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Recent approaches to human concept learning have successfully combined the power of symbolic, infinitely
productive rule systems and statistical learning to explain our ability to learn new concepts from just a few
examples. The aim of most of these studies is to reveal the underlying language structuring these representations
and providing a general substrate for thought. However, describing a model of thought that is fixed once trained
is against the extensive literature that shows how experience shapes concept learning. Here, we ask about the
plasticity of these symbolic descriptive languages. We perform a concept learning experiment that demonstrates
that humans can change very rapidly the repertoire of symbols they use to identify concepts, by compiling
expressions that are frequently used into new symbols of the language. The pattern of concept learning times is
accurately described by a Bayesian agent that rationally updates the probability of compiling a new expression
according to how useful it has been to compress concepts so far. By portraying the language of thought as a
flexible system of rules, we also highlight the difficulties to pin it down empirically.
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I. INTRODUCTION

How can children acquire a vast universe of concepts with
seemingly very little exposure? One possible solution to this
conundrum, known as the Plato Problem [1,2], builds on the
human capacity to describe concepts—and more generally of
all elements of thought—through the use of a symbolic and
combinatorial mental language [3], referred as language of
thought (LoT) [4].

Combinatorial languages can describe a vast set of con-
cepts from a small set of primitives. This can be understood
in a relatively simple example in the domain of shapes. A
combinatorial and symbolic language similar to Logo [5] can
combine operations such as “move,” “pen up,” “pen down,”
or “rotate” to generate an infinite set of expressions (or pro-
grams) which, when evaluated, can convey all sort of shapes.

A language describing concepts (like shapes) also pro-
vides a natural notion of their complexity [6]. A concept is
simple, relative to that language, when it can be described
by a short program. On the contrary, it is complex when all
its descriptions require a long sequence of instructions. For
example, in the case of the Logo language, a square can
simply be instructed as a loop of four displacements followed
by rotations of 90 degrees. In this language, the icon of a face
will be implemented by a significant lengthier program and
hence will be more complex. However, this concept would be
simpler when described in a language in which the icon of
a face (or the symbols for nose, mouth, etc.) are available as
primitives in the language.

In the domain of Boolean concepts, a wide range of logical
varieties of concepts was studied in Ref. [7], revealing a sur-
prisingly simple “law”: the subjective difficulty of a Boolean
concept for a human learner is directly proportional to the
length of the shortest compatible program in the language of
propositional logic (i.e., Boolean variables combined with the
operators and, or, and not). This result may suggest that hu-
man LoT is equipped with rules and symbols similar to those
found in propositional logic. Indeed, the correlation between
the subjective difficulty of concepts and their complexity has
been used as a general vehicle to study human LoT in various
domains [8–12]. Although often implicit, the general strategy
is to (1) assume a language; (2) find the shortest compatible
program for some concepts in that language; (3) compare
the length of these programs with the subjective difficulty of
the concepts; and finally (4) repeat this process for various
languages within a universe of possible candidates and choose
the language that gives the best match in (3). As mentioned
before, the length of the program depends on the primitives
of the language in which this program is written, so different
languages make different predictions.

A natural question, however, is whether the primitives of a
LoT are universal—both across different individuals and also
throughout development—or if instead the semantic repertoire
of a language is dynamic and shaped by experience. Indeed,
it is likely that our ability to automatically represent Boolean
concepts in a succinct manner is not due to an innate efficient
propositional language in our mind. Instead, we propose that
this ability arises as a byproduct of our brain rapidly learning
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efficient representations for the concepts we usually encounter
in everyday life. Our research question is: how rapidly can
we adapt our learning mechanisms when we encounter a new
domain in which our a priori representations are no longer
efficient? We examine the hypothesis that humans have the
ability to rapidly recombine propositions in their LoT, adding
new primitives to their language. In other words, that learning
leads to a process of compiling routines into functions within
the LoT.

In the example of the Logo language one can imagine
that if productions which draw squares are very frequent, it
would be efficient to devote a new symbol to this production.
The new symbol “square” is a hierarchical “second-order”
construction of the “first-order” primitives of the language. It
has a cost (of increasing the lexicon of the language) but in
the new language, drawing a square can be instantiated with
a very short program (namely, “square”) and hence uses less
memory. Indeed, a higher level language allows us to reach a
higher level of abstraction by freeing memory and processing
power, thus making more complex thoughts thinkable [13,14].

Most work in the LoT literature, while naturally including
a learning mechanism, tends to approach the LoT as a stable
system to be unearthed by experimenters, who try different
candidate templates and select the one which best fits the data
after training [8,15,16]. Still, how different tracks of expe-
rience can shape acquisition differently and can constantly
change the repertoire of a LoT after each exposure remains
to be discovered.

Here, we perform a Boolean concept learning experiment
to show that humans can change very rapidly—in the course
of an experiment—the repertoire of symbols they use to
identify concepts. We also provide a dynamic model that is
flexible enough to update its underlying language after each
concept exposure.

In our experiment, participants are divided in two groups,
in such a way that each group is presented with a different
sequence of concepts. One of the two groups is presented
with concepts that are succinctly described only if the logical
operator “exclusive or” (xor, notated ⊕) is used, which we
presume does not form part of the natural repertoire of LoT
in this specific domain [8]. However, these concepts can
also be described with a sensibly lengthy combination of
primitives excluding ⊕. We show how the exposure to this
set of concepts “compiles” the ⊕ operator in a way that, after
exposure, subjective difficulty is described by an extended
language in which ⊕ has been incorporated to the set of
primitives. Furthermore, we show that the subjective difficulty
of concepts throughout the task is consistent with that of
a Bayesian agent that rationally updates the probability of
compiling ⊕ according to how useful it has been to compress
concepts so far.

II. THE LOGICAL SETTING

We consider two propositional logics, both containing
only four propositional variables Vars = {x1, x2, x3, x4}. P is
defined over the signature ∧, ∨, and ¬, and P⊕ is defined
over the signature ∧, ∨, ¬ and ⊕. As one can see from the
grammars defined in Fig. 1, the only difference between P
and P⊕ is that the latter has an additional operator ⊕.

START → BOOL

BOOL → (BOOL ∧ BOOL)

BOOL → (BOOL ∨ BOOL)

BOOL → ATOM

For i = 1, 2, 3, 4

ATOM → xi

ATOM → ¬xi

FIG. 1. The context-free grammar for language P. Language P⊕

has an extra rule: BOOL → (BOOL ⊕ BOOL).

The semantics of ∧, ∨, and ¬ are standard: conjunction,
disjunction, and negation, respectively. We let ⊕ denote the
exclusive disjunction. As usual, v |� ϕ represents that the
formula ϕ is true for the valuation v : Vars → {0, 1} and we
denote the semantics of ϕ by �ϕ� = {v : v |� ϕ}. A concept
C is a set of valuations Vars → {0, 1}. The complement of
C is denoted C and is defined as C = {0, 1}Vars \ C. Observe
that #C + #C = 16. We say that a formula ϕ is compatible
with concept C if �ϕ� = C. We regard logics as languages
for describing concepts. Any concept C has infinitely many
descriptions, namely, all formulas ϕ such that �ϕ� = C.

Example. In Fig. 2 we depict a concept C (variables are
represented by colors) such that #C = 4. One can see that
the formula x3 is not compatible with C but x1 ∧ x2, or x1 ∧
x2 ∧ (x3 ∨ ¬x3), are compatible with C. C may be described
by ¬x1 ∨ ¬x2.

We will often identify concepts with any formula compati-
ble with it, so we will talk of “concept ϕ” to refer to “concept
�ϕ�.” However, it should be noted that a concept is a semantic
object that has many descriptions in the logical language.

A lower bound for the complexity of a concept in a given
logic corresponds to the shortest description of that concept,
that is, its minimum description length (MDL).

The size of a formula ϕ is denoted |ϕ| and it is de-
fined as the number of operators plus the number of atoms
(i.e., possibly negated propositional symbols), that is: |xi| =
|¬xi| = 1 for i = 1 . . . 4 and |ϕ1 ∗ ϕ2| = |ϕ1| + |ϕ2| + 1 for
∗ ∈ {∧,∨,⊕}. For L ∈ {P, P⊕} and a concept C we define the
minimum description length of C with respect to L as

MDLL(C) = min{|ϕ| : ϕ ∈ L, �ϕ� = C}.
Since P is a sublanguage of P⊕, we have MDLP⊕ (C) �
MDLP(C) for any concept C.

Example. The concept C = {v : v(x1) + v(x2) = 1}, which
expresses that x1 is true or x2 is true but not both can be
described in P⊕ as ϕ = x1 ⊕ x2, of length 3. In fact, one
can check that this is the shortest formula compatible with
C, and so MDLP⊕ (C) = 3. If we now switch to P, then we

FIG. 2. Example of a concept C, as shown in the experiment.
Variables in Vars = {x1, x2, x3, x4} correspond to the presence of
a color light in the object (x1 = green, x2 = blue, x3 = red, x4 =
orange). Items (valuations) belonging to C are highlighted with bold
border. C may be described by x1 ∧ x2. As in a traffic light, each color
is fixed to each position.
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can no longer describe C as x1 ⊕ x2, since ⊕ is not part of
its signature. However, in P, the concept C may be described
by formula ψ = (x1 ∧ ¬x2) ∨ (x2 ∧ ¬x1), of size 7. Since this
formula has minimal size, we have that MDLP(C) = 7.

III. EXPERIMENT

Fifty-five participants participated in the experiment over
the world wide web using the Amazon Mechanical Turk
crowd-sourcing platform. All were U.S. residents over the
age of 18 and had more than 95% of past tasks successfully
approved by other requesters. Forty-four participants com-
pleted the experiment through all the stages and declared not
cheating (using pen, screenshots, or a similar method to copy
the answers) at the end of the experiment. Only data from
these participants were used in the analyses reported below.1

Participants were divided randomly into a control group
(N = 21) and a target group (N = 23). Both groups were
presented with different sequences of six concepts. For each
concept, there was a learning phase, a testing phase and a
feedback phase. The average time spent in each concept was
167 ± 20 standard error of the mean (s.e.m.) seconds, and the
average duration of the task was 21 ± 4 s.e.m. minutes. After
moving through the learning, testing, and feedback phase of
each of the six concepts, participants were asked if they used
a pen or recorded the screen information in any way. They
were also told that the answer to this question will not affect
their payment, but that it was crucial for the experimenters to
know.

During the learning phase, all 16 items were presented
in the screen (in random order), and items belonging to the
concept were identified with bold boundaries, as shown in
Fig. 2. Participants were told that only the items with bold
boundaries were “blickets” (or “tufas,” etc.: we used different
words for each concept in the sequence), and asked them to try
to identify what a blicket was. During the testing phase, the 16
items were shuffled in the screen, and participants were asked
to click on items that were blickets. If they made mistakes
after submitting their answer, then they were directed to the
feedback phase, in which items that were incorrectly classified
were indicated with a red cross. After having studied the
feedback, participants were redirected to the testing screen,
where items were reshuffled. When every item was correctly
classified, participants were asked to give a verbal description

1The learning times of all participants can be found in Ref. [17].

of the concept and then continued on to the following concept
after a resting period. We characterize the subjective difficulty
of each concept as the time the participant spent in learning,
testing and feedback phases for that concept (excluding the
time spent in the verbal description).

Both groups (target and control), were exposed to six
concepts. The second, third, and fourth concepts are training
concepts, and were different between both groups. The last
two concepts are the test concepts and were the same for both
groups. The first concept was the trivial concept xi for both
groups, which was aimed to get participants started in the
task. Importantly, variables (i.e., color lights inside objects in
Fig. 2) were randomized for every concept, so paying selective
attention to a specific variable across subsequent concepts was
not beneficial for learning the concept sequence.

As shown in Table I, we presented the target group with
training concepts which are succinctly described when ⊕ is
part of the language, but necessarily described with lengthier
formulas if ⊕ is absent; more technically, concepts for which
MDLP⊕ is much smaller than MDLP. We also corroborated that
for C2

t , C3
t , C4

t , and C5 the number of formulas in P⊕ with
length strictly smaller than MDLP was at least 10 times greater
than the number of formulas in P with length equal to MDLP.

Participants in the control group, on the other hand, expe-
rienced a sequence of concepts that could be easily described
using the language given by P. After these training concepts,
both groups were presented with the same pair of test con-
cepts: one which could be only succinctly described in P⊕,
and one for which the MDL did not depend on the underlying
language P⊕ or P. We compared learning times between the
two groups for these last two concepts.

As shown in Table I, training concepts for the target (xor)
group were: xi, xi ⊕ x j , xi ⊕ x j ⊕ xk , and xk ⊕ xl , called C1,
C2

t , C3
t , and C4

t , respectively. Training concepts for the control
group were: xi, xi ∨ x j , xi ∨ (x j ∧ xk ), and xk ∨ xl called C1,
C2

c , C3
c , and C4

c , respectively. We use the indexes i, j, k, l instead
of numbers because variables were randomized in each trial.
xi could stand for x1, x2, x3 or x4, that is, for any of the four
colors. After these four concepts, both groups were presented
with the same test concepts: xi ∧ (x j ⊕ xk ) and xi ∧ (x j ∨ xk ),
called C5 and C6, respectively.

Choosing which concepts to show the target group in order
for them to “learn” the ⊕ operator is critical in our experi-
ment. Crucially, the learner must have an option between two
alternatives that describe the concept: one that is succinct but
uses ⊕, or necessarily a much longer one in the absence of ⊕.
In other words, these concepts must be compatible with short

TABLE I. Sequence of concepts presented in the experiment: C1, C2
t , C3

t , C4
t , C5, C6 for target group and C1, C2

c , C3
c , C4

c , C5, C6 for control
group. Each concept C is represented by a minimal formula ϕ such that �ϕ� = C.

Target group MDLP⊕ (C) MDLP(C) Control group MDLP⊕ (C) MDLP(C)

Training C1 xi 1 1 ←−Idem
C2

t xi ⊕ x j 3 7 C2
c xi ∨ x j 3 3

C3
t xi ⊕ x j ⊕ xk 5 19 C3

c xi ∨ (x j ∧ xk ) 5 5
C4

t xk ⊕ xl 3 7 C4
c xk ∨ xl 3 3

Test C5 xi ∧ (x j ⊕ xk ) 5 9 ←−Idem
C6 xi ∧ (x j ∨ xk ) 5 5 ←−Idem
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FIG. 3. Concept learning time (a) and difficulty predicted (b, c)
for the two test concepts (C5 and C6). Error bars are s.e.m. across
subjects.

logical formulas if and only if we take P⊕ as the language of
description. To ensure that this was the case, we enumerated,
for each concept, all formulas compatible with it and produced
by the P and P⊕ grammars up to length 19. For all training
concepts of the target group, the shortest compatible formula
without ⊕ is much longer than the shortest compatible for-
mula with ⊕. This is shown in Table I.

IV. MODEL-FREE RESULTS

We measure the subjective difficulty of a given concept as
the total time needed by the participant to successfully encode
the concept, which indicates that they can reliably express
which exemplars belong to the concept and which do not.

Participants from the target group spent almost half the
time than participants from the control group in C5, which
could be succinctly described only in P⊕ (111 ± 16 s.e.m.
seconds versus 214 ± 37 s.e.m. seconds, a two-sample t-test
reveals t42 = 2.6, P < 0.01), as shown in Fig. 3(a). We also
found that the control group learned much faster C6 (143 ±
14 s.e.m. seconds for the target group versus 76 ± 10 s.e.m.
seconds for the control group, t42 = 3.5, P < 0.01). A mixed
ANOVA with C5-C6 as within subject factor and target-control
groups as between subject factor reveals a strong interaction
between group and C5-C6 (F = 15.3, P < 0.001), indicating
that the differences in learning times for C5 and C6 were very
different between the two groups.

The target group encoded C5 more efficiently than the
control group. We propose that the control group expected to
find in C5 and C6 structures that could be easily built in P. The
target group, on the other hand, became biased towards the
⊕ structure, and they expected to find it in C5 and C6. This
caused C5 to be encoded more rapidly by the target group
and C6 more rapidly by the control group. Assuming that
the subjective difficulty of learning a concept is proportional
to the complexity of its internal representation, we conclude
that after exposure to the training concepts, participants in
the target group represented the ⊕ more efficiently than the
control group, and expected to find this structure in C5 and C6.

V. MODEL

When presented with a concept (e.g., Fig. 2), our model
generates logical formulas and evaluate them to true or false
for that concept, keeping the formula only if it is true. To
generate formulas, the model uses a symbolic language in
which each rule (symbols and operators) is associated with
a probability of being used. The probability of generating a
formula is proportional to the product of the probabilities of
the rules required for building it, and therefore it decreases
exponentially with its length. Furthermore, if one of the rules
has a very low probability of being used, then formulas that
require it will also have very low probability.

The Static model maintains the rules’ probabilities fixed
throughout the concept sequence (the six concepts in Table I).
The Dynamic model updates the probabilities after each con-
cept, to minimize the expected description length of future
concepts, assuming they have similar structure to the concepts
learnt so far. We include in this model the ⊕ rule a priori in
the language, but with vanishing probability of being used.
Changes in this probability can be analogously interpreted
as the probability that a rational agent without the compiled
symbol a priori decides to add the compiled expression as a
new primitive into her language.

A. Static model

Under the LoT assumption, given a concept C (e.g., Fig. 2),
the probability that an agent uses formula ϕ to explain this
concept is defined by Bayes theorem:

P(ϕ | C) ∝ P(C | ϕ)P(ϕ).

The likelihood P(C | ϕ) of a logical statement ϕ can be simply
defined as 1 if �ϕ� = C and 0 otherwise. In other words,
for any given concept, only explanations that describe this
concept are considered as possible explanations. The likeli-
hood term has been defined more flexibly in the literature
[8,15], allowing for mislabeled elements. We keep this simpler
definition to reduce the number of free parameters of the
model, as we do not intend to account for mislabeling errors
in our experiment.

The prior P(ϕ) is defined by augmenting the context-free
grammars shown in Fig. 1 into a probabilistic context-free
grammars (PCFG). In the PCFG, each rule has associated
a parameter indicating the probability of using that rule. A
PCFG can be used to produce logical statements similar to
a CFG. Each nonterminal remaining in the statement is ex-
panded using a rule of the PCFG with probability proportional
to that rule’s associated parameter, until no nonterminals
remain in the statement.

We assume that the probability that a subject uses for-
mula ϕ to explain concept C is proportional to the posterior
P(ϕ | C), and the subjective difficulty dC of a concept C to a
participant is proportional to the length of the formula that
the participant is using to explain that concept. However,
there is no way to know directly which internal formula ϕ

the participant is using (and therefore we do not know |ϕ|).
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Hence, the most parsimonious approach is to consider the
entire posterior distribution P(ϕ | C) over possible formulas.2

Given a concept C, the expected length EC of the formulas
used by the participant is simply

EC =
∑

�ϕ�=C
|ϕ| P(ϕ | C), (1)

where the sum is over all formulas ϕ compatible with C.
We define the difficulty dC of a concept experienced by the
participant as

dC ∝ EC + αNC,

where we added a term that accounts for the cardinality
of the concept: NC is the cardinality of the concept or its
complement, the one being smaller, i.e., NC = min{#C, #C}
(e.g., NC = 4 for the concept C of Fig. 2), and α is a free
parameter fitted globally for all concepts and participants to
its maximum likelihood value of 0.9. In this way, we remove
the asymmetry between positive and negative examples, while
accounting for the toil taken by considering a larger number
of items simultaneously.

In practice, to approximate EC for each concept C, we
calculated the posterior probability P(ϕ | C) of all compatible
formulas ϕs up to size 19 with P(ϕ | C) and then use (1).
Since the space of all possible ϕs grows exponentially with
|ϕ|, normative procedures for estimating P(ϕ | C) in this
space involve stochastic search algorithms. However, in our
case, we were able to exhaustively enumerate and calculate
the posterior probability of all formulas generated by the
PCFG up to a sufficiently high size M such that all formulas
with |ϕ| > M have vanishing probabilities when compared to
shorter compatible formulas for the current concept (because
the prior P(ϕ) decreases exponentially with the size of the
formula).

B. Dynamic model

Up to this point, we assumed that, given a concept C, the
posterior distribution over formulas P(ϕ | C) was independent
of the other concepts presented in the sequence. However,
if the LoT (i.e., the PCFG) updates with experience, then
the prior P(ϕ) in P(ϕ | C) will change, and so will EC in
Eq. (1) and finally the subjective difficulty dC . Therefore, dC
will depend on the sequence of concepts that were previously
presented to the participant.

In other words, since now P(ϕ) depends on the sequence of
concepts experienced by the participant, instead of P(ϕ | C),
we have

P(ϕ | Ct , . . . , C1) ∝ P(Ct | ϕ)P(ϕ | C1, . . . , Ct−1),

where Ct is the concept presented at trial t , and P(ϕ |
C1, . . . , Ct−1) depends on the state of the PCFG at trial t ,
which in turn depends on how the PCFG gets updated from
trial to trial.

2This is equivalent to the Sampling Hypothesis described in
Ref. [18], by which participants represent distributions through sam-
ples. Similar results are obtained if each participant carries entire
probability distributions.

Intuitively, the update process increases the probability of
using a certain rule in the PCFG accordingly to how useful this
rule was to compress compatible formulas for the concepts
previously learned in the same domain. Specifically, we model
the update process in a normative manner: the probability of
using a rule of the PCFG at trial t is equal to the Bayesian
posterior probability that this rule will enable the learner to
find compressed explanations at trial t , according to how
useful it was to compress explanations in trials 1, . . . , t − 1.

To formalize the update of the PCFG, we define P(ϕ)
similarly to Ref. [15]. Specifically, the prior probability of a
logical statement at trial t in the concept sequence uses a sin-
gle Dirichlet-multinomial for the set of rule expansions. The
Dirichlet is parameterized by a set of positive real numbers
Dt

i , one for each rule i in the PCFG, which in turn determine
the probability of using rule i at trial t : a higher Di indicates a
higher probability of using rule i.

The prior is specified by the set Dirichlet parameters D0

with which we start the experiment (D0 represents a vector
containing the prior parameters of all rules in the grammar
at trial 0). In our experiment, we set the prior Dirichlet
parameters of all rules equal to 1, and the parameter of
the rule that expands the target operator to a value several
orders of magnitude smaller (≈10−4). This means that the
target operator was practically absent at the beginning of the
experiment, but it was technically possible to “learn it” by
increasing its probability as the experiment developed.

Under the Dirichlet model, the prior P(ϕ | C1, . . . , Ct−1)
can be rewritten using the Dirichlet parameters as P(ϕ | Dt ).
Therefore, to know how P(ϕ | C) updates from trial to trial,
we only need to know how D updates from trial to trial.

The Dirichlet parameter of rule i at trial t + 1 is equal to its
parameter at trial t plus the amount of times the production
i was used in generating all formulas compatible with the
concept at trial t (we note Mi(ϕ) as the number of times that
rule i is used in generating formula ϕ), weighted by each
formula’s posterior probability at trial t :

Dt+1
i = Dt

i +
∑

�ϕ�=Ct

P(ϕ | Dt ) Mi(ϕ). (2)

This Bayesian learning mechanism increases the proba-
bility of using rules that allow concepts to be succinctly
described. This happens because these formulas have higher
probability P(ϕ | D) than longer formulas, so the Dirichlet
parameters of the rules that build these formulas increase more
strongly than those of the rules that build longer formulas.

VI. RESULTS

The Bayesian agent that minimizes the expected complex-
ity of future concepts by optimally adapting its LoT to the
inferred structure of the task accurately captures the dynamics
of human learning across concepts. If we did not allow the
model to update the probability of the operators after each
concept, and particularly the compiled operator ⊕, then the
control group and the target group would be indistinguishable
to the model as it would predict equal average formula length
for both groups (see Fig. 3, static model). Instead, as shown
in Fig. 4, by adjusting the prior probabilities based on concept
exposure the dynamic model is able to capture learning time

042128-5



PABLO TANO et al. PHYSICAL REVIEW E 101, 042128 (2020)

10 200 30 10 200 30200 4000

200 4000 10 200 30 10 200 30

Humans
Dynamic
model

Static
model

C1

C2

C3
t

C4
t

C5

C6

C1

C2

C3
c

C4
c

C5

C6

Time (s) Difficulty dC Difficulty dC

Time (s) Difficulty dC Difficulty dC

T
ar

ge
t

C
on

tr
ol c

t

FIG. 4. Learning times and model predictions for target and con-
trol groups (see Table I for concept details). The predicted difficulties
of each model were calculated using dC . Error bars are s.e.m.

patterns in the target groups (R2 = 0.96 compared to R2 =
0.73 for the static model). Expectedly, both models perform
similarly in the control groups as they were designed to
not encourage the use of any particular operator (R2 = 0.72;
R2 = 0.71 for the static model). The impact of the learning
capability of the model is most evident in the target group
concept sequence, which was designed to this effect. If the
structure of the concepts does not bias the LoT primitives
one way or the other, then it is expected that a static model
will provide a reasonable fit. However, it is difficult to tell a
priori how unbiased a set of concepts really is, so experiments
relying on repeated concept exposure should always take
between-concept learning into account.

Allowing the model to constantly update its beliefs from
concept to concept is a requisite to capture human learning
times. We now explain how the pattern of subjective dif-
ficulties in Fig. 4 emerged in the dynamic model. In this
scenario, learning for the model is formalized by the update
of rule parameters from concept t to concept t + 1 according
to Eq. (2). In Fig. 5 we show how this learning takes place in
the concept sequence for the target group. There are mainly
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FIG. 5. Evolution of Dirichlet parameters of different rules after
each concept experienced by the target group.

two competing formulas when C2
t is presented: xi ⊕ x j and

(xi ∧ ¬x j ) ∨ (¬xi ∧ x j ). Given the low a priori value of the
parameter of the ⊕ rule, the posterior of the formulas of type
(xi ∧ ¬x j ) ∨ (¬xi ∧ x j ), which do not use the ⊕ operator, is
much higher than the posterior of xi ⊕ x j . Therefore, in Fig. 4
we see a large predicted difficulty by the dynamic model for
this concept [since the posterior lies mainly over these longer
formulas without ⊕, see Eq. (1)].

However, the little increment in the ⊕ rule after C2
t (see

Fig. 5) is sufficient for making the formula xk ⊕ xl to have
higher relative posterior in the next concepts, making the
increment in the parameter of the ⊕ rule much greater than
before. Additionally, the difficulty inferred by the model is
much smaller the second time the concept is presented (com-
pare C4

t and C2
t concepts in Fig. 4), since now the posterior is

more evenly distributed between long (without ⊕) and short
(with ⊕) formulas [see Eq. (1)]. Finally, when the concept
C5 is presented, the learner has completely compiled the ⊕
rule into her language, ascribing the formulas that use the ⊕
operator a much higher posterior probability relative to the
long formulas that do not use the ⊕ operator. Therefore, the
inferred difficulty for C5 is much smaller than those describing
previous concepts, almost as simple as concept C1 (see Fig. 4).

Finally, the strong ⊕ acquired by the target group increases
the difficulty of C6 relative to the control group (see Fig. 3).
This occurs because there are several formulas of length 9 that
use the ⊕ operator (around 6000), significantly increasing the
expected difficulty of the concept [see Eq. (1)]. For the control
group, the posterior probability of these formulas is very low,
causing a smaller increase in the expected difficulty.

The previous results point to a competition between differ-
ent rules in the grammar. In our model, competition between
⊕ and the other operators is modulated by the initial relative
value of the Dirichlet prior of the ⊕ rule, and the overall mag-
nitude of the priors of all rules. The initial ⊕ prior measures
how useful ⊕ should be (relative to the other rules) to increase
the likelihood of using it in the future. If the ⊕ prior is too low
relative to the priors of other rules, then formulas with ⊕ must
be much shorter than formulas without ⊕ in order for them
to have appreciable posterior and increase the ⊕ parameter in
Eq. (2). In our experiment, if the prior is smaller 10−12 (and
1 for all other rules), then the predictions of the dynamic and
static model for the target group are approximately equal: the
advantage of using ⊕ in the target concepts is not enough
to increase the likelihood of using ⊕. On the other hand, if
the ⊕ prior is too high, we cannot model the high difficulty
of C2

t for the target group and the high difficulty of C5 for
the control group. For example, if the ⊕ prior is higher than
0.05 (and 1 for all other rules), the difficulty of C2

t and C4
t are

approximately equal (corresponding to the short formula with
⊕) and also the difficulties of C5 for control and target groups.

The other free parameter that modulates competition is the
overall magnitude of the Dirichlet priors, which determines
how many times an efficient rule should be encountered before
incorporating it. If the magnitude is too high, then observing a
useful rule does not significantly change its Dirichlet parame-
ter relative to the others, eliminating from the model the rapid
rule acquisition clearly showed by participants. This happens
because in Eq. (2) the magnitude of the updates from t to t + 1
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are at most of order M, the number of times that operators
appear in formulas with high posterior. In our experiment, if
all rules have prior equal to 1 and ⊕ has 1/1000 we get similar
results to the ones in Fig. 4, but if all rules have prior equal
to 10 000 and ⊕ has 10 the additions to the ⊕ parameter are
insignificant, so the dynamic and static models make the same
predictions for the target group.

In our model a large enough exposure to a concepts will in-
crease the Dirichlet parameters without bounds, progressively
decreasing learning flexibility. Although our experiment is not
long enough to test it, such inflexibility is very unlikely to be
true. For example, in the LoT fitting experiment from Ref. [8]
they found that human Dirichlet priors for most proposi-
tional operators are between 0.3 and 3, instead of orders of
magnitude higher [as expected by Eq. (2) after exposure to
a large number of concepts]. Therefore, a more complete
model of lifelong language acquisition should include an
extra normalization or forgetting parameter that decreases the
overall magnitude of the Dirichlet parameters, preserving the
high learning flexibility that we observed in our experiment.

VII. DISCUSSION

We measured the subjective difficulty that participants
experience when learning a sequence of concepts. To explain
this subjective difficulty, we resource to propositional logic
as a base description language. In the target group we ex-
perimented with concepts which can be succinctly described
in the base language that also contains an extra operator ⊕
for exclusive disjunction but that needed necessarily longer
descriptions over the base language (where this operator is
absent). On the contrary, the control group is exposed to
concepts where ⊕ does not help to achieve succinctness.

Learning times are consistent with the hypothesis that
participants in the target group smoothly adopt the ⊕ as a
new primitive of their LoT to absorb the concepts they have
been exposed to, with no more incentive than decreasing the
expected complexity of future concepts. We do not claim
that participants have learned the ⊕ operator defined by any
specific formula using the previous operators, however, their
LoT seems to have constructed an operation that matches the
semantics of the exclusive or to compress such patterns of data
and identify them more efficiently.

Here, we focus on transfer learning effects when learning
sequential concepts that share the same hierarchical structure.
We acknowledge, however, that several other transfer learn-
ing effects are present in human sequential logical concept
learning, such as when subsequent concepts differ in the
relevant variables (e.g., color lights in our experiment) [19],
when changing the relevant variables in subsequent exclusive
disjunctions [20], or when two categories are learned in
an interleaved or a focused manner [21]. However, unlike
superficial knowledge about the task (like the frequency of

appearance of different symbols and logical operators in the
concept sequence), identifying the latent hierarchical structure
of concepts have extremely important computational con-
sequences: it allows for exponentially less complex repre-
sentations [22,23], maximizing the expected value of future
computations within resource-bounded constraints [24]. In
our task, to focus primarily on the learning process of the ⊕
structure, we randomize variables in each trial, such that other
kinds of transitions are averaged out across participants.

Most LoT studies provide a language that is fixed once
trained or inferred over a specific data. We claim that when
a specific language beats a second one at fitting some ex-
perimental data, what we may be seeing is an effect of prior
experience (including from the experiment itself), more than
an intrinsic feature of the LoT. This leads to a fundamental
difficulty in trying to experimentally uncover what the actual
human symbolic substrate of thought is. Experimental results
have shown for instance that a grammar with and, or, and not
better explains Boolean concept learning than one with nand,
despite both being expressively equivalent [8]. In our view,
this cannot be taken to mean anything more than that in the
current state of affairs of the world, the nand operator is not
very useful for compressing information. We have shown that
participants can rapidly compile new expressions in their LoT
if they begin to be useful, which emphasizes that one cannot
simply ignore the order in which concepts are presented to the
participant when studying aspects of the LoT.

When Fodor proposed the language of thought hypothesis
[4], what he had in mind was a symbolic system we all came
equipped with from birth. Stating that this language is in
fact always flexible might seem in outright contradiction with
Fodor’s original idea. In fact, what studies in the LoT literature
(including this one) are probably probing is one among many
languages in a hierarchy of increasing abstraction. As we
progress in life, we find some conceptual summaries useful,
and compiled them in a more abstract token. It is even
likely that there is no proper hierarchy with sharply defined
boundaries between levels, but instead a less organized pro-
gression of concepts of increasing abstraction, with thought
progressing seamlessly using constructs at different levels.

VIII. CONCLUSION

We defined a model to measure the subjective difficulty
of learning a sequence of concepts. The model updates the
grammar production probabilities between concepts and pre-
dicts difficulty as the size of compatible formulas weighted by
their posterior probability. This learning mechanism allows to
simulate the emergence of a new primitive in the language, as
it becomes useful to encode the concepts presented so far. The
predicted difficulties strongly resembles the pattern of human
learning times in a sequence of concepts that required the ⊕
operator to be efficiently represented.
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