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Abstract
Reproduction is a highly expensive process that during gonadal development requires an important supply of nutrients. The 
allocation of energy can vary throughout the reproductive cycle, between sexes and development modes. During research 
cruise aboard the RV Puerto Deseado in April 2016, we collected fifteen species of sea stars from the southernmost region 
of Argentina. The main purposes of the present study were threefold: first, to revise and report novel information on the 
reproductive strategies and energetic density (ED) of body components from the asteroids of the southwestern Atlantic Ocean 
including Burdwood Bank/ MPA Namuncurá; second, to compare the ED of these body components across species with 
contrasting reproductive strategies; third, to provide a tool to estimate the ED from dry mass of organs of the sea star species 
examined. Ovaries of Diplopteraster verrucosus (a brooder with a nidamental chamber) revealed a significantly greater ED 
than did the testes (29.81 ± 1.38 and 17.76 ± 1.59, respectively). In Glabraster antarctica (a broadcaster with yolky eggs 
and facultative planktotrophic larvae), the gonads had EDs of 25.78 ± 3.16 and 19.21 ± 0.52 (females and males, respec-
tively). While in Peribolaster folliculatus (a broadcaster with eggs with low yolk content and inferred planktotrophic larvae) 
there was no significant difference in the ED values between sexes (females: 22.79 ± 1.10 and males: 20.46 ± 1.05). For the 
pyloric caeca, ED values did not reveal any difference between sexes, although in P. folliculatus, the ED was significantly 
higher than that for D. verrucosus and G. antarctica (25.90 ± 1.00, 23.03 ± 0.34, and 22.66 ± 0.65, respectively). The body 
wall had higher ED values in D. verrucosus and P. folliculatus than that for all the sea star species analyzed (46.48 ± 1.63, 
51.17 ± 1.34, respectively). Higher ED values in the ovaries could be related to the nutrition of offspring, while differences 
found in the body wall may reflect the skeletal structure of this body component. This research provides basic information 
for understanding the differences on energetic allocation when contrasting development modes are considered.
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Introduction

Sea stars represent a diverse group of benthic invertebrates, 
with a long paleontological history (Blake 2000; Sutton et al. 
2005; Stilwell and Long 2011; Jagt et al. 2014). The Aster-
oidea have successfully colonized all depths of the world’s 
oceans (Broyer and Koubbi 2014), and have numerous feed-
ing (Jangoux 1982) and reproduction strategies (MacBride 
1920; Bosch and Pearse 1990; Pearse et al. 1991; Byrne 
2005). Moreover, can serve as top predators playing an 
important role in structuring benthic communities (Paine 
1969; McClintock 1994).

Sea stars exhibit a spectrum of developmental types 
which includes pelagic or non-pelagic embryos and larvae, 
and planktotrophic (particulate feeding) or lecithotrophic 
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(non-feeding) modes of nutrition (Mileikovsky 1971; Chia 
1974; Bosch and Pearse 1990). The larval development of 
echinoderms can be classified into general categories on the 
basis of mode of nutrition and habitat (Chia 1974; McEd-
ward and Miner 2001). Larvae may be planktotrophic (feed-
ing on particulate material and nearly always pelagic) or lec-
ithotrophic (non-feeding) (Bosh 1989; McEdward and Miner 
2001). In this scenario, lecithotrophic larvae can be pelagic, 
demersal, or brooded. Many species of sea stars that inhabit 
high southern latitudes present parental care (Pearse et al. 
1991; McEdward 1995; Bosch and Slattery 1999; Fraysse 
et al. 2018), where embryos are retained at different areas 
of the female, such as on the aboral surface among spines, 
over the mouth, inside an aboral nidamental chamber, in the 
cardiac stomach, or even within the ovaries (intraovarian 
brooding) (Thomson 1876; Studer 1885; Lieberkind 1920; 
Himmelman et al. 1982; Chia and Walker 1991; Byrne 1996, 
2005; Pérez et al. 2015).

Studies of the energetics of echinoderm body compo-
nents are of comparative interest, because the distribution 
and allocation of energy within and between body compo-
nents of animals can provide important information on their 
functional roles and relative importance to the survival of 
the organism (Calow 1984; Lawrence 1987a). Among the 
Asteroidea, body compartments can be divided into three 
functional categories: the body wall, which is traditionally 
considered to serve a structural or protective function, the 
pyloric caeca, which are nutrient storage organs, and the 
gonads, the reproductive organs (Hyman 1955; Giese 1966). 
Both food availability and the biochemical and nutritional 
composition of the diet may have consequences in patterns 
of energy allocation to these body components (McClin-
tock et al. 1990, 1995). For example, in high-latitude marine 
ecosystems, pronounced seasonal fluctuations occur in 
food availability (Clarke 1987; Almandoz et al. 2011) and 
in many cases individuals accumulate exceptionally large 
amounts of energy-rich lipids during spring (Pérez et al. 
2008) and summer (McClintock and Pearse 1987) to be uti-
lized during the winter. Use of energy models has grown 
increasingly since the early fifties (Fernández et al. 2009) 
since they enabled simplification of the technique, substitut-
ing time-consuming proximal analysis or calorimetry for an 
easier calculation, which is faster and requires no specialized 
equipment other than an oven. A useful tool for further stud-
ies in sea stars from the southwestern Atlantic Ocean, may 
arise from the relationship between energy density (ED) and 
dry mass of the body components. Gonadal development in 
the Asteroidea is closely related with nutrient input (Law-
rence 1987b) and ingested energy must be partitioned to 
growth and maintenance (Lucas 1996). This allocation may 
fluctuate between sexes and during reproductive cycle (Law-
rence and McClintock 1994). Reproductive effort in sea stars 
can vary with the mode of development. For instance, in 

species with development modes that imply a planktotrophic 
stage, reproductive investment is usually equal between the 
sexes (Raymond et al. 2007; Pérez et al. 2010, 2017), while 
in species that brood, males may invest more energy in gam-
ete production than females, whereas the latter may face 
costs associated with incubating embryos (Raymond et al. 
2004; Gillespie and McClintock 2007; Pérez et al. 2015). 
As pyloric caeca serve as nutrient reserve organs (Law-
rence 1987c), it is not surprising that many asteroids show 
an inverse relationship in seasonal gonadal and pyloric caeca 
indices due to the transference of energy and nutrients to 
developing gonads (Chia and Walker 1991).

The southern Patagonian Shelf (extending from approxi-
mately 47° S to Cape Horn, 55ºS) encompasses a vital 
marine ecosystem that remains largely unexplored (Sabatini 
et al. 2004), and includes the Marine Protected Area Namun-
curá (MPAN). The circulation over the southern Patagonian 
shelf is influenced by two branches of the Antarctic Cir-
cumpolar Current. There is a direct inflow of cold Antarctic 
waters to the south (mainly through the Strait of Lemaire, 
between Tierra del Fuego and Isla de los Estados) and the 
Malvinas Current flows over the continental shelf, to the 
east (Sabatini et al. 2004). The latter transports cold, nutri-
ent-rich sub-Antarctic water, corresponding to the subpolar 
oceanographic system (Falabella 2017). The MPAN shares 
asteroid species not only with Tierra del Fuego Province 
(nine species) (Fraysse et al. 2018), but also with Antarc-
tica such as Acodontaster elongatus, Anasterias pedicel-
laris, Bathybiaster loripes, Henricia studeri, Peribolaster 
folliculatus, and Pteraster stellifer. The Malvinas Current 
might thus facilitate the dispersion of asteroid larvae toward 
the Burdwood Bank plateau, as most of the species shared 
between the MPAN and Antarctica possess pelagic plankto-
trophic or lecithotrophic larvae (Fraysse et al. 2018).

The purposes of the present study were threefold: first, 
to revise and report novel information on the development 
modes and energetic density of body components from the 
asteroids of the southwestern Atlantic Ocean; second, to 
compare the energetic density of these body components 
across species with contrasting development modes (Diplop-
teraster verrucosus, Glabraster antarctica, Peribolaster 
folliculatus, and Anasterias pedicellaris); third, to provide 
a tool to estimate the energetic density from dry mass of 
organs of the sea star species examined.

Materials and methods

During research cruise aboard the RV Puerto Deseado (Sci-
entific cruise BBB-ABR16) in April 2016, different species 
of sea stars were collected from the southernmost region of 
Argentina. The sampling spanned a region 53° 55.9′ S to 55° 
2.21′ S latitude to 67° 51.8′ W to 58° 21.61′ W longitude 
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(Fig. 1) that included the Tierra del Fuego Province and the 
Marine Protected Area Namuncurá (MPAN). The MPAN 
was established in 2013 on the Burdwood Bank (BB) pla-
teau, and is located about 200 km south of the Malvinas 
Islands and 150 km east from Isla de los Estados. Benthic 
habitats of the BB seabed had accumulations of sand, gravel, 
and shell, with depths between 50 and 200 m and abrupt 
slopes that exceeded 3000  m depth delimited the bank 
(Piola and Gordon 1989; Schejter et al. 2016). Sampling 
was carried out using a bottom otter trawl (total length = 6 m, 
headrope and footrope = 6 m, wing mesh 25 mm, cod-end 
mesh = 10 mm, otter board surface = 0.25  m2, otter board 
weight = 12 kg, horizontal opening = 1.8 m, vertical open-
ing = 0.60 m) and a Rauschert dredge to complement species 
caught in the trawls with species that live buried in the sedi-
ment. Seventeen stations were sampled at different depths 
(ranging from 92 to 203 m) and with different benthos char-
acteristics (i.e., rock, sand, and gravel).

All collected individuals were photographed and then 
dissected so as to obtain samples to study and evaluate the 
different modes of development and the energetics of the 
various body components. Individuals’ already dissected 
bodies were then preserved in formaldehyde (10%) for 
identification to the lowest taxonomic level possible. Initial 
taxonomic determinations were performed based on Sladen 
(1889), Koehler (1913), Verrill (1914), Fisher (1940), Ber-
nasconi (1970), Tablado (1982), Clark and Downey (1992), 
Stampanato and Jangoux (1993), Janosik and Halanych 
(2010), Mah et al. (2014), and Arntz and Rauschert (2015). 

Taxonomic identifications were then matched against the 
Register of Antarctic Marine Species (Clarke and Johnston 
2003; De Broyer et al. 2018), the World Register of Marine 
Species (Horton et al. 2018), De Broyer and Danis (2010), 
OBIS (2018), and the World Asteroidea database (Mah 
2018) to remove synonymies.

Development mode and energy indexes

The developmental mode of each species was determined 
using bibliographic information from MacBride (1920), 
Lieberkind (1926), Fisher (1940), Hyman (1955), Ber-
nasconi (1970), Bosch (1989), Bosch and Pearse (1990), 
Pearse et al. (1991), and Pearse and Bosch (1994). For 
the species in which no information was found in the lit-
erature, macroscopic and microscopic observations were 
made, including recording the presence of embryos, and 
histological analyses of the gonads including measuring 
the maximum sizes of oocytes. We ensure to consider 
mature gonads observing the degree of packaging of the 
oocytes and noticing the acidophilic cytoplasm. The ova-
ries of mature females contain large mature ova with aci-
dophilic cytoplasm, densely packed into the lumen, and 
small number of previtellogenic oocytes located along the 
acinus wall (Pérez et al. 2010). Histological analysis was 
carried out on one gonad from each individual that was 
immersed in Bouin’s fixative for 12 h before dehydration 
in a graded ethanol series. Tissue was embedded in paraf-
fin (Paraplast®) and 5–7 µm sections were cut and stained 

Fig. 1  Map showing the loca-
tion of the sampling area on 
April 2016. The 50-m, 200-m, 
1000-m, 2000-m isobaths, and 
the scale bar are included. For 
the detailed position of the sev-
enteen sample sites see Fraysse 
et al. (2018)
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with hematoxylin–eosin (Pérez et al. 2010). Histologi-
cal slides from 193 individuals of different species were 
examined microscopically. Sections were imaged with a 
digital camera attached to an Olympus BX40 microscope 
and analyzed using Micrometrics SE Premium 4 software.

For calorimetric determinations, sub-samples of body 
components (gonads, pyloric caeca and body wall) were 
stored at − 20 °C until processing. Each component was 
weighted to determine the wet mass and then dried in a 
drying oven at 60 °C until attaining constant dry mass. 
Dry material of each sample was then pulverized using a 
mortar and pestle, and pellets (0.02–0.2 g) were made with 
a Parr 2812 press. Energetic density (ED) was determined 
by complete combustion of each pellet in a semi-micro 
calorimeter (Parr 1425) following the methodology of 
Lucas (1996) with the modifications made by Pérez et al. 
(2008) and Boy et al. (2009). Data were converted to kilo-
joules per g dry mass of ash-free material (energetic den-
sity, ED, kJ  g−1 AFDM). Periodic calibrations were made 
with benzoic acid. Inorganic matter (IM) was calculated as 
the percentage of residuals (ashes) after the combustion.

Energetics of sea stars with contrasting 
development modes

To compare the energetic density (ED) of gonads and 
pyloric caeca of species with different developmental 
modes, three species with sufficient sample sizes were 
selected: Diplopteraster verrucosus (brooders with incuba-
tion in nidamental chamber; Bernasconi 1970), Glabraster 
antarctica (broadcaster with eggs with low yolk content 
and facultative planktotrophic larvae; Bosch 1989; Moore 
et al. 2018), and Peribolaster folliculatus (broadcasters 
with presumptive planktotrophic larvae; present paper). 
In the particular case of the body wall, Anasterias pedi-
cellaris (brooders with oral incubation) was added to the 
ED comparisons to facilitate a better understanding of the 
relation between development mode and the energetics of 
this body component. Finally, the relationships between 
ED and dry mass (DM) of each body component were 
analyzed.

ED estimations

Regression analyses were performed to study the rela-
tionship between ED (kJ  g−1 AFDM) and DM (%) of the 
body components from all the species analyzed. An overall 
analysis was performed first for each body component, and 
then each species were studied. Those species where the 
regression was found significant are reported separately.

Statistical analyses

Two-way ANOVAs were performed to analyze the effect of 
sex and developmental mode on the ED of the different body 
components followed by Tukey comparisons. In all cases, 
the assumptions of normality and homogeneity of variances 
were tested using Kolmogorov–Smirnov and Levene test, 
respectively. When necessary, logarithmic transformations 
were applied (Sokal and Rohlf 1995) and non-parametric 
statistical method was used (Mann Whitney). The relation-
ship between ED (kJ  g−1) and DM (%) of gonad, pyloric 
caeca, and body wall for the species of the asteroids was 
determined using linear regression analysis. All analyses 
were performed using GraphPad Prism 6.0, Statistica 10 
and QGIS 2.18.3.

Results

The fifteen species of sea stars collected from the southwest-
ern Atlantic Ocean are shown in Table 1.

Development mode and energy indexes

Taxonomy, development mode, values of wet mass, ener-
getic density (ED), and inorganic matter (IM) for each body 
component for each species of sea star are summarized in 
Table 1.

Regarding the species with development modes not iden-
tified through the literature, macroscopic and microscopic 
observations were performed. Histological slides of gonads 
(108 females, 81 males) of different species were exam-
ined. In both Anasterias pedicellaris (Fig. 2a) and Lysaste-
rias sp., brooded embryos were found being held over the 
oral opening of adult females, while histological sections of 
the gonads of presumptive mature (non-brooding) females 
revealed few numbers of large densely packed acidophilic 
oocytes with a maximum diameter of 2.44 mm. Histological 
sections of gonads of Henricia obesa (Fig. 2b) and Hen-
ricia. studeri females similarly revealed few numbers of 
large densely packed acidophilic oocytes with a maximum 
diameter of 1.03 mm along with numerous smaller previtel-
logenic oocytes. In Peribolaster folliculatus (Fig. 2c), his-
tological sections of the ovaries revealed a large number of 
small oocytes with a maximum diameter of 0.18 mm.

ED values of the species examined for the ovaries varied 
from 22.56 to 29.81 kJ  g−1, with a mean value of 25.56 kJ 
 g−1 (Table 1) with A. pedicellaris having the lowest and 
Diplopteraster verrucosus the highest ED. The mean ED of 
male gonads (testes) was lower than that found in females 
(21.11 kJ  g−1). Testes of D. verrucosus had the lowest 
ED (17.76 kJ  g−1) and C. lurida had the highest (24.86 kJ 
 g−1). The mean ED for the pyloric caeca of the species 
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Table 1  Taxonomy, developmental mode, wet mass (%), energetic density (ED, kJ  g−1 AFDM), and inorganic matter (IM, %) of gonad, pyloric 
caeca, and body wall of different species of asteroids from the studied area

Family Species Development mode Wet mass (%) ED (kJ  g−1) AFDM IM (%)

Asteriidae Anasterias pedicellaris Brooders (oi) with lecithotrophic 
embryos*Gonad (females) 92.37 (1) 22.56 ± 4.75 (2) 10.46 (1)

Gonad (males) – 19.29 ± 4.53 (2) 21.12 (1)
Pyloric caeca – 20.24 ± 3.44 (4) –
Body wall – 2.97 ± 0.19 (10) 63.54 ± 2.06 (10)
Cryptasterias turqueti Brooders (oi) with lecithotrophic 

 embryosa
Gonad (females) 76.63 ± 2.39 (6) – –
Pyloric caeca 69.21 (1) 25.97 (1) 3.96 (1)
Body wall – 3.96 ± 0.22 (9) 53.68 ± 2.70 (9)
Diplasterias brandti Brooders (oi) with lecithotrophic 

 embryosa
Gonad (females) 85.62 ± 0.89 (2) – –
Gonad (males) 87.19 ± 3.36 (3) 23.02 (1) –
Pyloric caeca 81.08 ± 3.28 (5) 25.92 ± 0.85 (2) 2.23 ± 0.36 (2)
Body wall 64.25 ± 0.87 (4) 3.68 ± 0.43 (8) 60.23 ± 3.56 (8)
Lysasterias sp. Brooders (oi) with lecithotrophic 

embryos*Body wall – 1.88 (1) 77.14 (1)
Stichasteridae Cosmasterias lurida Broadcasters with planktotrophic 

 larvaeb
Gonad (females) 87.72 ± 1.06 (3) 23.98 ± 2.35 (5) 6.93 ± 0.76 (4)
Gonad (males) 91.77 ± 0.67 (2) 24.86 ± 1.56 (3) 4.66 (1)
Pyloric caeca 74.61 ± 1.08 (5) 26.12 ± 0.69 (7) 3.25 ± 0.94 (5)
Body wall 65.29 ± 0.34 (5) 3.56 ± 0.28 (8) 59.33 ± 2.15 (5)

Echinasteridae Henricia obesa Broadcasters with yolky eggs*
Gonad (females) 68.07 ± 0.85 (2) 28.65 ± 3.10 (4) 4.71 ± 1.12 (2)
Gonad (males) 82.83 ± 0.79 (4) 23.19 ± 0.99 (3) –
Pyloric caeca 81.61 ± 2.71 (4) 22.92 ± 1.55 (4) 0.88 (1)
Body wall 61.88 ± 1.41 (4) 5.40 ± 0.28 (6) 49.23 ± 7.58 (2)
Henricia studeri Broadcasters with yolky eggs*
Gonad (females) 85.14 ± 7.56 (2) 25.38 ± 1.88 (2) 9.76 (1)
Gonad (males) 79.06 (1) – –
Pyloric caeca 76.60 ± 1.18 (3) 22.76 ± 1.46 (4) 6.80 ± 1.24 (2)
Body wall 66.82 ± 1.01 (3) 5.60 ± 0.40 (5) 60.76 (1)

Goniasteridae Ceramaster patagonicus Broadcasters with lecithotrophic 
larvae cGonad (females) 86.40 (1) – –

Gonad (males) 60.58 (1) – –
Pyloric caeca – 21.73 (1) 6.25 (1)
Body wall – 2.87 ± 0.28 (4) 68.71 ± 2.28 (4)
Hippasterias falklandica
Pyloric caeca – 21.18 ± 1.88 (2) 2.89 (1)
Body wall – 5.41 ± 0.71 8 (4) 48.09 ± 2.96 (4)

Odontasteridae Acodontaster elongatus Broadcasters with lecithotrophic 
 larvaec

Gonad (females) 81.51 (1) – –
Body wall – 4.09 (1) 54.30 (1)
Diplodontias singularis Broadcasters with planktotrophic 

 larvaed
– – –

Body wall – 2.09 (1) 58.30 (1)
Odontaster penicillatus Broadcasters with planktotrophic 

 larvaed
Pyloric caeca 82.16 ± 1.48 (2) 21.84 ± 1.22 (2) 22.01 (1)
Body wall 62.19 ± 7.05 (2) 3.40 ± 0.62 (4) 57.68 ± 3.25 (2)
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examined was 23.36 kJ  g−1 (20.24–26.12 kJ  g−1), while the 
mean ED of the body wall was much lower [4.01 kJ  g−1 
(1.88–6.12 kJ  g−1), being consistent with its high inorganic 
material (IM) content (77.14 and 46.48, respectively). The 
mean IM of female gonads was 7.15%, being Glabraster 
antarctica the lowest (4.45%) and Anasterias pedicellaris 
the highest (10.46%). The mean IM for the male gonads 
was slightly higher (11.53%), with Cosmasterias lurida the 
lowest (4.66%), while A. pedicellaris had the highest with 
an extreme value of 21.12%. IM of the pyloric caeca ranged 
widely from 0.88% (Henricia obesa) to 22.01% (Odontaster 
penicillatus), with a mean IM value of 5.68%. The mean 
value for the IM of the body wall was 57.72%.

Energetics of sea stars with contrasting 
development modes

The ED values for gonads showed no significant differ-
ences among different developmental modes (One-way 
ANOVA, F2,37 = 1.537, p = 0.2285) (Fig. 3a). Female ED 
was higher than for males in D. verrucosus (brooder with 
nidamental chamber) (t test, t16 = 4.198, p = 0.0007) and 
G. antarctica (broadcaster with yolky eggs and faculta-
tive planktotrophic larvae) (Mann–Whitney, p = 0.0.0357). 

However, Peribolaster folliculatus (broadcaster with pre-
sumptive planktotrophic larvae) gonads showed no differ-
ences between sexes (t test, t12 = 1.617, p = 0.1318).

For the ED of the pyloric caeca (Fig. 3b), there were 
no significant differences in the interaction between sexes 
and development modes (two-way ANOVA, F2,39 = 0.2626, 
p = 0.7704) nor between sexes (two-way ANOVA, 
F1,39 = 0.0061, p = 0.9379). On the other hand, P. follicula-
tus showed higher values of ED (Turkey’s comparison test) 
than did D. verrucosus and G. antarctica (two-way ANOVA, 
F2,39 = 14.14, p < 0.0001).

For the ED of the body wall (Fig. 3c), the interaction 
between sexes and species was not significant (two-way 
ANOVA, F3, 55 = 1.539, p = 0.2146), nor were there differ-
ences in ED between sexes (two-way ANOVA, F1, 55 = 0.044, 
p = 0.8347). However, body wall ED was significantly dif-
ferent among species (two-way ANOVA, F3, 55 = 27.77, 
p < 0.0001), being higher for D. verrucosus and P. follicula-
tus than other species (Turkey’s comparison test).

ED estimations

There were significant general linear relationships detected 
for the sea star species examined between ED (kJ  g−1) and 

MEAN ± SEM. Sample size between parentheses. References: oi oral incubation; nc nidamental chamber
a Hyman (1955)
b Pastor de Ward et al. (2007)
c Bosch (1989)
d Bernasconi (1962)
e Moore et al. (2018)
f Fisher (1940)
*Fig. 2, present paper

Table 1  (continued)

Family Species Development mode Wet mass (%) ED (kJ  g−1) AFDM IM (%)

Poraniidae Glabraster antarctica Broadcasters with yolky eggs and 
facultative planktotrophic  larvaec,e

Gonad (females) 85.32 ± 1.88 (6) 25.78 ± 3.16 (6) 4.45 ± 1.41 (4)
Gonad (males) 86.10 ± 0.83 (7) 19.21 ± 0.52 (3) 11.76 (1)
Pyloric caeca 83.80 ± 1.17 (7) 22.66 ± 0.65 (17) 4.90 ± 1.15 (9)
Body wall 71.69 ± 1.13 (7) 3.67 ± 0.11 (20) 57.12 ± 1.51 (21)

Pterasteridae Diplopteraster verrucosus
Gonad (females) Brooders (nc)e with lecithotrophic 

embryos*
83.42 ± 1.80 (10) 29.81 ± 1.38 (12) 6.47 ± 1.51 (9)

Gonad (males) 85.13 ± 1.63 (3) 17.76 ± 1.59 (5) 10.26 ± 0.92 (4)
Pyloric caeca 87.33 ± 0.95 (13) 23.03 ± 0.34 (16) 4.27 ± 0.54 (16)
Body wall 81.12 ± 0.81 (8) 6.12 ± 0.33 (16) 46.48 ± 1.63 (16)

Korethrasteridae Peribolaster folliculatus Broadcasters with eggs with low yolk 
content*Gonad (females) 87.46 ± 2.32 (5) 22.79 ± 1.10 (10) 7.28 ± 1.39 (10)

Gonad (males) 87.49 ± 0.68 (6) 20.46 ± 1.05 (5) 9.82 ± 0.81 (4)
Pyloric caeca 86.00 ± 1.30 (12) 25.90 ± 1.00 (17) 5.02 ± 0.63 (15)
Body wall 78.95 ± 0.90 (12) 5.50 ± 0.26 (17) 51.17 ± 1.34 (17)
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dry mass (DM, %) among the different body components: 
gonad: ED = 8.35 + 0.97*DM, R2 = 0.47 (F1,16 = 14.21, 
p = 0.0017); pyloric caeca: ED = 17.65 + 0.37*DM, 
R2 = 0.25 (F1,19 = 6.32, p = 0.0211); and body wall: 
ED = 7.99–0.12*DM, R2 = 0.33 (F1,32 = 15.59, p = 0.0004) 
(Fig. 4a, b, c). Moreover, for individual species this relation-
ship was significantly linear: D. verrucosus pyloric caeca, 
ED = 16.11 + 0.52*DM, R2 = 0.57 (F1,5 = 6.742, p = 0.0485, 
n = 7); P. folliculatus pyloric caeca, ED = 7.55 + 1.16*DM, 
R2 = 0.66 (F1,4 = 7.735, p = 0.0498, n = 6) and body wall, 
ED = 1.62 + 0.17*DM, R2 = 0.38 (F1,9 = 5.488, p = 0.0438, 
n = 11); G. antarctica pyloric caeca, ED = 34.08–0.86*DM, 
R2 = 0.91(F1,2 = 19.25, p = 0.0482, n = 4); D. brandti 
body wall, ED = 23.64–0.57*DM, R2 = 0.99 (F1,1 = 5017, 
p = 0.0090, n = 3).

Discussion

The present study provides basic knowledge about the 
development modes of five species of sea stars to the best 
of the authors’ knowledge are not described. In Anasterias 

pedicellaris and Lysasterias sp., our observation of broods 
being held against the adult female mouth indicates that this 
species has a mode of development involving oral incuba-
tion. Moreover, the histological sections of the gonads of 
presumptive mature females of A. pedicellaris (Fig. 2a) 
revealed few, large densely packed oocytes with a maxi-
mum diameter of 2.44 mm, similar to other known brood-
ers such as Diplasterias brucei (2.80 mm diameter oocyte) 
(Bosch and Pearse 1990). While, in Henricia obesa and H. 
studeri, the presence of few, large densely packed lecitho-
trophic eggs with a maximum diameter of 1.03 mm along 
with numerous smaller previtellogenic oocytes suggests a 
lecithotrophic larva (Fig. 2b). This oocyte size is similar to 
other known broadcasting species with non-feeding yolky 
larvae [i.e., Bathybiaster loripes (0.95 mm) and Psilaster 
charchoti (0.93 mm), Bosch and Pearse 1990]. With respect 
to Peribolaster folliculatus, we propose a mode of devel-
opment involving a planktotrophic larva. This is supported 
by histological evidence of ovaries with large number of 
very small mature oocytes (maximum diameter 0.18 mm) 
that will presumably be broadcasted and once fecundated 
develop into planktotrophic larvae (Fig.  2c). Assuming 

Fig. 2  Histological sections of the gonads of a Anasterias pedicellaris, b Henricia obesa, and c Peribolaster folliculatus. Scale bar 200 µm
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individuals were sexually mature when sampled, the maxi-
mum diameter of oocytes in P. folliculatus is similar to that 
described for other broadcasting sea stars with feeding larvae 
[i.e., Odontaster validus (0.17 mm), Odontaster meridiona-
lis (0.19 mm) (Bosch and Pearse 1990), and Cosmasterias 
lurida (0.12 mm) (Cossi et al. 2015)].

The high incidence of brooding asteroid species (50%) 
found in the NMPA (Fraysse et al. 2018) is in concordance 
with Pearse et al. (2009) who postulated that the occurrence 
of many species with non-pelagic development may be a 
consequence of isolation after vicariant events that led to 
their proliferation, rather than specific adaptations to condi-
tions in polar seas.

Evidence of a high energy investment of females on 
reproduction was seen in the species we examined that 
brood or produce yolky eggs (D. verrucosus and G. antarc-
tica, respectively) given the higher ED values of gonads in 
females than in males (Fig. 3a). Greater energy allocation 
to ovaries could be related to providing sufficient nutrition 
to the brood. Some of the essential nutrients required by 
the broods to develop fully are supplied to the egg during 

vitellogenesis (McClary and Mladenov 1990). Since brood-
ing and lecithotrophic development eliminates a feeding 
stage and shortens the time larvae spend in the plankton, 
a high lipid content in lecithotrophic eggs is crucial in pro-
viding energy for the production of large-sized individuals 
at metamorphosis (McClintock and Pearse 1987). Further-
more, a lengthy development period and energy utilization 
during brooding could compromise the reserves available to 
the juveniles (Pearse et al. 1991). The lecithotrophic devel-
opmental strategy implies a trade-off between the quantity 
and quality of offspring as brooding involves a high ener-
getic cost and the production of large, slow-developing, 
nutrient-rich eggs, which often comes at the cost of reduced 
fecundity (Thatje et al. 2018). The low inorganic matter 
(IM) values in gonads and pyloric caeca (Table 1), (i.e., low 
content of ash) is in concordance with their suggested role 
as energy storage organs in echinoderms (McClintock and 
Pearse 1987; Pérez et al. 2017). The difference obtained in 
the percentages of IM of ovaries and testes (Table 1) can be 
attributed to a larger amount of reserve compounds (organic 
matter) in females than in males.

Fig. 3  Energetic density (ED, kJ  g−1 AFDM) of a Gonad, b Pyloric 
caeca, and c Body wall of different development modes in asteroids: 
Diplopteraster verrucosus (brooders with incubation in nidamental 
chamber; nc), Anasterias pedicellaris (brooders with oral incubation; 
oi), Glabraster antarctica (broadcasters with yolky eggs and faculta-

tive planktotrophic larvae), and Peribolaster folliculatus (broadcasters 
with presumptive planktotrophic larvae). MEAN ± SEM, sample size 
on the bars. Color references: checkered, males; lined, females. Sig-
nificant differences (p < 0.05) are indicated by the same capital and 
small letter (species) and by an asterisk (sex)
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The role of the pyloric caeca as a nutrient storage organ 
has been well documented before. For instance, McClin-
tock and Pearse (1987) recorded high levels of lipids in the 
pyloric caeca of antarctic asteroids, which is an advantage 
over storing energy in the form of lower-energy protein or 
carbohydrate because more energy can be stored per unit 
mass. The pyloric caeca is considered an important source 
of nutrients and energy during gametogenesis (Lawrence 
and Lane 1982) and functions as a reserve organ in brood-
ing females of species with direct development, especially 
in species where feeding is impossible during the incuba-
tion period (e.g., Anasterias antarctica Pérez et al. 2017). 
Contrary to what would be expected, differences in energy in 
the pyloric caeca between sexes were not observed (Fig. 3b). 
This may be due to a temporal bias given our discrete sam-
pling captured only one time point of the reproductive 
cycle. For a better understanding of the pyloric caeca role 
as the energetic reservoir to reproduction, a seasonal study 

is needed. For instance, the lower ED values found in the 
pyloric caeca of D. verrucosus and G. antarctica compared 
to P. folliculatus (Fig. 3b) could be the consequence of a 
higher transference of energy to the gonads for both sexes 
during gonadal maturation. Though gonadal cycles are well 
studied in several shallow water sea stars (Bosch and Pearse 
1990; Pearse et al. 1991; Cossi et al. 2015; Pérez et al. 2017), 
less is known about gonadal cycles of species inhabiting 
deeper depths, such as D. verrucosus, G. antarctica, and P. 
folliculatus.

The high level of IM found in the body walls of asteroids 
in the present study (46.48–77.14%, Table 1),is in accord-
ance with those levels reported for echinoids, holothuroids, 
and ophiuroids (Lawrence and Guille 1982; McClintock 
et al. 1990). Differences among sea star species in the ener-
getic content of the body wall seems to be purely structural, 
given the lack of evidences of differential contribution of 
body wall to the incubation, i.e., lack of differences in ED 

Fig. 4  Linear relationship 
(lines) between energetic 
density (ED, kJ  g−1 AFDM) and 
dry mass (DM, in percentage) 
for different body components 
of asteroid species. a Gonads of 
C. lurida (n = 2), D. verrucosus 
(n = 6), P. folliculatus (n = 7), 
and G. antarctica (n = 3). All 
species: ED = 8.35 + 0.97*DM, 
R2 = 0.47. b Pyloric caeca of C. 
lurida (n = 4); D. verrucosus 
(n = 7), ED = 16.11 + 0.52*DM, 
R2 = 0.57; P. folliculatus 
(n = 6), ED = 7.55 + 1.16*DM, 
R2 = 0.66; G. antarctica 
(n = 4), ED = 34.08–0.86*DM, 
R2 = 0.91. All species: 
ED = 17.65 + 0.37*DM, 
R2 = 0.25. c Body wall of C. 
lurida (n = 4); D. verruco-
sus (n = 6); P. folliculatus 
(n = 11), ED = 1.62 + 0.17*DM, 
R2 = 0.38; G. antarctica (n = 7); 
H. obesa (n = 3); D. brandti 
(n = 3), ED = 23.64–0.57*DM, 
R2 = 0.99. All species: 
ED = 7.99–0.12*DM, R2 = 0.33
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between sexes (Fig. 3c). While analyzing the organic com-
position of the body wall, Lawrence and Guille (1982) found 
low levels of carbohydrate and lipids, while protein was 
reported as the primary organic compound.

Several sea stars such as Pteraster tesselatus, Asterias 
rubens, Porania pulvillus, and Marthasterias glacialis 
secrete a mucous through the supradorsal membrane that 
is utilized as a strong defense mechanism when attacked by 
other asteroids (Bavington et al. 2004; Hennebert et al. 2012, 
2015; Nance and Braithwaite 1979). The mucous contains a 
saponin or saponin-like compound that after hydrolysis yield 
various sugars, i.e., galactose, xylose, or glucose (Fieser 
et al. 1956; Ward 1962; Nance and Braithwaite 1979). The 
structure of the mucous has also been analyzed by Hennebert 
et al. (2015), who found it to contain a high proportion of 
polysaccharides and carbohydrates. As we also observed D. 
verrucosus and P. folliculatus to release mucous from their 
body walls (authors, pers. obs.), the higher values of the ED 
measured for these species may reflect these secretions and 
their constituents.

Lawrence and Moran (1992) established energy rather 
than mass better represents biomass, especially in repre-
sentatives of the Echinodermata where much of the mass 
may be inorganic. In the present study, we propose a tool to 
estimate the ED of different body components of asteroids 
based on the value of DM (Fig. 4). The data from the studied 
species showed a relationship between ED and the different 
body components` DM, enabling the use of the latter as an 
estimator of ED. This relationship is generally positive for 
gonads and pyloric caeca, but negative for the body wall. 
The one exception was for P. folliculatus where we suspect 
that the inverse relationship in the body wall is explained 
by its high content of ash (Table 1) and hence, lower levels 
of organic constituents (lipids, carbohydrates, and protein) 
that contribute to total ED.. On the other hand, this excep-
tion for P. folliculatus could be related to the production of 
mucous secretions (presumably rich in carbohydrates) that 
effectively reduce total ED.

The present research provides basic information for 
improving our understanding of patterns of energy alloca-
tion among sea stars with contrasting modes of development. 
Further seasonal and energetic studies are required to better 
evaluate our initial findings. For instance, it is still unclear 
whether the body wall may also serve as an energy reservoir 
for brooding females. However, the differences we detected 
in the patterns of energy allocation to gonads between sexes 
provides strong evidence of a higher energy investment to 
reproduction in females than in males, especially in species 
that brood or spawn lecithotrophic larvae.
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