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Chagas disease, caused by the infection with the protozoan parasite Trypanosoma cruzi,

is clinically manifested in approximately one-third of infected people by inflammatory

heart disease (cardiomyopathy) and, to a minor degree, gastrointestinal tract disorders

(megaesophagus or megacolon). Chagas disease is a zoonosis transmitted among

animals and people through the contact with triatomine bugs, which are found in much of

the western hemisphere, including most countries of North, Central and South America,

between parallels 45◦ north (Minneapolis, USA) and south (Chubut Province, Argentina).

Despite much research on drug discovery for T. cruzi, there remain only two related

agents in widespread use. Likewise, treatment is not always indicated due to the serious

side effects of these drugs. On the other hand, the epidemiology and pathogenesis of

Chagas disease are both highly complex, and much is known about both. However, it is

still impossible to predict what will happen in an individual person infected with T. cruzi,

because of the highly variability of parasite virulence and human susceptibility to infection,

with no definitive molecular predictors of outcome from either side of the host-parasite

equation. In this Minireview we briefly discuss the current state of T. cruzi infection and

prognosis and look forward to the day when it will be possible to employ precision health

to predict disease outcome and determine whether and when treatment of infection may

be necessary.

Keywords: chagas disease, Trypanosoma cruzi, therapy, outcome of infection, precision health

Trypanosoma cruzi AND CHAGAS DISEASE

Chagas disease, American trypanosomiasis, is caused by infection with the protozoan parasite
Trypanosoma cruzi which displays a complex life cycle involving human and animal hosts as
reservoirs of disease and triatomine insects of the Reduviidae family as vectors. Although the route
of infection was originally felt to be restricted to contamination of the wound ormucousmembrane
with T. cruzi-contaminated excreta of hematophagous insects, other forms of transmission are also
important, including oral infection through consumption of food and drink contaminated with
the parasite, blood transfusion, organ transplantation, and congenital infection (Moncayo, 2003;
Coura, 2014; Dolhun and Antes, 2016; Alarcón de Noya et al., 2017). Although 6–7 million infected
individuals live in the Americas (WHO, 2020), migration of T. cruzi-infected people throughout
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the world, many of whom are unaware of being infected, has
contributed to the globalization of the disease (Steverding, 2014).
Of the 238,000 infected people which are believed to reside
in the United States, mostly immigrants from South America
(Meymandi et al., 2017), 30,000 are found in Los Angeles, where
Dr. Sheba Meymandi oversees a large Chagas clinic and a Center
of Excellence for Chagas Disease (Meymandi, 2020). A few dozen
cases of vector-borne transmission have been documented in the
United States, although infection is widespread in wild animals
throughout the southern half of the country (Montgomery et al.,
2016; Kruse et al., 2019). The lack of an effective vaccine against
T. cruzi, and the moderate effectiveness and toxicity of first-line
drugs aggravate the situation (Schaub et al., 2011; Nunes et al.,
2013; Rodríguez-Morales et al., 2015). Considering these aspects
of epidemiology, continued surveillance of insects and wild
animals, continued screening of the blood supply, and perhaps
implementing screening of women of childbearing age will help
to reduce transmission of T. cruzi through various routes.

In the human host, T. cruzi trypomastigotes, the infective
forms of the parasite, can enter a wide variety of host
cells. Trypomastigotes then differentiate into amastigotes
which replicate in the cytoplasm and differentiate back to
trypomastigotes again, which lyse the host cell membrane and
exit the cell to continue the infectious cycle in the human. Cardiac
and smooth muscle tissues are preferential cellular targets of T.
cruzi. The adverse sequelae of infection described below depend
on the tissues and organs involved, which is a highly variable
and unpredictable factor. Chagas disease is highly complex.
While traditionally considered as having acute, indeterminate
(chronic–asymptomatic) and chronic (symptomatic) phases,
this illness is highly heterogeneous and best considered to be
a unique illness for each patient (Bonney et al., 2019). Most
infected individuals live normal lives and eventually die of causes
other than Chagas disease, completely unaware of their lifelong
infection, whereas around 30% of infected people develops
clinical manifestations. The acute phase of T. cruzi infection,
lasting 4–8 weeks, often has no associated symptoms, despite the
fact that the parasite is replicating and spreading throughout the
body (Bastos et al., 2010; De Bona et al., 2018). In the case of
vector transmission, it is possible to see Romaña’s sign around
5% of the time, when parasites deposited by the triatomine on the
face enter the conjunctiva, leading to periorbital inflammation
and edema. Chagoma, an inflammatory skin lesion at the site of
the insect bite, is also occasionally observed (Bastos et al., 2010).
In most cases, however, acute infection is not recognized due
to the non-specificity of signs and symptoms (fever, anorexia,
and/or flu-like symptoms like body ache). In very rare cases
acute infection leads to sudden death, due to parasitization of
the cardiac conduction system and a fatal dysrhythmia. In most
people, parasite-specific adaptive immunity develops, keeping
overall tissue parasitosis and blood parasitemia at very low
levels for life. In contrast, approximately one-third of infected
individuals develop cardiomyopathy or, to a lesser degree,
mega disease of the esophagus or colon, occurring many years
after infection. Disease pathogenesis is extremely complex with
multiple known and proposed mechanisms of tissue-specific
damage. Current data highlight the persistence of parasites in

cardiac tissue as a key factor to disease progression, whether by
anti-parasite immunity, autoimmunity or other mechanisms,
suggesting that reduction of parasitosis through trypanocidal
treatment is key to combatting the illness (Hyland et al., 2007;
Viotti et al., 2009; Bastos et al., 2010; Bocchi et al., 2017; Bonney
et al., 2019). We have recently reviewed pathogenesis (Bonney
et al., 2019) and will not discuss this further in this review.

TREATMENT OF Trypanosoma cruzi

INFECTION

Current Treatment for Chagas Disease
Trypanosoma cruzi infection is treated with Benznidazole (BNZ)
or Nifurtimox (NFX), nitroimidazole compounds that have
been used for decades. The approach currently practiced by
most is to treat all acutely infected individuals, newborns
with congenital infection, and anyone under 50 years of age.
Further, all immunocompromised individuals such as those with
HIV/AIDS or other immunosuppressive disorders or treatments,
should be treated to prevent reactivation of chronic infection,
normally maintained at very low levels by effective adaptive
immunity (Pinazo et al., 2013). BNZ is administered to adults
a dose of 5–8 mg/kg/day for 60 days. Children’s doses are
somewhat higher because they are more tolerant to the drugs
and show quicker resolution of the common hepatic and renal
toxicity upon drug cessation. Adults over 50 years of age with
chronic T. cruzi infection should be considered individually,
balancing the potential benefits and risks based. BNZ treatment is
contraindicated for pregnant women and people with significant
hepatic and renal illness (WHO, 2020). NFX is recommended
as a second line drug, only in the cases of BNZ failure and in
the absence of neurological and psychiatric disorders. NFX is
administered at 8–10 mg/kg/day for 90 days in adults, and at
15–20 mg/kg/day for 90 days in children (Bern et al., 2007).

Although there are cases in which BNZ has been found to
be more effective than NFX, both in the laboratory and in
patients, the reasons for these differences are not known (Olivera
et al., 2017; Crespillo-Andújar et al., 2018). Limitations of BNZ
monotherapy includes the lower probability of parasitological
cure in cases of chronic infection in contrast to the high
probability of parasitological cure in the acute phase when
treatment is maintained for the entire 60 day treatment period
(Meymandi et al., 2018). It is also possible that BNZ-resistant
T. cruzi clones emerge after partial treatment (Hughes and
Andersson, 2017). Finally, the relatively short half-life of the
drug (about 12 h), the low penetration of some tissues (Perin
et al., 2017) and the occasional serious side effects are additional
limitations. These adverse side effects are well-known, and
include allergic dermatitis, peripheral neuropathy, anorexia,
weight loss, and insomnia (Castro and Diaz de Toranzo,
1988). When they do develop, these side effects occur early in
treatment and often become intolerable, causing patients to abort
treatment; this can occur in up to 40% of individuals (Castro and
Diaz de Toranzo, 1988; Castro et al., 2006; Viotti et al., 2009).

There have been a number of attempts to improve BNZ and
NFX therapy, both to increase efficacy and to reduce toxicity,
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by decreasing the daily dose, giving the drug intermittently,
or preemptively treating potential side effects (Bastos et al.,
2010; Álvarez et al., 2016; Morillo et al., 2017; Rassi et al.,
2017; Cardoso et al., 2018). During the last decade, two
important randomized clinical trials were conducted to evaluate
the capacity of BNZ to modulate the evolution of Chagas heart
disease in adult patients with established cardiomyopathy—
the BENEFIT study (Morillo et al., 2015) and the TRAENA
trial (Riarte, 2012). Both used a dose of 5 mg/kg/day of
BNZ or placebo for 60 days and patient follow up over 5–10
years. Both found that BNZ was able to significantly reduce
parasitemia and parasite-specific serum antibodies. However,
these trials also showed that BNZ did not significantly reduce
progression of clinical cardiac disease through 5 years of follow-
up. Additional studies confirmed the low efficacy of BNZ
to prevent progression of cardiomyopathy in patients with
documented heart disease (Rassi and Rassi, 2010; Rassi et al.,
2017). What these trials did not address is the potential benefit of
therapy to indeterminate patients. Can drug treatment prevent
the development of cardiomyopathy in chronically infected
people with no cardiac disease? A retrospective study addressed
this directly and showed that treatment with BNZ prevents the
development of ECG alterations and decreases parasite-specific
antibody titers in indeterminate patients (Fragata-Filho et al.,
2016). Taken together, and considering additional studies (Villar
et al., 2014; Pérez-Molina et al., 2015), these data suggest that
trypanocidal therapy benefits acutely infected individual and
chronically infected people who have not yet developed clinical
heart disease.

Approaches to Improve Treatment of
Chagas Disease
Research on new treatments involves two main strategies: a
search for new candidate drugs that are more effective and less
toxic to replace BNZ, and a search for adjunctive agents that can
either increase the efficacy of BNZ/NFX or reduce their doses to
prevent adverse effects. Typically, compounds tested for efficacy
as monotherapy are also tested in combination with BNZ/NFX.

The main approaches to preclinical drug discovery for
T. cruzi drugs involve seven main groups of inhibitors:
(1) inhibitors of ergosterol biosynthesis (e.g., posaconazole
and other antifungal azoles), (2) trypanothione metabolism
(amiodarone and dronedarona), (3) pyrophosphate metabolism
(biphosphonates), (4) cruzipain inhibitors (K777 and derivates),
(5) calcium metabolism (amiodarona, dronedarona), (6) protein
and purine synthesis inhibitors, and (7) compounds that impair
the redox metabolism (nitroaromatic compounds like BNZ, NFX
and fexinidazole). Unfortunately, only a few clinical trials for
treatment are ongoing or were performed recently for these
candidates (Apt, 2010; Sales Junior et al., 2017).

Inhibitors of ergosterol biosynthesis affect the production of
the parasite cell membrane and show trypanocidal effects, similar
to what they do in fungi. For T. cruzi, a number of antifungals
drugs have been found to have good in vitro and in vivo efficacy
(Bustamante et al., 2014; Molina et al., 2014; Torrico et al.,
2018), both as single agents and in combination with BNZ.

Posaconazole, for example, demonstrated trypanocidal activity
particularly in combination with BNZ (Bustamante et al., 2014).
However, in clinical trials, no advantage was observed with
the combined therapy vs. BNZ monotherapy (Morillo et al.,
2017). In addition, posaconazole showed no curative effects in
patients on its own (Molina et al., 2014). Ravuconazole and
E-1224, a ravuconazole prodrug with better drug absorption
and bioavailability, are antifungal azoles with potent in vitro
activity againstT. cruzi. However, E-1224 failed to show sustained
efficacy 1 year after treatment in comparison with BNZ and
presented some safety issues at high doses (Torrico et al., 2018).

Besides antifungals azoles, the most advanced candidates
in clinical trials are amiodarone and fexinidazole, which have
ongoing or completed Phase II clinical studies, respectively. One
advantage of amiodarone is its potential dual role in patients
with cardiomyopathy since it is an antiarrhythmic drug as
well as a potent and selective anti-T. cruzi agent (Benaim and
Paniz Mondolfi, 2012). Dronedarone, a derivate of amiodarone
developed to reduce thyroid toxicity, showed a better profile at
a lower dose, and will hopefully be tested in a clinical trial soon
(Benaim et al., 2012).

The Drugs for Neglected Diseases initiative (DNDi) has
actively chosen to investigate nitroaromatic compounds. Their
investigations have proved fruitful, resulting in a trypanosomatid
portfolio that contains several agents. The DNDi portfolio
published in December 2019 lists fexinidazole as in a Phase
IIa clinical trial, whereas new BNZ regimens are in Phase
IIb/III. Fexinidazole can induce high levels of parasitological
cure in mice infected with BNZ-susceptible, partially resistant
and resistant T. cruzi strains in acute and chronic experimental
Chagas models (Bahia et al., 2012). These and other data have
encouraged DNDi to include fexinidazole in clinical studies. In
addition, the BENDITA (Benznidazole New Doses Improved
Treatment & Associations) trial showed that a BNZ 2-week
treatment course for adult patients with chronic Chagas disease
displayed similar efficacy and significantly fewer side effects than
the standard treatment duration of 8 weeks, when compared to
placebo (DNDi, 2019). DNDi will now continue to work with
national programs, partners, and health ministries of endemic
countries to confirm these results and encourage the necessary
steps to register the new regimen.

Other interesting strategies in preclinical studies are
nanoparticle therapy and natural compounds. Considering that
a major disadvantage of BNZ is its high toxicity, recent work
has employed nanotechnology to attempt deliver this drug in
an effective but safe way. The development of nanoparticles for
drug delivery is an area of great promise. The earliest particles
investigated were liposomal formulations of BNZ, which
were developed to target the drug to the liver (Morilla et al.,
2004). Since that time a variety of particles have been tested,
including polymethacrylate interpolyelectrolyte complexes
(García et al., 2018) and the amphipathic poloxamer P188
(Scalise et al., 2016). While these formulations were tested in
different in vitro and in vivo systems, they show great promise
in delivering BNZ and other trypanocidal agents to parasites
and parasitized cells at lower effective BNZ doses with lower
associated toxicity.
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Natural compounds constitute a newer but nonetheless active
area of Chagas drug discovery. Many plants extract display
trypanocidal properties, with some demonstrating activity more
potent than BNZ or NFX. Like other drugs, natural trypanocides
can be useful either as independent agents, or through enhancing
the activities of BNZ or NFX by enhancing their uptake by host
cells, killing of intracellular amastigotes, or reducing toxicity.
Drug repurposing is also being applied to T. cruzi as it is to many
infectious and non-infectious diseases (Bellera et al., 2015). Some
effective drugs can come from unlikely places, like agents used in
cancer chemotherapy (Epting et al., 2017), antivirals, antibiotics,
and cardiac medicines (Bellera et al., 2015).

Despitemuch research by hundreds of researchers over several
decades, we still do not have an agent or regimen that is superior
to BNZ/NFX for the treatment of T. cruzi infection. Several
candidates showed good trypanocidal activity in vitro, but fail
preclinical or clinical trials. There are many factors determining
the outcome of infection and susceptibility of the parasite to
treatment beyond what can be measured through typical studies.
In the rest of this Mini Review we discuss other aspects of the
host-pathogen interaction that impact the outcome of infection
and treatment, which should be considered in whether, when and
how to treat infection.

OUTCOME OF T. cruzi INFECTION AND
EFFICACY OF TREATMENT DEPEND ON
MANY FACTORS

It is difficult to extrapolate the results of in vitro tests to in
vivo animal studies and even harder to extend those results to
humans. Besides being human, people are highly heterogeneous
genetically, and physiologically and respond to most challenges
and interventions, including infections and drug treatments, with
great variation; this can lead to treatment failures (Francisco
et al., 2015). Although success of any treatment can be
measured by the reduction of parasitemia and even of parasite-
specific serum antibodies, success is ultimately measured by
reduction in the development of long-term sequelae such as
cardiomyopathy and megacolon. As mentioned above, treatment
with intermittent low doses of BNZ in patients with established
chagasic cardiomyopathy significantly reduced parasitemia, but
not progression of cardiomyopathy (Morillo et al., 2015). Also
T. cruzi displays a high degree of genetic and pathogenetic
heterogeneity and are commonly present as mixtures of distinct
parasite clones in a single infected triatomine or infected
host (Pronovost et al., 2018). However, it is theoretically
possible to predict the outcome of infection—subclinical for
life, cardiomyopathy, mega disease—if we knew more about
the genetic and physiologic basis of parasite virulence (broadly
defined) and host susceptibility (also broadly defined). We are
a long way from this understanding today. Variability in host
physiologic factors such as nutrition, immune status, existence
of coinfections, etc., further complicate the issue. The balance
among host genetics, host physiology and parasite genetics
determine outcome of infection and response to treatment. A
number of these are discussed below. The reader should keep in

mind that these factors are ultimately based in large part on the
genetics of host and parasite, which makes a systems approach to
Chagas disease management possible in the future.

Epidemiology
In the absence of other information, epidemiologic data can
be of modest help in predicting the outcome of T. cruzi
infection. Information about patient origin, possible form
of transmission (insect, congenital, oral), presence of other
conditions such as immunosuppressive states such as cancer,
HIV coinfection, or treatment with immunosuppressive drugs,
may inform patient management. Clearly, infected individuals
who are immunocompromised need treatment. Other aspects
of the infection, such as the location where infection takes
place, and by extension the characteristics of the human and
parasite populations, can be useful. An estimated two-thirds of
infected Brazilians are infected with the TcII strain of T. cruzi
(Brenière et al., 2016; Zingales, 2018), one of seven discrete typing
units (DTU) TcI-TcVI, plus TcBat (Zingales et al., 2009; Lima
et al., 2015). Some of these DTUs can be identified serologically
(Bhattacharyya et al., 2019). TcII strains, represented by the
common laboratory strain Y, generally exhibit high virulence
and may produce mega disease as well as cardiac disease in
chronic infection (De Oliveira et al., 2008; Oliveira et al., 2017).
In contrast, people from Argentina and Bolivia frequently are
infected with TcV strains and frequently develop cardiomyopathy
(Zuñiga et al., 1997; Messenger et al., 2015; Quebrada Palacio
et al., 2018; Zingales, 2018). Other DTUs such as TcI (e.g.,
Colombian) or TcVI (e.g., Tulahuen) have a tendency not to
cause clinical disease and are often used in chronic indeterminate
mouse models of infection (Chandra et al., 2002; Santana et al.,
2014). Unfortunately, the DTU system alone is not sufficient to
predict disease outcome or response to therapy since there is no
single outcome associated with any given DTU. No physician
would withhold drug treatment in an acutely infected individual
simply based on the fact that they may be infected with one
particular T. cruzi strain or another.

Parasite Virulence
Virulence is a complex term in its own right. It is important to
carefully define at each use. Virulence could be the capacity of
T. cruzi to invade host cells, replicate, and emerge after host cell
lysis. This leads to high parasitemia in experimental animals. It
could refer to tissue tropism, with some tissue infections being
more harmful to the host than others. Virulence might refer
to the ability of the parasite to kill its host. At some level,
considering the parasite alone, virulence is based on genetic
elements. Virulence may be conferred by specific parasite surface
proteins or secreted proteins that signal host cells, facilitating
parasite entry and replication. Molecules from trans-sialidase
and cruzipain families are well-established virulence factors of
T. cruzi and validated targets for drug discovery. Cruzipain
also participates in the modulation of the host cell immunity,
highlighting the key role of the host response in the establishment
and outcome of T. cruzi infection (Guiñazú et al., 2004; San
Francisco et al., 2017). High virulence is usually defined as the
ability to cause high parasitemia and/or tissue parasitosis and/or
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death of experimental animals (Sales-Campos et al., 2015). This is
based in part on the ability to invade and/or replicate in host cells
more rapidly than do low virulence isolates. Low virulence strains
are more likely to cause low-level chronic infection that may
never cause clinical disease (Cardillo et al., 2015). As mentioned
above, the commonly used high-virulence Y strain of T. cruzi
causes death in young C57BL/6 mice between 14 and 21 days
post-infection in conjunction with maximal parasitemia (Casassa
et al., 2019). By contrast, the K98 strain causes chronic infection.
It should be emphasized that virulence is equally influenced by
the host (Ferreira et al., 2018), as discussed in more detail below.

Tissue Tropism
Another characteristic of T. cruzi is differential tissue tropism.
Some isolates of this parasite have a propensity to infect certain
tissues over others. This may be due to specific affinity for
certain host cell surface molecules, preferential ability to replicate
in some cells better than others, or specific attraction to an
organ-specific vascular bed. If a person becomes infected with
a myotropic strain, it is more likely that cardiac pathology or
skeletal myositis will develop. On the contrary, a pantropic
strain may affect many organs and promote development of
megaesophagus or megacolon. Tropism can be ascertained by
in vitro testing using different cell lines. A strain with cellular
myotropism will prefer H9C2 cardiac myoblasts or human
skeletal myoblasts (Jorge et al., 1986; Mirkin et al., 1997;
Aridgides et al., 2013), while a pantropic strain will not have
a preference, for example affecting kidney cells and embryonic
fibroblasts equally (Piras et al., 1982; Jorge et al., 1986; Medina
et al., 2018). Information about the tropism of parasite clone
or clones could potentially be important in guiding treatment
decisions, including a decision not to treat. The challenge of
course is to determine potential tropism or other characteristics
of a clone without having isolated and cultured parasites for
laboratory study. There may be ways to do this in the future using
a combination of advanced imaging and molecular approaches
(see below). In the meantime, it is really not possible to predict
the tissue tropism of a strain based on the region of origin
or DTU.

Drug Resistance
The differential resistance of T. cruzi to BNZ among isolates has
been documented (Bustamante et al., 2014; Abegg et al., 2017;
Vieira et al., 2018). This intrinsic resistance in some strains could
explain why some patients receiving the same BNZ treatment
show parasitological cure while others do not. Similar to
virulence, the capacity of parasites to resist or be susceptible to a
drug is genetically determined by the presence of specific factors.
The T. cruzi Colombian and V-10 strains are highly resistant
to BNZ, while the Y and Dm28c strains are partially resistant
and the CL strain is highly sensitive (Filardi and Brener, 1984;
Bahia et al., 2012; Reigada et al., 2019). Somewhat paradoxically,
intracellular replication of some strains is enhanced by the
presence of BNZ and the associated production of reactive
oxygen species (Paiva et al., 2018). Several have proposed that
different T. cruzi DTU have different resistance to BNZ and
NFX (Cencig et al., 2012; Teston et al., 2013). Some DTU are

more resistant to BNZ than others, although even within a
single DTU there can be variability in BNZ sensitivity (Quebrada
Palacio et al., 2018). Interestingly, parasite strains of different
DTUs do show common BNZ susceptibility and resistance
patterns (Revollo et al., 2019). Clearly there can be much greater
refinement in genetic characterization of T. cruzi than the DTU
system but it is a measure that has shown great utility in many
studies. However, data from genotyping could be used to predict
the susceptibility of an isolate to drug treatment. As mentioned
above and discussed below, the challenge is to be able to genotype
or phenotype parasites without isolating them, since in many
chronically-infected patients circulating parasites are rare or
absent. As a relatively crude measure of T. cruzi sensitivity to
BNZ, quantitative PCR to detect parasite DNA in blood before
and after BNZ treatment is the best we have at themoment (Britto
et al., 1999; Maffey et al., 2012; Barros et al., 2017; Rodrigues-dos-
Santos et al., 2018). It is also possible that parasite dormancy may
play a role in drug resistance (Sánchez-Valdéz et al., 2018).

Host Factors in Parasite Susceptibility and
Resistance
As in many diseases, the outcome of T. cruzi infection is
determined not only by the pathogen, but also by the host.
We tend to focus on immunity but there are other intrinsic
(innate) factors that may also contribute to susceptibility and
resistance. These known and unknown attributes are bundled
in the vague term “genetic factors.” Beyond the genetic
factors there is also host nutritional status, possible presence
of coinfections, and other environmental factors that may
influence outcome. This concept is best exemplified by the
finding that most T. cruzi-infected individuals have no clinical
signs or symptoms of infection—ever. Regarding host genetic
background, T lymphocytes in chronic patients with no clinical
disease have a high frequency of CD4+ and CD8+ T cells
expressing HLA-DR and CD45RO (Dutra et al., 1994), with
little to no costimulatory CD28 (Dutra et al., 1996; Menezes
et al., 2004; Albareda et al., 2006). This profile positively
correlates with the expression of the regulatory cytokine IL-10
(Menezes et al., 2004) and also with the presence of CTLA-
4, a costimulatory molecule which leads to T cell modulation
(Souza et al., 2007). Since CD8+ T cell destruction of parasitized
cells can lead to tissue inflammation and clinical disease,
it is possible that immunoregulatory mechanisms in these
patients prevent pathology and facilitate lifelong indeterminate,
subclinical disease. The balance between proinflammatory and
anti-inflammatory immune responses is central to the outcome
of infection. Although a pro-inflammatory adaptive immune
response is necessary to control T. cruzi, immunoregulation is
necessary later on to prevent tissue destruction and possible
subsequent autoimmune damage (Bonney and Engman, 2015).
In this way, IL-10 plays an essential modulating role in
controlling disease development. The ability to express IL-10 at
sufficiently high levels may be genetically determined and may
influence disease outcome. Studies in experimental models of
T. cruzi infection demonstrate the influence of host immune
response in the outcome of infection. BALB/c mice, which
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develop a Th2-skewed response upon T. cruzi infection, are
hypersensitive to infection and do not survive the acute phase. In
contrast, C57BL/6 mice, which develop Th1 immunity through
the IL-12/IFN-γ/iNOS axis, control the parasite and show low
parasitemia and mortality during the acute phase (Michailowsky
et al., 2001).

TOWARD PRECISION HEALTH
MANAGEMENT OF CHAGAS DISEASE

As described above, T. cruzi infection and Chagas disease
are highly complex. At the present time, no single factor or
combination of factors can predict disease outcome or response
to therapy in an infected individual. The assignment of T.
cruzi strains to DTUs and the assessment of a person’s HLA
haplotype and other immunogenetics are starting points. In
chronic infection it is often not possible to isolate parasites for
analysis and, even if successful, the parasite isolated may not
represent all parasite clones present in the patient, which might
have different pathogenic potential. Detection of parasites in
chronically infected individuals is most frequently accomplished
by PCR (Schijman et al., 2011) and this method has also been
used to monitor the effect of therapy on parasite persistence
(Morillo et al., 2015; Sulleiro et al., 2019). Unfortunately,
the sensitivity of PCR is problematic—only 60% in the large
BENEFIT Trial of several thousand patients (Morillo et al.,
2015). Although there are many possible reasons for this, a likely
reason is suboptimal sampling. Perhaps a proteomic approach
would be better and recent work detecting T. cruzi antigens
in circulating immune complexes from infected individuals
is promising (Ohyama et al., 2016). A major breakthrough
in patient management would be the ability to assess the
distribution of parasites in the body, much as is done today
with nuclear medicine scans for cancer. We can do this in mice
employing bioluminescent imaging of engineered luminescent
parasites (Hyland et al., 2008) but obviously this is not possible
in patients. Interestingly the infection in mice is highly dynamic
with migration of parasite foci around the body over time (Lewis
et al., 2014). Development of approaches to image parasites in
an infected person to determine location(s) and burden would
enhance the care of Chagas patients if these are found to be linked
to organ-specific dysfunction. Another would be the detection
of parasite-free T. cruzi DNA in blood or body fluids, much as
is done today for circulating tumor cell DNA. In this way it is
theoretically possible to genotype all parasite clones in an infected
individual, perhaps quantitatively, by next generation sequencing
(NGS), in the absence of circulating parasites. This is an active
area of investigation in a number of laboratories (Domagalska
and Dujardin, 2020).

A more refined genetic analysis of T. cruzi than the DTU
system will no doubt emerge through large scale NGS whole
exome or genome analysis of parasites and integration of
this information with detailed clinical information and patient
outcomes, including response to treatment. In this way, the
complex interplay between parasite and host genetics that
ultimately determines the outcome of infection might emerge.

This may not happen tomorrow, but it is a major goal of
the medical field as applied to many diseases, both infectious
and otherwise. Unfortunately genome wide association studies
have not been successful in identifying gene polymorphisms
associated with disease progression (Deng et al., 2013). Regarding
drug treatment, a comprehensive, systems approach to parasite
and host will essentially allow a pharmacogenomic approach to
treatment, much as is done today for personalized treatment
decisions for cancer, arrythmias and pain management (Wang
et al., 2011).

How will this happen? Until now, associations between
biological data and biological behaviors were deduced from
simultaneous consideration of small numbers of data features
from a laboratory experiment or clinical trial. This limitation has
hindered our understanding of polygenic diseases like diabetes
and coronary heart disease. The advent of machine learning now
allows the simultaneous analysis of hundreds or even thousands
of features across a very large number of biological samples
employing supercomputing to identify relationships among the
features (Rajkomar et al., 2019). For some applications, the
machine needs to be “trained,” for example by “learning” the
associations of histologic images with cancer types. If all goes
well with the training, the computer can then type the cancer
with high accuracy (Esteva et al., 2017; Gertych et al., 2019).
Extending the histology example further, there is information
in a complex image like tissue histology that reflects underlying
genetic modifications, such as DNA methylation, and machine
learning can identify those subtleties in a way that the human
eye never could (Zheng et al., 2020). This approach can also be
applied to molecular data de novo for gene discovery (Wood
et al., 2018). Ultimately, the promise of precision health will be
realized by the application machine learning to a wider variety
of data features and, for Chagas disease, this means clinical
data, basic patient information, including demographics, baseline
genome sequence, behavioral and physiological data and, of
course, genomic information of the parasite clone(s) infecting the
person. We believe that it is only a matter of time when this will
be science and not just science fiction.

As an intermediate step between the present and future, we
propose a highly simplistic theoretical approach to categorizing
T. cruzi infection and treatment. Refinement of this model over
time by adding levels of sophistication might eventually yield a
useful tool for patient management. For example, considering
five attributes derived from host or parasite it is possible to
generate a pictorial representation of the infection (Figure 1).
This is based loosely on the modeling of Santi-Rocca (Santi-
Rocca et al., 2017). Each attribute—parasite genetics, host
genetics, T helper phenotype, epidemiology, and response to
BNZ can be “scored” from 1 to 5, with 1 corresponding to the
lowest level of a particular attribute and 5 the highest. When
applied to two different infections, Patient 1 having a low-
level, chronic infection with no clinical disease and Patient 2
having significant cardiomyopathy, a pictorial representation of
the infection can be generated. The attributes are listed below
each patient in clockwise order from the top. Clearly this is so
simplistic that it is not useful today. These attributes are not
really “scorable” in this way and do not correlate in the manner
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FIGURE 1 | Preliminary simplified model for assessing a Trypanosoma cruzi-infected individual. See text for description and discussion.

shown in these examples. However, simplistic, this approach
does give a preliminary glimpse into a future analytic scheme
that shows how specific features of host and parasite might
contribute the ultimate outcome of infection and responsiveness
to treatment.

In terms of refinement, the field really does need to move
beyond studies of laboratory strains to analyze strains present
in patients and insects in a systematic and non-biased way
through NGS. It is possible that the DTU structure will
have value over time since if nothing else DTU by definition
reflects the genetic relatedness of strains. We foresee a day
when genotyping of the strain(s) present in each patient will
become part of the standard workup of T. cruzi infection and
that NGS genotyping of circulating parasite DNA will solve
this problem. The premise underlying this entire discussion
is that, ultimately, disease outcome and response to therapy
can be predicted based on the genotypes of parasite and host,
both as independent factors and in combination. The latter
notion is based on the well-known fact that an individual
parasite strain shows differential virulence depending on the
host, and that an individual host has different disease outcome
depending on the parasite strain. This complexity is challenging
but no more so than in many other polygenetic diseases
affecting millions.

CONCLUSION

Since its discovery more than 100 years ago (Chagas, 1909),
Chagas disease has proven to be a major clinical and public

health challenge due to the extreme heterogeneity in the
outcome of infection, the wide range of mammalian hosts
and reservoirs, the large geographic range of its triatomine
insect vectors, worldwide migration of infected individuals,
and paucity of drugs. While we have discussed the potential
future for disease diagnosis, prognosis and patient management,
the ultimate solution is the development of an effective and
curative treatment having low toxicity. Better yet, a safe
and effective vaccine that provides sterilizing immunity or
even immunity sufficient to minimize the parasite burden to
prevent clinical disease. Science and medicine are developing
rapidly and we are hopeful that someday T. cruzi and Chagas
disease will be considered manageable infections, much like
the viral and bacterial infections that were previously deadly
and now are managed through vaccination and effective
drug treatments.
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