k = n+ 1,

0 if k > n+ 1.

Then y ∈ x+ V for every c and

e′1(P
nx− Pny) = e′1

(

cn(x)B
n(x)− cn(y)ce1

)

= cn(x)xn+1 − cn(y)c.

Since cn(y) 6= 0 and it does not depend on c, we can find c such that |e′1(P
nx − Pny)| > 1 and thus

Pn(y) /∈ U + Pn(x). Therefore P = e′1 ·B is Devaney chaotic on (ℓp, w).

Example 3.19. Using the polynomial P defined in Theorem 3.15, it is possible to exhibit an example of

a homogeneous polynomial whose Julia set is not completely invariant: let X = C ⊕∞ c0(c0) and define

Q ∈ P(2X) as

Q(λ, (yj)j∈N) = (0, P (λx), P (y1), P (y2), . . . ),

where x ∈ c0 is a vector in the Julia set of P . Then, for |λ| > 1, the vector (λ, (0)j) is in RQ because if

|t| > 1,

‖Qn(t, (yj)j∈N)‖X ≥ ‖Pn(tx)‖∞ → ∞.

On the other hand, the vector Q(λ, (0)j) = (0, P (λx), 0, 0, . . . ) belongs to JQ. Indeed, we may approx-

imate P (λx) by a vector z ∈ c0 with only finite nonzero coordinates. Then the vector (0, z, 0, 0, . . . )

approximates (0, P (λx), 0, 0, . . . ) in X and clearly, (0, z, 0, 0, . . . ) is in AQ.

3.5. Numerically hypercyclicity. The notion of numerically hypercyclicity was recently introduced

by Kim, Peris and Song [16]. A function F is said to be numerically hypercyclic provided that there

are vectors x ∈ SX , x
∗ ∈ SX∗ , with x∗(x) = 1 and such that its numerical orbit NorbF (x, x

∗) :=

{x∗(Fn(x)) : n ∈ N0} is dense in C. In [16, 17] the authors proved that every infinite dimensional and

separable Banach space supports a homogeneous polynomial of degree d ≥ 1. In view of the Example

3.15 one may expect that the homogeneous polynomial P (x) = x1B(x) is numerically hypercyclic in ℓp

or c0. However since the limit radius of the polynomial is rP = 2
2

p > 1, for X = ℓp and rP = 1 for

X = c0, ‖P
n(x)‖ ≤ rP for every x ∈ SX and every n, and thus the numerical orbits can never be dense.

The lack of numerically dense orbits is only due to the fact that BX ⊆ rPBX . Thus, by considering a

multiple of the polynomial and exploiting that homogeneous polynomials behave well under conjugation

via a linear isomorphism we can easily construct a numerically hypercyclic homogeneous polynomial.

Example 3.20 (A numerically hypercyclic homogeneous polynomial). Let X = ℓp and P (x) = x1B(x).

Let x0 ∈ JP such that the orbit of x0 under P is dense in JP is hypercyclic. Consider P̃ = ‖x0‖P . By

Proposition 2.9 applied to Φ(x) = 1
‖x0‖x it follows that JP̃ = ‖x0‖JP and that x0

‖x0‖ is hypercyclic for
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P̃ |J
P̃
. Now, by Example 3.15 and Proposition 3.6, x0

‖x0‖ is a weakly hypercyclic vector for P̃ . Thus, for

any x∗ ∈ SX∗ it satisfies that x∗(P̃n(x)) = C.

Remark 3.21. There are several notions of numerical range for nonlinear mappings on Banach spaces,

which coincide for linear operators (see for example [1, Chapter 11]). The numerical range in the sense

of Bauer of a mapping F is the set

{x∗(F (x)) : x∗(x) = ‖x‖2, ‖x‖ = ‖x∗‖},

i.e. the norm of x and x∗ is allowed to be different from 1. Inspired in this notion of numerical range,

a polynomial would be numerically hypercyclic if there are vectors x ∈ X,x∗ ∈ X∗, with x∗(x) = ‖x‖2,

‖x‖ = ‖x∗‖ and such that its numerical orbit NorbF (x, x
∗) := {x∗(Fn(x)) : n ∈ N0} is dense in C. With

this modified definition, the polynomial of Theorem 3.15 would also be numerically hypercyclic.

4. Existence of d-hypercyclic, weakly hypercyclic and Γ-supercyclic homogeneous

polynomials on arbitrary Fréchet spaces

In this section we will prove our main Theorem 4.5, which states that on any separable and infinite di-

mensional Fréchet space there exists a d-hypercyclic, weakly hypercyclic and Γ-supercyclic homogeneous

polynomial for every subset Γ which is unbounded or not bounded away from zero.

The proof will follow some of the ideas of Bonet and Peris [7] to prove the existence of hypercyclic

operators on arbitrary Fréchet spaces. We will look for a polynomial P acting on ℓ1 satisfying all the

mentioned properties and at the same time we want to find on each Fréchet space X a polynomial Q

being quasiconjugated to P .

The polynomial P on ℓ1 will be of the type e′1(x)Bw(x), where Bw is a weighted backward shift. The

main difference with Bonet and Peris proof is that not every weight works. Indeed, if the weights are

too small then the Julia set can be empty. This forces us to adapt their main Lemma [7, Lemma 2] to

our requirements.

Theorem 4.1. Let X = ℓ1 and P the homogeneous polynomial P = e′1 · Bω ∈ P(2ℓ1; ℓ1), where Bω is

the weighted backward shift defined as [Bω(x)]i =
1

(i+1)4
xi+1. Then P is weakly hypercyclic, d-hypercyclic

and Γ-supercyclic for every Γ ⊂ C such that Γ is unbounded or zero is an accumulation point of Γ.

The strategy of the proof is the same that we used in Example 3.15. We will prove that P |JP is

hypercyclic and that JP is weakly dense, d-dense and ΓJP = ℓ1 for Γ that accumulates at zero. Again

we will analyze the case when Γ is unbounded separately.

Note that c00 ⊆
⋃

nKerP
n so that RP = ∅ and by Proposition 2.13, JP is completely invariant. The

fact that RP = ∅ implies also that if x ∈ JP then all the ray {tx : |t| ≥ 1} ⊆ JP .
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The iterations of a vector x are

Pn(x) =
(
x2

n−1

1 . . . xn
)
·
( 1

12n−1

1

(2!4)2n−2
. . .

1

((n − 1)!4)2
1

n!4

)

·Bn
ω(x).

So if we define Ω ∈ CN as (Ω)n = 1
(n!)4

, and cn : CN → C as cn(z) =
∏n

i=1 z
2n−i

i , then

Pn(x) = cn(x)cn(Ω)B
n
ω(x).

We must verify that the Julia is not empty. A typical member of JP must satisfy that the first

coordinates are large in comparison to the decreasing rate of the tail and the weights 1
n!4 .

Lemma 4.2. Let j, l ∈ N and kj > 1 such that for all n ∈ N,

kj

(

22
n+1
2

)
√
2−1

≥ (n+ 1)!4(j + n− 1)!l.

Then for every N ≥ kj2
2
1
2 the vector

x =

(

N,
1

j!l
,

1

(j + 1)!l
, ...

)

belongs to JP .

Proof. We are going to prove by induction that for all n, cn(x)cn(Ω) ≥ kj2
2
n
2 . By definition of N ,

c1(x)c1(Ω) = N ≥ kj2
2
1
2 . Suppose that our claim is true for some n ≥ 1, then,

cn+1(x)cn+1(Ω) =
cn(x)

2cn(Ω)
2

(n+ 1)!4(j + n− 1)!l
≥

k2j 2
2
n
2
+1

(n+ 1)!4(j + n− 1)!l

= kj2
2
n+1
2

kj

(

22
n+1
2

)
√
2−1

(n+ 1)!4(j + n− 1)!l
≥ kj2

2
n+1
2 .

Thus, since ‖Bn
ω(x)‖ ≥ |Bn

ω(x)1| =
1

(n+1)!4(j+n−1)!l
, it follows that

‖Pn(x)‖ ≥
kj2

2
n+1
2

(n+ 1)!4(j + n− 1)!l
→ ∞,

as n→ ∞, and therefore x is in JP . �

Proof that P |JP is hypercyclic. We prove that P |JP is transitive. By Birkhoff’s transitivity Theorem it

follows that there exists a dense orbit in JP .

Inspired in the hypercyclicity criterion for linear operators we will find two JP -dense sets X, Y and

applications Sn,x : Y → ℓ1 such that the following properties are satisfied:

i) for all x ∈ X, y ∈ Y , Sn,x(y) → 0,

ii) if xn =
∑n

i=1 e
′
i(x)ei, then x

n + Sn,x(y) ∈ JP and
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iii) for all x ∈ X, y ∈ Y , Pn(xn + Sn,x(y)) → y.

If those properties are satisfied then clearly P |JP is transitive.

We define X as X := {x ∈ JP : tx ∈ JP for some |t| < 1}. Since RP is the empty set, if x ∈ JP then

tx ∈ JP for all |t| > 1. This implies that X is dense in JP .

For y ∈ JP we define y(n) ∈ ℓ1 as

y
(n)
j :=







yj if j ≤ n;

1
j! if j > n.

We define Y = {y(n) : y(n) ∈ JP and y ∈ X} ⊂ X ⊂ JP . We defined Y in such a way because of two

reasons. We want the formal inverse Sn
ω of Bn

ω to be defined in Y for all n, but at the same time we

want to have a (good) control of the decreasing rate of the tail.

Note that

(5) Sk
ω(y

(n))j =







0 if j ≤ k;

j!4

(j−k)!4
yj−k if k < j ≤ k + n;

j!4

(j−k)!4(j−k)!
if j > k + n.

Thus Sn
ω(y

(k)) ∈ ℓ1 for all k.

In order to show that Y is dense in JP , it suffices to see that Y is dense in X. Since y(n) → y, it

suffices to show that if y ∈ X then for large n, y(n) ∈ JP . We will exploit the fact that cn(y) grows very

fast when y ∈ X. Let |t| > 1 with y
t ∈ JP . We have that there is some constant C > 0 such that for

every n,

(6) |cn(y)cn(Ω)| = |t|2
n−1

∣
∣
∣cn

(y

t

)

cn(Ω)
∣
∣
∣ ≥ C|t|2

n

.

Since P is completely invariant it suffices to check that Pn(y(n)) = cn(y)cn(Ω)(
1
n! ,

1
(n+1)! , . . .) belongs

to JP . The coordinates of this vector are, for sufficiently large n, greater than the coordinates of

( cn(y)cn(Ω)
n! , 1

(n+1)! , . . .). Thus, it suffices to show that this new vector is in JP for large n. This is a

straightforward application of Lemma 4.2 because t2
n

2(n+1)!5
→ ∞. Therefore, it follows that y(n) ∈ JP for

large n and thus Y is dense in JP .

We are now able to define the inverse application Sn,x(y). For y ∈ Y , x ∈ X, let Sn,x(y) :=
Sn
ω(y)

cn(x)cn(Ω) .

Observe that cn reads only the first n coordinates, so we get

Pn

(

xn +
Sn
ω(y)

cn(x)cn(Ω)

)

= cn(x)cn(Ω)B
n
ω

(

xn +
Sn
ω(y)

cn(x)cn(Ω)

)

= y.

Since y ∈ JP and JP is completely invariant it follows that xn + Sn
ω(y)

cn(x)cn(Ω) ∈ JP . So we have that

properties ii) and iii) of our criterion are satisfied. It remains to show that Sn
ω(y)

cn(x)cn(Ω) → 0, but recall
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that for x ∈ X, cn(x)cn(ω)|t|
−2n → ∞ for some |t| > 1. At the same time we have a good control of the

decreasing rate of the tail of y.

Take n such that y = y(n). Recall that by (5),

‖Sk
ω(z

(n))‖ =

k+n∑

j=k+1

j!4

(j − k)!4
|zj−k|+

∑

j>k+n

j!4

(j − k)!4!(j − k)!

≤ ‖z‖
(k + n!)4

n!4
+
∑

j>0

(j + k + n)!4

(j + n)!5
.

Note that
∑

j>0
(j+k+n)!4

(j+n)!5
is a convergent series. Let |t| > 1 such that x

t ∈ JP . Then by (6), we have

(7)

∥
∥
∥
∥

Sk
ω(y)

ck(x)ck(Ω)

∥
∥
∥
∥
≤

‖z‖ (k+n!)4

n!4
+
∑

j>0
(j+k+n)!4

(j+n)!5

Ct2k
→ 0,

This proves that P |JP is transitive. �

Proof that JP is d-dense. Let x ∈ ℓ1. Let N such that the vector x = (N, 1
2! ,

1
3! , . . .) ∈ JP . We define x̃

as

x̃i = sign(xi)max{|xi|, |xi|},

with sign(0) = 1. For each i we have that |x̃i| ≥ |xi|. This implies that for each n, ‖Pn(x̃)‖ ≥ ‖Pn(x)‖ ≥

rP and hence the vector belongs to JP . Also ‖x− x̃‖ ≤ ‖x‖.

Therefore JP is d-dense for every d > ‖x‖. �

Proof that JP is weakly dense. Let U = U{ǫ,x0,ϕ1,...ϕn} be a basic weakly open set.

Let 0 6= y ∈
⋂n

i=1 Ker(ϕi). Let M = max{‖ϕi‖} and ǫ̃ = ǫ
M . We consider for each n ∈ N,

yn = n · y + x0. The vector yn may fail to belong to JP , however we can find a perturbation xn so that

xn ∈ JP ∩ U . Denoting sign(0) = 1 and x as in the previous proof, we define

xnj := sign(ynj )max{|ynj |,
ǫ̃

‖x‖
|xj |}.

Clearly ‖xn − yn‖ ≤ ǫ̃
‖x‖‖x‖ = ǫ̃. We claim that for large n, xn ∈ JP . Let k such that yk 6= 0. Note

that this implies that 0 6= xnk → ∞ as n→ ∞.

The vector

zn =
ǫ̃

‖x‖
(x1, x2, . . . , xk−1, x

n
k , xk+1, . . .)

satisfies that |xnj | ≥ |znj | for every j ≥ 0 and hence if zn belongs to JP so does xn. But

P k(zn) =

(
ǫ̃

‖x‖

)2k ck ((x1, x2, . . . , xk−1, x
n
k , xk+1, . . .))

ck(x)
P k(x) =

(
ǫ̃

‖x‖

)2k xnk
xk
P k(x).
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Since P k(x) ∈ JP we have that P k(zn) ∈ JP for sufficiently large n. Thus, the complete invariance of

JP implies that zn ∈ JP .

Finally xn belongs to U because, |ϕi(x
n − x0)| ≤ ‖ϕi‖ǫ̃+ ϕ(yn − x0) < ǫ. �

Proof that Γ · JP is dense for every Γ with zero as accumulation point. Let x ∈ ℓ1, ǫ > 0 and γ ∈ Γ such

that ǫ
‖x‖γ > 1. We consider

z =
1

γ
sign(xj)max{|xj |,

ǫ

‖x‖
xj}.

The vector z is in JP since for each coordinate |zj | > |xj| and xj ∈ JP . It is also immediate that

‖γz − x‖1 < ǫ. �

Proof that P is Γ supercyclic for every unbounded Γ. It suffices to prove that P is Γ-transitive for every

unbounded Γ. Let U and V be open sets. We want to show that for some γ ∈ Γ and n ∈ N, γPn(U)∩V 6=

∅. Since V ∩ JP and U ∩ JP may be both the empty set, we will skip the Julia set JP . However our

approach will be very similar to the one that we used to prove that P |JP was transitive.

The inverses Sk
ω are not defined on ℓ1. However, by perturbing the tail of the sequence as we did in

(5), we have that the set Y := {y ∈ ℓ1 : S
k
ω(y) ∈ ℓ1 for every k} is dense in ℓ1.

Let x ∈ U such that xj 6= 0 for every j, and y ∈ Y ∩ V and consider xn :=
∑

j≤n xjej . Since Γ is

unbounded we can choose (γn)n ⊆ Γ with Sn
ω(y)

cn(x)cn(Ω)γn
→ 0. Therefore,

xn +
Sn
ω(y)

cn(x)cn(Ω)γn
→ x

and since cn reads only the first n coordinates,

γnP
n

(

xn +
Sn
ω(y)

cn(x)cn(Ω)γn

)

= γncn(x
n)cn(Ω)B

n
w

(
Sn
ω(y)

cn(x)cn(Ω)γn

)

= y.

�

To prove the existence Theorem 4.5, we will use a version of the well known Lemma [7, Lemma 2] due

to Bonet and Peris. This Lemma was a key ingredient to prove the existence of hypercyclic operators

on arbitrary separable infinite dimensional Fréchet spaces. The main difference of this version is that we

provide a control of the asymptotic behavior of the sequence α(n) = x∗n(xn).

Lemma 4.3. Let X be an infinite dimensional separable Fréchet space not isomorphic to CN and let

α(n) be a sequence such that nα(n) → 0. Then, there are sequences (xn)n in X and (x∗n)n in X∗ such

that

(1) xn → 0 and span{xn} is dense in X,

(2) {x∗n} is equicontinuous and

(3) x∗n(xk) = α(n)δn,k.

The proof of the above Lemma follows [7], together with a careful choice of the elements (xk)k.
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Proof. Let (ρn)n be a non-decreasing fundamental system of seminorms generating the topology on X.

Since X is not isomorphic to CN, there is a dense subspace M ⊆ X and a continuous norm ‖ · ‖ defined

on M . Without loss of generality we may assume that ρ1|M = ‖ · ‖.

Consider (zn)n ⊂ SM , a linearly independent sequence in the sphere of M such that its span is dense

in M . Let (βn)n be a nondecreasing sequence such that, β1 > 1, βn → ∞ and such that nα(n)βn → 0.

We claim that, by adding new seminorms to our fundamental system {ρn}n and new vectors (wn)n ⊆

SM to the sequence (zn)n, we may assume that ρk(zj) ≤ βk for all k ≥ j.

Indeed, we will construct a subsequence (nl)l of natural numbers and consider (ψn)n the non-decreasing

fundamental system forX given by ψn = ρl for nl−1 ≤ n < nl, and a new sequence of linearly independent

vectors (wn)n, satisfying that zl+1 = wnl
. This pair (ψn, wn) will satisfy ψk(wj) ≤ βk for all k ≥ j. Since

span{zn : n ∈ N} is already dense, it will follow that span{wn : n ∈ N} is also dense and since the

ψn’s are the ρn’s but repeated, the systems {ψn} and {ρn} will generate the same topological space. We

construct the pairs (ψn, wn) inductively. Put ψ1 = ρ1, w1 = z1 and recall that ρ1(z1) = 1 < β1. Since

βk → ∞, there exists n1 such that ρ2(z1) < βn1
and ρ2(z2) < βn1

. We define ψn1
as ρ2, wn1

= z2 and

for k < n1 we define ψk as ρ1. Since ρ2 and ρ1 are continuous, there exist w2, . . . wn1−1 ∈ SM near z1

and linearly independent to {zn : n ∈ N} such that ρ2(wi) < βn1
for all 2 ≤ i ≤ n1 − 1 and such that

ψk(wj) = ρ1(wj) = 1 < β1 ≤ βk for all 2 ≤ j ≤ k ≤ n1. Suppose now that we have constructed ψ1, . . . ψnl

non-decreasing seminorms and vectors w1, . . . wnl
∈ SM such that the set {wi : i ≤ nl} ∪ {zn : n ∈ N} is

linearly independent, wnl
= zl+1, each ψk is some of the ρn’s, ψnl

= ρl+1 and ψk(wj) < βk for all j ≤ k ≤

nl. We proceed as we did in the first step. There exists nl+1 such that ρl+2(wj) < βnl+1
for all j ≤ nl and

ρl+2(zl+2) < βnl+1
. We put for nl < k < nl+1, ψk = ρl+1 = ψnl

, ψnl+1
= ρl+2 and wnl+1

= zl+2. Notice

that for nl < k < nl+1 and j ≤ nl we have that ψk(wj) = ψnl
(wj) < βnl

≤ βk. If k = nl+1, then this last

relation also holds by the definition of nl+1. Finally we choose for nl + 1 ≤ j < nl+1 vectors wj ∈ SM

close to z1 such that ψnl+1
(wj) < βnl+1

, such that, for j ≤ k < nl+1, ψk(wj) = ψnl
(wj) < βnl

and such

that {wj : j ≤ nl+1} ∪ {zn : n ∈ N} is linearly independent. The sequences (ψk)k, (wj)j constructed

satisfy all the desired properties, and we have proved the claim.

Now we choose by Hahn-Banach elements (x∗k)k in M∗ such that x∗k(zj) = δkj for all k > j and that

‖x∗k‖ = 1.

Following a Gram-Schmidt argument we consider yn = zn −
∑

k<n x
∗
k(zn)zk. It follows that (yn, x

∗
n)

is a biorthogonal sequence in M . Observe also that ρn(yn) ≤ nβn. We extend each x∗n to X (which we

keep notating x∗n). Since x∗n has norm 1 in M , this means that |x∗n(x)| ≤ ρ1(x) in X and hence the x∗n
are equicontinuous. Finally, the vectors xn will be xn = α(n)yn. Then, for every seminorm ρj and n > j,

ρj(xn) = ρj (α(n)yn) ≤ α(n)ρn(yn) ≤ nβnα(n) → 0.

�
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Theorem 4.4. Let P ∈ P(mℓ1; ℓ1) be the polynomial (e′1)B 1

n4
and let X be any infinite dimensional

and separable Fréchet space. Then there exists Q ∈ P(2X;X) and Φ ∈ L(ℓ1;X) such that Q is a

quasiconjugacy of P under Φ. In the case that X is Banach we have also that Q|JQ is a quasiconjugacy

of P |JP .

Proof. Let (xn)n ⊆ X and (x∗n) be the sequences given by the above lemma applied to the sequence

(αn)n defined by αn = 1
(n−1)2

for n ≥ 2 and α1 = 1. Let Q ∈ P(2X;X) be defined as

Q(x) = x∗1(x)
∞∑

n=1

x∗n+1(x)xn

n2
.

Since the x∗n are equicontinuous and xn → 0 the polynomial is well defined.

Let Φ : ℓ1 → X defined as Φ((an)n) =
∑
anxn. Again, since xn → 0 and (an)n ∈ ℓ1 the operator is

well defined.

We see now that Q is a quasiconjugacy of P under Φ. Since span(xn) is dense and it is contained in

the range of Φ, we have that Φ has dense range.

Let a ∈ ℓ1. We have that

Φ(P (a)) = Φ(a1B 1

n4
(a)) = a1

∞∑

n=1

an+1xn
n4

while

Q(Φ(a)) = Q

( ∞∑

n=1

anxn

)

= x∗1

( ∞∑

n=1

anxn

) ∞∑

n=1

x∗n+1(an+1xn+1)
xn
n2

= a1

∞∑

n=1

an+1xn
n4

.

A little more difficult is to prove that, in the Banach space case, Q|JQ is a quasifactor of P |JP . We

need to show two things. First that P (JP ) ⊆ JQ and second that P (JP ) = JQ. The first assertion is

easy to prove. Let a ∈ JP . Note that this implies that, for all n, supk
|Pn(a)k |
(k−1)2

> 1. So we can choose

nk satisfying |Pn(a)nk
| > (nk − 1)2. Since the x∗n are equicontinuous it follows that ‖x∗n‖ ≤ C for some

constant C. Therefore,

C‖QnΦ(a)‖ = C‖ΦPn(a)‖ ≥ |x∗nk
(ΦPn(a))| > 1.

Since RQ is the empty set, Φ(a) ∈ JQ.

We will show now that P (JP ) is dense in JQ. Let x ∈ JQ. We want to find for every ǫ > 0,

y ∈ Φ(JP ) ∩ Bǫ(x). Let T =
∑∞

n=1
x∗

n+1
(x)xn

n2 so that we can write Qn(x) as dn(x)T
n(x) in the usual

way , where dn(x) is a continuous function depending only on {x∗1(x), . . . , x
∗
1(T

n(x))}. Notice that
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cn(a)cn(Ω) = dn(Φ(a)). Indeed, ΦB 1

n4
= TΦ, and we have that

cn(a)cn(Ω)T
n(Φ(a)) = Φ(cn(a)cn(Ω)B

n
1

n4

(a)) = Φ(Pn(a))(8)

= Qn(Φ(a)) = dn(Φ(a))T
n(Φ(a)).

We conclude that cn(a)cn(Ω) = dn(Φ(a)) for every a ∈ ℓ1. Without loss of generality we may suppose that

there is some t > 1 for which |dn(x)| > t2
n

. Therefore we can find, for each n ∈ N, xn ∈ span{xk : k ∈ N}

such that ‖x− xn‖ < ǫ
2 and |dn(x

n)| > t2
n

2 . Note that if mn = max{j : x∗j(x
n) 6= 0}, then n ≤ mn. Let

N such that
∑

j≥N
1
j! ≤

ǫ
2 and ‖xn‖ < 1 for every n > N . If each xn =

∑
bnj xj we consider the vector

an ∈ ℓ1

anj =







bnj if j ≤ n;

sg(bnj )max{|bnj |,
1

(N−n+j)!} if j > n
.

We claim that an ∈ JP belongs to JP for large n. It suffices to show that Pn(an) ∈ JP for large n.

Since Φ(an), satisfies that |dn(Φ(a
n))| = |dn(x

n)| = |cn(a
n)cn(Ω)| ≥

t2
n

2 . We notice that Pn(an) =

cn(a
n)cn(Ω)B

n
1

j4

(an) has all its coordinates, with modulus greater than or equal to the coordinates of

|cn(a
n)cn(Ω)|

(
1

N !n!4
,

2!4

(N + 1)!(n + 1)!4
,

3!4

(N + 2)!(n + 2)!4
, . . .

)

which are also greater than or equal to the coordinates of
(
|cn(a

n)cn(Ω)|

n!5
,

1

n+ 1!5
,

1

n+ 2!5
, . . .

)

provided that n > N . Then by Lemma 4.2, it follows that if kn satisfies that

kn

(

22
j+1
2

)
√
2−1

≥ (j + 1)!4(j + n− 1)!5 for every j

then for every L ≥ kn2
2
1
2 the vector (L, 1

n!5
, 1
(n+1)!5

, . . .) ∈ JP . Note that we may take kn = (2n)!5. Thus,

since t2
n

2kn
→ ∞, for large enough n, we have |cn(an)cn(Ω)|

n!5
≥ kn2

2
1
2 and therefore the vector Pn(an) (and

hence an) is eventually in JP . Consequently, Φ(a
n) ∈ JQ.

Finally we have that

‖Φ(an)− x‖ ≤ ‖x− xn‖+ ‖Φ(an)− xn‖

≤
ǫ

2
+

mn∑

j=n+1

(bnj − anj )‖xj‖+
∞∑

j=mn+1

1

j!
‖xj‖

≤
ǫ

2
+

∥
∥
∥
∥
∥

(
1

j!

)

j≥N

∥
∥
∥
∥
∥
ℓ1

≤ ǫ.

�

Theorem 4.5. Let X be an infinite dimensional separable Fréchet space, then there exists a non linear

homogeneous polynomial that is at the same time weakly hypercyclic, d-hypercyclic and Γ-supercyclic for

each Γ ⊂ C which is unbounded or has zero as an accumulation point.
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Proof. By Theorem 4.4 there exists Q ∈ P(2X;X) a quasiconjugacy of P = e′1(x)B 1

n4
under a linear

factor Φ. This polynomial is, by Theorem 4.1 weakly hypercyclic, d-hypercyclic and Γ-supercyclic for

every unbounded or not bounded away from zero Γ. Since Φ is a linear operator, it follows by Propositions

3.2, 3.6 and 3.8 that Q satisfies the required properties. �
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