
Journal Pre-proofs

Flexible conducting platforms based on PEDOT and graphite nanosheets for
electrochemical biosensing applications

Juliana Scotto, Esteban Piccinini, Catalina von Bilderling, Lucy L. Coria-
Oriundo, Fernando Battaglini, Wolfgang Knoll, Waldemar A. Marmisolle,
Omar Azzaroni

PII: S0169-4332(20)31197-1
DOI: https://doi.org/10.1016/j.apsusc.2020.146440
Reference: APSUSC 146440

To appear in: Applied Surface Science

Received Date: 7 March 2020
Revised Date: 21 April 2020
Accepted Date: 22 April 2020

Please cite this article as: J. Scotto, E. Piccinini, C. von Bilderling, L.L. Coria-Oriundo, F. Battaglini, W. Knoll,
W.A. Marmisolle, O. Azzaroni, Flexible conducting platforms based on PEDOT and graphite nanosheets for
electrochemical biosensing applications, Applied Surface Science (2020), doi: https://doi.org/10.1016/j.apsusc.
2020.146440

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.apsusc.2020.146440
https://doi.org/10.1016/j.apsusc.2020.146440
https://doi.org/10.1016/j.apsusc.2020.146440


Flexible conducting platforms based on PEDOT and graphite nanosheets for 

electrochemical biosensing applications

Juliana Scottoa,b, Esteban Piccininia, Catalina von Bilderlinga, Lucy L. Coria-Oriundoc, 

Fernando Battaglinic, Wolfgang Knoll,d,e Waldemar A. Marmisollea*, and Omar 

Azzaronia,f*

aInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Departamento de 

Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, 

CC 16 Suc. 4, La Plata, B1904DPI, Argentina.
bInstituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Av. 

Calchaquí 6200, Florencio Varela, Buenos Aires, Argentina
cINQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, 

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad 

Universitaria, Buenos Aires, Argentina
dCEST - Competence Center for Electrochemical Surface Technologies, Konrad Lorenz 

Strasse 24, 3430 Tulln, Austria
eAIT Austrian Institute of Technology – Giefinggasse 4, 1210 Vienna, Austria
fCEST-UNLP Partner Lab for Bioelectronics, Diagonal 64 y 113, La Plata 1900, 

Argentina

*Corresponding authors: Instituto de Investigaciones Fisicoquímicas Teóricas y 

Aplicadas (INIFTA), Fac. de Cs. Exactas, Universidad Nacional de La Plata – 

CONICET, 64 y Diag. 113, 1900 La Plata, Argentina.

E-mail: wmarmi@inifta.unlp.edu.ar ; azzaroni@inifta.unlp.edu.ar;

mailto:wmarmi@inifta.unlp.edu.ar
mailto:azzaroni@inifta.unlp.edu.ar


2

Abstract

Carbon nanomaterials are usually employed for improving the electrical and 

electrochemical properties of conducting polymer electrodes. However, low-cost of 

production, scalable simple procedures and adequate integration of the components at 

the molecular level within the composites become a challenge when dealing with real 

life applications. In this work, we present a novel strategy for producing graphite 

nanosheets (GNS) dispersed in the solvent employed then for the chemical synthesis of 

PEDOT, which allows producing composite nanofilms on plastic substrates for the 

construction of transparent and flexible all-polymer electrodes. By an optimized 

experimental procedure, we achieved a proper integration of PEDOT and GNS within 

ultrathin (< 100 nm) composite films and good enough conductivity to ensure adequate 

electrochemical response without the requirement of conducting base electrodes. We 

tested the performance of these platforms for real applications by developing glucose 

biosensors by molecular integration of supramolecular assembly of glucose oxidase and 

an electroactive polyelectrolyte on top of the PEDOT-GNS coatings. The incorporation 

of GNS does not only improve the voltammetric response of the resulting all-polymer 

electrodes but also produces a better integration of the electrochemically active 

assembly.  

Keywords: PEDOT, GRAPHITE NANOSHEETS, BIOSENSING, CONDUCTING 

POLYMER, FLEXIBLE ELECTRODE, METAL-FREE
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1. Introduction

Flexible electrochemical platforms have received remarkable attention over the 

past decade owing to their great potential in the construction of wearable and 

implantable devices for predictive analytics and high-performance personalized 

medicine [1–3]. For those purposes, flexible electronics requires a conjunction of 

unique properties such as light weight, high flexibility and mechanical adaptability. 

Thus, traditional metal electrodes and other rigid substrates can be limited in their use in 

some specific practical applications, like stretchable or implantable sensors [4,5]. 

Within this scenario, a highly attractive alternative is the use of conducting polymers 

(CPs) for the fabrication of “all-polymer” metal-free electrodes for bioelectronics and 

biosensing [6–11].

In particular, poly(3,4-ethylenedioxythiophene) (PEDOT) is a CP that has 

received enormous attention due to its high conductivity [12–14], good transparency 

[15] and stability and its excellent electroactivity in neutral media [11,16]. These 

properties combined with a good compatibility with biomolecules, such as enzymes, 

make PEDOT an appropriated polymer in the design of biosensing platforms [17]. Also, 

because of the remarkable conductivity of PEDOT, it is possible to construct  

bioelectrochemical devices without metallic substrates [18–21], which represents a great 

advantage in the design of  low cost sensing platforms with a high degree of flexibility 

and transparency [16,22] .

Furthermore, an improvement of the electrical, electrochemical and mechanical 

properties is found when conducting polymers are combined with carbon nanomaterials 

[23,24]. Within these materials, carbon nanotubes (CNTs), graphene oxide (GO), and 

reduced graphene oxide (rGO), have been extensively employed to enhance the 

performance of PEDOT platforms with biosensing purposes [25–29]. Thus, the carbon-
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based materials usually confer good mechanical frameworks with adequate electronic 

properties whereas conducting polymers provide electroactivity, flexibility and capacity 

of acting as dispersion agents preventing the nanomaterial aggregation [23]. However, 

obtaining these carbon nanomaterials habitually implies complicated and expensive 

procedures or requires complex conditions such as high temperatures or sophisticated 

instruments [30–32]. Other promising material for the design of biosensors is graphite 

nanosheets (GNS), which refers to 2D graphite material often obtained by simple liquid-

exfoliation of graphite [33–35]. Its excellent conductivity and large superficial area 

make GNS a suitable material for the construction of enzymatic biosensing platforms 

since it may enhance the immobilization of enzymes in the polymer matrix and their 

connectivity with the substrate. 

On the other hand, a frequent issue when dealing with composite nanomaterials 

is the problem of achieving a proper intimate integration of both components within the 

films [23]. Several strategies have been presented for integrating PEDOT with carbon 

nanomaterials in the construction of conducting/electroactive films. In this regard, some 

authors have prepared composite films from mixed dispersions of PEDOT or 

PEDOT:PSS and carbon nanomaterials employing several strategies, such as vacuum-

filtration [36], spray coating [22] and spin-coating [37], achieving different degree of 

integration. Even when both components are put into contact by producing mixed stable 

dispersions, aggressive chemical or thermal post-treatments are required for enhancing 

the electronic properties of the composite films by molecular reorganization [38]. On 

the other hand,  electropolymerization of EDOT on electrodes previously modified with 

carbon nanomaterials [39,40] or performing the electrosynthesis in the presence of the 

nanomaterial [41] seem to ensure a proper integration at the molecular level. However, 

these methods require conducting substrates and they result difficult to scale-up.  
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Within this framework, herein we propose a simple method for producing 

graphite nanosheets (GNS) dispersions that can be directly employed as solvent in the 

chemical polymerization of EDOT, yielding conducting composite films by spin-

coating on plastic substrates. Mixing GNS and EDOT in butanol allows for a suitable 

molecular integration in thin films, which are then polymerized by soft thermal 

treatment. In this way, flexible, transparent and highly conducting electrochemical 

platforms with enhanced mechanical properties are easily prepared. The supramolecular 

LbL assembly of a redox polyelectrolyte and glucose oxidase was employed for 

evaluating the capabilities of the all-polymer PEDOT-based platforms in biosensing 

applications. The incorporation of GNS does not only improve the voltammetric 

response of the resulting all-polymer electrodes but also produces a better integration of 

the electrochemically active supramolecular assembly allowing the effective glucose 

sensing.  

2. Experimental details

2.1. Reagents and Materials

Fe(III) tosylate butanol solution (Clevios CB 40 V2, Heraeus Deutschland 

GmbH & Co. KG), n-butanol (ACS, Merck), pyridine (ACS, Biopack) and EDOT 

(97%, Sigma-Aldrich) were employed for the polymerization. Glucose oxidase (GOx) 

was purchased from Calzyme, and D-(+)-glucose was obtained from Anedra. Expanded 

graphite was purchased from Carbon Lorraine. Graphite (C2030519P4) and silver 

(C2081126P2) inks were purchased from Gwent Group (Pontypool, UK). All other 

reagents were of analytical grade. A 1 M glucose solution equilibrated in anomers was 

prepared in HEPES buffer of pH = 7.4. The complex [Os(bpy)2Cl(PyCOH)]Cl (PyCOH 

= Pyridine-4-aldehyde) and osmium-modified polyallylamine (OsPA) were prepared as 
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previously reported [42]. The stoichiometry ratio between the osmium complex and the 

allylamine monomer was 1:60. The OsPA concentration was evaluated 

spectrophotometrically at λ = 495 nm (ε = 8500 M-1 cm-1). The pH of the 

polyelectrolyte solution was adjusted to 7.0 by adding NaOH.

2.2. Construction of PEDOT and PEDOT-GNS conducting films

PEDOT films were prepared by in situ polymerization of EDOT monomer 

solutions deposited by spin-coating on 0.2 mm-thickness cellulose acetate sheets 

substrates, using a commercial spin coater (Laurell WS-400B). Before film deposition, 

substrates were cleaned with ethanol and Milli-Q water. A stock oxidant solution was 

prepared by mixing 7.5 ml of 40% Fe(III) tosylate butanol solution (CB 40, Clevios),  2.2 

ml of butanol and 165 µL of pyridine [10]. For the PEDOT films preparation, 915 µL of 

the oxidant solution was mixed with 12.5 µL of EDOT monomer, then homogenized in 

a vortex and filtered with a pore diameter of 0.2 µm membrane. The resultant mixture 

was immediately deposited by spin coating employing rotation rates between 1000 and 

5000 rpm for 1 min and an acceleration of 500 rpm s−1. Then, the substrates were heated 

at 70 °C for 15 min producing a change in the color of the films from brown to green 

[15]. The film-coated substrates were rinsed with Milli-Q water twice and dried with N2 

flow. To prepare the PEDOT-GNS films, 5 mg of expanded graphite were dispersed in 

5 ml of butanol by probe ultrasonication using a VCX130 Vibra-Cell (Newtown, USA) 

at 120W for 15 minutes. Then, different volumes of this stock dispersion were added to 

the polymerization mixture, reaching carbon loadings of 100 and 180 µg/mL.

2.3. Resistance measurements upon bending
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The electrical resistance was measured on different substrates as they were bent. 

To this end, PEDOT, PEDOT-GNS, graphite and Ag films were deposited onto 

rectangular acetate sheets (5 x 1 cm2). These films were placed forming a semicircle of 

7.5 mm radius. The extremes were connected to a multi-meter (Keithley) and the 

resistance was measured. Then, both sides of the films were pushed in, diminishing the 

radius of the semicircle. The resistance was registered for radii between 7.5 and 1 mm, 

respectively. The graphite and Ag films were prepared by screen-printing of graphite 

and silver inks onto 0.2 mm-thickness cellulose acetate sheets with an Aurel 900 screen-

stencil printer (Modigliana, Italy).

2.4. Atomic force microscopy (AFM) 

Atomic force microscopy was employed to determine the dimensions of GNS and 

the thicknesses of PEDOT and PEDOT-GNS films. AC mode AFM images were 

acquired in a dry air environment with a Keysight 9500 microscope. AC160TS (Al-

coated, 300 kHz nominal frequency, 40 N/m nominal spring constant, Olympus) AFM 

probes were used. Samples were prepared on Si and glass substrates cleaned with basic 

piranha solution. To prepare the GNS samples, a drop of a 100 µg/ml dispersion of the 

carbon material in butanol was deposited on a Si substrate and the solvent was 

evaporated at room temperature. 

2.5. Thermogravimetric Analysis (TGA)

Thermogravimetric Analysis was performed employing a Q 500 Automatic 

Sample Processor (TA Instruments). The samples were heated from 22 to 790 ºC under 

N2 flow.

2.6. Preparation of (OsPA/GOx)n multilayers electrically wired to the conducting films
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Layer-by-layer (LbL) assemblies mediated by electrostatic interactions [45–48] 

were built up onto the PEDOT and PEDOT-GNS conducting platforms by alternate 

dipping in OsPA and GOx solutions. In order to confer negative charge to the PEDOT 

and PEDOT-GNS surfaces, the substrates were firstly incubated in 1 mg/ml 

poly(sodium 4-styrenesulfonate) (PSS) solution for 30 minutes and then rinsed with 

deionized water. As proved by contact angle measurements, the PSS adsorption yielded 

an increase of the hydrophilicity of the PEDOT and PEDOT-GNS surfaces (see Fig. 

S1). PSS-modified platforms were incubated in 0.3 mg/ml OsPA solution for 15 min, 

and rinsed with deionized water. Then, they were incubated in 1 mg/ml GOx solution in 

20 mM HEPES and 0.1 M KCl at pH 7.4 for 15 min, followed by rinsing with deionized 

water. This procedure was repeated n times to obtain n (OsPA/GOx) bilayers. In all 

cases, the multilayer assemblies were finished with OsPA as the outermost layer to 

improve the charge transport through the redox multilayer and the bioelectrocatalytic 

activity [49,50], yielding (OsPA/GOx)n/OsPA configurations. 

2.7. Electrochemical Measurements

 Cyclic voltammetry experiments were performed with an AUTOLAB 

potentiostat using a three-electrode array in a 2-mL capacity Teflon electrochemical cell 

equipped with a platinum counter electrode and a Ag/AgCl reference electrode from 

BASi (Indiana, USA). All electrochemical experiments were carried out at room 

temperature (22 °C) in a 20 mM HEPES and 0.1 M KCl buffer solution at pH = 7.4. N2 

bubbling was used to remove dissolved O2 from the glucose solutions for at least 30 min 

before using, and for 10 min between successive measurements. 
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3. Results and Discussion

Flexible conducting platforms based on PEDOT and GNS were synthetized on 

acetate sheets and evaluated for biosensing applications. Firstly, GNS were obtained 

and incorporated into the PEDOT-polymer matrix during chemical synthesis on flexible 

acetate sheets. Then, the characteristics of the resulting composite (PEDOT-GNS) and 

pristine PEDOT films were studied by different techniques to evaluate the influence of 

the carbon nanomaterial on the stability, flexibility, and electrochemical response of the 

platforms. Finally, electronically wired OsPA/GOx layer-by-layer (LbL) assemblies 

were built on the conducting platforms to evaluate their performance as electrochemical 

biosensing platforms. In Fig. 1, the construction process of the PEDOT-GNS 

conducting platforms (A) and the (OsPA/GOx)n bioelectrocatalytic interface (B)  are 

depicted. This figure also shows the experimental electrochemical array (C), a scheme 

of the transport mechanism in the bioelectrochemical coating (D) (see below) and a 

picture of the PEDOT-modified plastic substrate (E). 

Fig. 1. Scheme of the steps followed for the construction of the biosensor: (A) Spin-
coating deposit of the monomer-GNS mixture previous to the polymerization and (B) LbL 
assembly of OsPA and GOx on the PEDOT-GNS substrates. (C) Experimental setup for 
the voltammetric measurements in a three-electrode cell. (D) Scheme of the different 
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charge transport mechanisms taking place in the bioelectrocatalysis of the glucose 
oxidation. (E) Photograph of the PEDOT-GNS platforms synthetized in this work. 

3.1. Platforms Characterization 

3.1.1. Graphite nanosheets 

GNS were obtained from exfoliation of expanded graphite by probe sonication 

in 1-butanol. As described previously by Colman and coworkers, good solvents for 

exfoliation are those whose Hansen solubility parameters (which are related to the 

dispersive, polar and hydrogen bonding contributions to the cohesive energy density of 

a material) match reasonably well to those for graphene and graphite [35,51]. Since the 

total Hansen’s solubility parameter of 1-butanol is nearly equal to that of graphite, the 

exfoliation is facilitated [52]. The carbon material resulting from this procedure was 

characterized by AFM. To this end, a drop of a 100 µg/ml dispersion of the carbon 

material in butanol was deposited on a Si substrate and the solvent was evaporated at 

room temperature. Samples consisted of dispersed material with a variety of dimensions 

with lateral sizes from about 25 nm to 1 µm (Fig. 2). Graphite flakes presented heights 

around 10 nm (< 30 graphene layers [53]), demonstrating the quality of exfoliation 

which is in accordance with graphite nanosheets dispersions prepared by other 

ultrasound procedures [54,55]. 
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Fig. 2. Topography AFM images (10x10 µm) of a sample of the carbon nanomaterial 
resulting from the exfoliation of expanded graphite in butanol deposited on a clean Si 
substrate. (B) Height profiles of graphite nanosheets flake observed in the AFM image.

3.1.2. PEDOT and PEDOT-GNS platforms

PEDOT films of different thicknesses were deposited on cellulose acetate 

flexible sheets by changing the spin-coating speed. Controlling the thickness of the 

polymer film is an important issue for the construction of biosensing platforms based on 

conducting polymers since it determines different properties of the electrode such as 

transparency, electrical resistance and electrochemical capacitance. In particular, 

finding a good compromise between the last two parameters may be critical in the 

efficiency of an electrochemical biosensor. On one hand, conducting polymer-based 

electrodes have a capacitive current that is proportional to the thickness of the polymer 

film [56]. This current superposes with the biocatalytic current and a high value of it 

may decrease the sensibility of the electrode [16]. On the other hand, the resistance of 

the polymer film increases as the thickness decreases. A high resistance of the base 
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electrode generates a slope in the potential-current response that deforms the 

voltammetric profile (see Fig. 3). 

To evaluate these aspects PEDOT films were deposited by spin coating 

employing different rotation speeds between 1000 and 5000 rpm, respectively. Then, 

UV/Vis spectra were measured and cyclic voltammetry was performed in buffer 

solution. In Fig. 3A the absorbance values of the films at 780 nm are shown for the 

different deposition conditions. A marked increase of the absorbance of the platforms 

with the decrease of the spin-coating speed is observed, indicating that thicker films are 

obtained at lower speeds.   However, all films employed in this work show a high 

degree of transparency, with transmittance values between 75% and 95% in the UV/vis 

region. Film thickness estimated from AFM measurements (see Section S2 in Appendix 

A) are also included in Fig. 3A.  

In Fig. 3B the voltammetric responses of the films obtained at the different spin 

rates are shown.  In agreement with previous works on conducting films on metal 

substrates, it is observed that the capacitive current linearly increases with the thickness 

of the film (Fig. 3C). In principle, this aspect would suggest similar electrochemical 

connectivity for all the films. However, when analyzing the normalized voltammograms 

(dividing the current by the value at 0.3V) (Fig. 3D), clear differences appears for the 

different thicknesses. The voltammogram shape goes from rectangular to oval as the 

thickness of the film decreases, what is related to an increase of the film resistance. 
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Fig. 3. (A) Absorbance at =780 nm and estimated thickness as a function of the spin-
coating speed. (B) Cyclic voltammetry at 5 mV s-1 of PEDOT films deposited at spin 
rates between 1000 and 5000 rpm. (C) Capacitive current as a function of the thickness 
(the maximum thickness corresponds to the minimum spin rate). (D) Normalized 
voltammograms.  The bars correspond to the SD of three measurements on different 
regions of the same substrate. 

These results indicate that the procedure employed here is a suitable method to 

generate transparent all-polymer conducting PEDOT platforms with a precise control of 

the film thickness. The electroactive polymer film thickness being a critical parameter 

for the bioelectrochemical sensing performance of the polymer-based electrodes, it 

needs to be optimized.  In the present case, the best condition for the construction of the 

base electrodes was found for the films deposited at 2000 rpm (thickness ∼ 20 nm), as a 

result of the compromise between a low capacitive current and a suitable voltammetric 

response.



14

Having optimized the PEDOT film thickness for the electrochemical platforms, 

we then studied the incorporation of the GNS into the conducting polymer matrix with 

the aim of improving the electrochemical properties of the PEDOT-based platforms. 

Hybrid (PEDOT-GNS) films were synthetized by directly adding the GNS suspension 

to the monomer-oxidant solution before the spin-coating procedure. To confirm the 

incorporation of the GNS, TGA measurements were performed. In Fig. 4A, the curves 

for PEDOT and PEDOT with two different amounts of GNS (100 and 180 µg/ml in the 

polymerization mixture) are shown. The three samples show mass losses below 200 °C 

which may be attributed to solvent loss. The major weight loss occurs between 380°C 

and 540°C for PEDOT and between 440°C and 570°C for PEDOT-GNS samples 

showing that the addition of GNS to the polymer increases (by about 70°C) the 

decomposition temperature of the material. This means that PEDOT-GNS composites 

have better thermal stability than pristine PEDOT. Moreover, there is a total mass loss 

of 90% for PEDOT film at 740°C while for the PEDOT-GNS materials it is 72% for the 

100 mg/ml solution and 69% for the 180 mg/ml solution, meaning an approximate GNS 

content of 18% and 21% w/w respectively.   
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Fig. 4. (A) TGA curves for PEDOT and PEDOT-GNS with different amount of GNS in 
the polymerization mixture. The heating was done under N2 flow. (B) AFM topography 
image of the PEDOT-FLG film (12 µm2, height range 500 nm) (C) Cyclic 
voltammograms at 5 mV s−1 of PEDOT and PEDOT-GNS films deposited on cellulose 
acetate sheets in 20 mM HEPES + 0.1 M KCl buffer at pH = 7.4. 

PEDOT and PEDOT-GNS hybrid films topography was also characterized by 

AFM.  In Fig. 4.B the topography image of the PEDOT-GNS film is shown. Graphite 

nanosheets flakes with heterogeneous sizes (lateral dimensions from below 100 nm to 

1.5 µm), are distributed over the surface. The roughness of the films was quantified 
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from the AFM images. The presence of the GNS significantly increases the roughness 

of the films: PEDOT-GNS film had a roughness (RMS value) of (33 ± 1) nm, 

approximately twice the value of (15 ± 1) nm obtained for the PEDOT film.   

After the integration of GNS into the polymer matrix was confirmed, the 

electrochemical performances of the films were compared. In Fig. 4C, the 

voltammograms of the PEDOT and PEDOT-GNS films are shown.  The incorporation 

of GNS to the polymer matrix improves the electrochemical response of the film, 

showing a more rectangular-shaped voltammetric response.

Finally, the flexibility of the different materials in terms of the film electrical 

resistance was evaluated. For this purpose, the effect of bending on PEDOT and 

PEDOT-GNS platforms was studied by varying the curvature of the substrate as the 

film resistance was measured between two fixed spots. The same procedure was carried 

out with silver and graphite films deposited on the same cellulose acetate sheets that 

were used to construct the polymer platforms with comparative purposes. In Fig. 5, 

relative resistance changes of the different materials as a function of the curvature 

radius are presented. The results indicate excellent relative flexibility for both PEDOT 

and PEDOT-GNS films.  Resistance values have very little changes when the films are 

bent even at very small radii (less than 1% for a 1 mm radius). On the contrary, Ag- and 

graphite-ink electrodes show mayor changes in the resistance as the electrode is bent 

(about 30% for Ag and 20 % for graphite). No appreciable macroscopic fissures were 

observed on the PEDOT-GNS films after the bending tests neither a memory effect in 

terms of the resistance, which only increase 1.0 ± 0.5% after a bending cycle. This last 

observation is in agreement with other flexible conducting platforms based on PEDOT 

composites that showed a resistance increment of 1.2 ± 0.4% after bending [16].
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Fig. 5. Relative changes in the resistance of the films as a function of the radius of 
curvature. R0 is the value of the resistance at the initial conditions. The picture shows 
the condition at which the sheet is bended between two blocks defining a radius of 
curvature of 7.5 mm. Further bending conditions (lower radius values) were obtained by 
moving the blocks closer. 

3.2. Construction of bioelectrocatalytic nanoarchitectures onto PEDOT and PEDOT-

GNS platforms

The PEDOT and PEDOT-GNS films described above were employed as 

platforms for the assembly of bioelectrocatalytic nanoarchitectures for glucose 

biosensing.  To this end, the layer-by-layer (LbL) assembly technique, a well-

established nanoconstruction method [57–61], was used for the adsorption of GOx (a 

redox enzyme that catalyze the oxidation of glucose) and OsPA (a counter-

polyelectrolyte that bears redox mediator groups). The LbL assembly is a versatile 

bottom-up technique for the non-covalent immobilization of functional 

biomacromolecules into thin films, ensuring the biological activity and accessibility of 

the analyte to the active sites of the biomacromolecule [45,62]. This functionalization 

method is compatible with the production of miniaturized devices, which could be also 

developed on the basis of the PEDOT/GNS flexible platforms. 
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Redox meditators are an essential component in sensors based on redox-

enzymes, which are traditional used for the detection of glucose, lactate and cholesterol, 

among others. The redox mediators should fulfill several requirements: they should be 

stable at both oxidation states, they should assure a fast electron transfer process both to 

the electrode surface and to the redox-enzyme. Polypyridine osmium complex are stable 

at both oxidation for long periods of time in contrast to ferrocene complexes, frequently 

used in these type of sensors [63], they show a reversible electrochemical behavior and 

they are able to re-oxidize glucose oxidase with rate constant values higher than 105 M-1 

s-1 [64]. In particular, the complex used in this work (i.e., [Os(bpy)2Cl(PyCOH)]Cl) has 

a rate constant of 3.7 105 M-1 s-1 [42]. On the other hand, the presence of a carbonyl 

group allows the coupling to the polyallylamine, leading to the OsPA polycation. Its 

flexibility and positive charge facilitate the interaction with glucose oxidase, negatively 

charged at the working pH. In this way the OsPA retains the ability to re-oxidize 

glucose oxidase and to build multilayer systems. 

Firstly, the voltammetric response in buffer solution in the absence of O2 was 

studied for systems with different numbers of OsPA/GOx bilayers. In Fig. 6, 

voltammograms taken at 5 mV s−1 of the modified PEDOT and PEDOT-GNS platforms 

are presented. Both the oxidation and reduction current peaks of the osmium bearing 

groups from OsPA increases with the number of OsPA/GOx bilayers, evidencing a 

good connectivity between the successive bilayers resulting from the electron hopping 

between the redox centers. 
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Fig. 6. Cyclic voltammetry at 5 mV s−1 for PEDOT (A) and PEDOT-GNS (B) modified 
with (OsPA/GOx)n/OsPA with different number of  bilayers (n) in 20 mM HEPES + 0.1 
M KCl buffer of pH = 7.4. (C) Anodic integrated charge (Qf, an) of the voltammograms 
as a function of the number of bilayers (n) corresponding to the configuration PEDOT(-
GNS)/PSS/(OsPA/GOx)n/OsPA. Bars correspond to the SD of 3 different 
voltammograms.

Interestingly, an improvement in the voltammetric response of the LbL assembly 

is observed when comparing the PEDOT and PEDOT-GNS platforms.  The 

incorporation of GNS to the conducting film led to a better definition of the osmium 

oxidation and reduction waves and a decrease of the separation between the anodic and 

the cathodic peaks (of around 140 mV for voltammograms recorded at 5 mV s-1). In 

addition, there is an increase of the integrated faradaic charge of the Os oxidation peak 

(Qf, an) when the LbL assembly is prepared on the PEDOT-GNS composited compared 

with the assembly on the PEDOT platform (Fig. 6C). For 4 bilayers-assembly, the Qf, an 

obtained for the PEDOT-GNS platform is more than 3 times higher than that one for 

PEDOT. Moreover, the integrated charge sequentially increases with the number of 

OsPA/GOx bilayers for the PEDOT-GNS modified electrode, while for the pristine 

PEDOT system the increment in the voltammetric charge is lower after the second 

bilayer. These results might be explained in terms of the increase of the roughness of 

the film surface when GNS are integrated into the polymer matrix leading to the 

incorporation of a greater amount of OsPA in the assembly. In addition, the high 

specific surface area of GNS (i.e., 800 - 2000 m2 g-1) [34,65], which are also highly 
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conducting, enhance the electrical “wiring” of the OsPA redox centers for the PEDOT-

GNS platforms. Moreover, the faradaic charge obtained for three bilayers of OsPA/GOx 

onto the PEDOT-GNS platforms (20.7 µC cm-2 ) was similar to that reported by Flexer 

et al. for an OsPA/GOx system assembled under similar conditions (i.e., pH and ionic 

strength) but on gold electrodes (19.2 µC cm-2) [66]. 

3.3. Bioelectrocatalytic response

In order to evaluate the performance of the conducting polymer electrodes as 

biosensing platforms, the catalytic response of the PEDOT and PEDOT-GNS films 

modified with different numbers of OsPA/GOx bilayers was studied in the presence of 

β-D-glucose. Firstly, the LbL-modified electrodes were immersed in a buffer solution 

and the potential was cycled between 0.0 and 0.5 V until a stable response was 

observed. Then, increasing concentrations of glucose in the absence of O2 were added to 

the solution and the potential was cycled at 5 mV s-1. In Fig. 7A, the bioelectrocatalytic 

response for an electrode modified with one GOx/OsPA bilayer in the presence of 

different glucose concentrations for the PEDOT-GNS system is presented. The cyclic 

voltammograms reveal the typical waves of the glucose oxidation mediated by the 

electrically “wired” GOx to the electrode [45,66,67], where the whole 

bioelectrocatalytic process is transduced as an increment of the anodic current (more 

details on the electrocatalytic process are presented in the Appendix A).  
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Fig. 7. (A) Bioelectrocatalytic response (density current vs. applied potential) of the 
PEDOT-GNS/PSS/(OsPA/GOx)1/OsPA -modified electrode in the presence of 
increasing concentrations of glucose. Electrolyte: 20 mM HEPES buffer (pH 7.4) + 0.1 
M KCl. (B) Catalytic current density, jcat, as a function of the glucose concentration for 
1, 2 and 4 bilayers. This current is defined as jcat = jmax - j0, where j0 is the current 
density in absence of glucose. Solid lines correspond to the fittings to the Michaelis-
Menten model (see Appendix). 

In Fig. 7B the catalytic current, jcat (jcat = jmax - j0, where jmax is the maximum 

current obtained in presence of glucose and j0 is the current density observed in the 

absence of glucose), as a function of the glucose concentration is showed for the same 

electrode modified with 1, 2 and 4 bilayers of the GOx/OsPA assembly. As can be 

appreciated, the bioelectrocatalytic responses displayed Michaelis−Menten behavior. 

The apparent Michaelis-Menten constants (Km) for the different architectures (Table 

S1) were estimated as described in the supporting information. It is observed that Km 
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shows its maximum value (i.e., 14 mM) for the smaller number of bilayers, which 

represents a wider dynamic range at expenses of a lower sensitivity for the calibration 

curve. On the other hand, the 4 bilayer system shows a greater sensitivity at the cost of a 

narrow dynamic range. The values obtained here are in the same order of magnitude 

(between 5 and 60 mM) than those obtained for redox mediator based on osmium 

complexes or ferrocene derivatives [68–70].

For both PEDOT and PEDOT-GNS platforms, a typical bioelectrocatalytic 

behavior is observed; i.e., the catalytic current increases with the glucose concentration 

until it reaches a plateau corresponding to the enzyme saturation at around 50 mM 

glucose. However, several differences are noted when the (OsPA/GOx) 

nanoarchitecture is assembled on PEDOT or PEDOT-GNS platforms. Firstly, the 

catalytic voltammetric response for the PEDOT-GNS system reaches more defined 

current plateau, whereas for the PEDOT system a distortion of this response is observed 

(Fig. 8A). This is a consequence of the resistance of the base electrode that deforms the 

voltammetric profile during the bioelectrocatalysis of glucose oxidation A well-defined 

voltammetric response becomes a fundamental feature facing the bioelectroanalytical 

applications of the polymer platforms.  Secondly, the jcat obtained when the OsPA/GOx 

assemblies are prepared on the PEDOT-GNS electrodes is much higher than that 

obtained for the assemblies prepared on PEDOT platforms without GNS (Fig. S3). 

Moreover, PEDOT-GNS platforms showed a noticeable increase of jcat as a function of 

the number of bilayers of the assembly, whereas the PEDOT platform showed only an 

increase of jcat for the first two bilayers, then it remains almost constant (see Fig. S4). 

Lastly, in Fig. 8B, it is compared the biocatalytic current of a four bilayer OsPA/GOx 

assembly on PEDOT and PEDOT-GNS that shows the improvement in the 

bioelectrocatalytic response when the carbon nanomaterial is incorporated to the 
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polymeric matrix. The enhancement of the bioelectrocatalytic response when GNS is 

added to the PEDOT platform may be a consequence of an improvement in the 

electrical wiring of the bioelectroactive assembly by the high surface area of conducting 

GNS and a higher loading of enzymes in the electrode caused by the increase of the 

roughness of the film.  

Fig 8. (A) Bioelectrocatalytic response for PEDOT (left) and PEDOT-GNS (right) 
electrodes modified with one OsPA/GOx bilayer in the absence and presence 50 mM of 
glucose.  (B) jcat/j0 ratio as a function of the glucose concentration for a 4-bilayers 
OsPA/GOx assembly on PEDOT and PEDOT-GNS electrodes.

Notable information arise from the comparison of the results obtained here with 

the OsPA/GOx system prepared on gold electrodes previously reported by Flexer et al. 

[66]. Those authors found a maximum jcat of 2.5 µA cm-2 at glucose saturation (50 mM) 

for a (OsPA/GOx)3 assembly deposited on gold electrodes. On the other hand, we 
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obtained a jcat of 14.5 µA cm-2 (almost six times higher) for the OsPA/GOx system 

prepared on the “metal-free” PEDOT-GNS platforms. This outstanding improvement of 

the bioelectrocatalytic response strongly evidences the important role of the GNS in the 

PEDOT conducting matrix for enhancing the electrical wiring of the bioelectroactive 

assembly. Also, in contrast to modified gold electrodes, here there is no need of 

mercapto-derivative compounds to work as bridge between the gold and the redox 

polyelectrolyte [66], improving in the long run the stability of the system.

In the last ten years a myriad of flexible glucose sensors based on the 

combination of highly conducting carbon materials have been presented. Some of them 

use metal nanoparticles to replace the enzyme/mediator system, however they have to 

work at alkaline pH and in most of the works the glucose selectivity (against other 

carbohydrates, namely mannose) is not demonstrated [71,72]; whereas other works 

using GOx need for the addition of a mediator in solution to obtain a response [73,74]. 

On the other hand, there are works that report the construction of glucose sensors with 

GOx electrically-wired to the electrode, but metal or graphite substrates with limited 

flexibility are typically used [75–77]. In the present case, not only the whole system 

integrated on the flexible platform is able to work at physiological conditions, but also 

the way in which it is constructed allows for the miniaturization of the device. Also, this 

concept can be extended to build enzyme logic gate-based electrochemical assays using 

a biocatalytic cascades to process relevant physiological parameters in the biochemical 

domain stimulating molecular release or the assessment of a traumatic injury [78,79]. 

4. Conclusion

A simple method to obtain GNS dispersed in butanol and to integrate this 

nanomaterial into PEDOT matrices for the construction of transparent flexible all-
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plastic conducting platforms was presented. The addition of GNS improves the 

voltammetric characteristics of PEDOT platforms and allows for the adsorption of a 

higher amount of connected redox polymer by LbL deposition. Moreover, an 

enhancement of the bioelectrocatalytic response in glucose detection was observed 

when GNS was added to the polymer matrix suggesting a more efficient wiring of the 

redox centers and the enzyme, yielding better performance than similar systems 

prepared on gold electrodes. We believe that our approach could have profound 

implications in the fields of wearable and implantable sensing devices as an alternative 

of graphite or metal electrodes for increasing the flexibility of the devices and 

improving user comfort and also in the modification of fibers for developing flexible 

microelectrodes. 
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Highlights:

 Transparent, flexible and stable electrochemical platforms are formed on plastic 

substrates

 An innovative strategy for dispersing Graphite Nanosheets allows simple 

effective integration to PEDOT matrix 
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 Thermally-triggered PEDOT polymerization around the dispersed GNS allows 

effective molecular integration

 PEDOT-GNS electrochemical platforms present enhanced properties for 

voltammetric biosensors

 Supramolecular integration of enzymes on PEDOT-GNS allows glucose 

biosensing


