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abstract: For the marriage model with indi¤erences, we de�ne an equiva-
lence relation over the stable matching set. We identify a su¢ cient condition,
the closing property, under which we can extend results of the classical model
(without indi¤erences) to the equivalence classes of the stable matching set.
This condition allows us to extend the lattice structure over classes of equiva-
lences and the rural hospital theorem.

1 Introduction

The marriage model describes a matching problem in which agents are di-
vided into two disjoint subsets: the set of men and the set of women. The
objective of this model is to assign a woman to a man, allowing the possibi-
lity for men and/or women to stay single or without a partner. In this paper,
we study the marriage model when agents in both sides of the market may
be indi¤erent to agents of the other side.
Most papers dealing with matching models assume that agents are not

indi¤erent to the agents on the other side of the market. Many results for
the matching model when preferences are strict cannot be extended to the
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matching model when agents have preferences with indi¤erences. (See Roth
and Sotomayor 1990).
For convenience we use the marriage terminology, but we have in mind

other kinds of matchings. Some examples include matching professors to
researchassistants: let�s suppose that a group of professors and research
assistants live in di¤erent cities, the preferences of professors (research a-
ssistants) over research assistants (professors) depend on the distance bet-
ween both groups. Then professors are indi¤erent to all research assistants
who live in the same city. These research assistants are strictly preferred to
research assistants who live in more distant cities. Other example is mat-
ching doctors to nurses, when a nurse is acceptable to a doctor if and only
if she has certain skills, and a doctor is acceptable to a nurse if he is not
requesting "hard" tasks; or matching pilots to copilots, managers to support
sta¤, and so on. This special case of bilateral matching problem, where each
man evaluates each woman as acceptable or unacceptable: acceptable part-
ners are indi¤erent to each other. It is known in literature as dichotomous
preferences (See Bogomolnaia and Moulin 2004).
In matching models, stability is considered the main property to be sa-

tis�ed by any matching. Unlike the marriage model with strict preferences,
where there is a unique concept of stability satis�ed by pairs of agents, in
the marriage model with indi¤erences there are several concepts of stability.
A matching is stable1 if each agent is matched to an acceptable partner, and
there is no man-woman pair such that they are not matched together and
strictly prefer each other to their current partners. Irving (1994) formulates
two other possible de�nitions of stability for the marriage model with in-
di¤erences. A matching is strongly stable if each agent is matched to an
acceptable partner, and there is no man-woman pair such that they are not
matched together and one of them strictly prefers the other one to their cu-
rrent partner, the other weakly prefers the other one to their current partner.
A matching is super stable if each agent is matched to an acceptable partner,
and there is no man-woman pair such that they are not matched together
and weakly prefer each other to their current partners.
The existence of stable matchings in the marriage model with indi¤erences

is guaranteed: by breaking ties arbitrarily, we obtain a strict marriage model.
A stable matching in this strict model is a stable matching in the original

1Irving (1994) refers to stable matchings as weakly stable matchings. In this paper, we
use the term stable matching.
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marriage model with indi¤erences. On the other hand, strongly stable mat-
chings and super stable matchings could not exist. Irving (1994) presents al-
gorithms for determining whether a strongly stable matching and/or a super
stable matching exist. In each case, if such a matching exists, the appropriate
algorithm constructs one. In this paper, we focus on stable matchings.
Knuth (1976), who attributed the result to Conway, establishes the la-

ttice structure of the stable matching set for the marriage model with strict
preferences. Manlove (2002) shows that the strongly stable matching set has
a lattice structure when it is partitioned by a suitable equivalence relation.
Spieker (1985) proved that the set of super stable matchings forms a distri-
butive lattice. However, in the case of indi¤erence, this structure is absent
for stable matchings. We give a su¢ cient condition, the closing property,
under which we prove the lattice structure over equivalence classes of the
stable matching set in the model with indi¤erences. This result is obtained
by de�ning an equivalent relation on the set of matchings.
We also prove that the set of strongly stable matchings and the set of

super stable matchings always satisfy the closing property. If the strongly
stable matching set is not empty, we prove that the lattice over equivalence
classes of strong matchings (Manlove 2002) is a sublattice of the lattice over
equivalence classes of stable matchings.
Given � and �0 two matchings, the closing property requires that the

indi¤erent agents between � and �0 match each other. The closing property
has the weakness of being de�ned on the set of matchings and not on the
preferences of the agents. Other authors also use notions based on matchings,
to study matching models with indi¤erences. For instance, Erdil and Ergin
(2008, 2017) study the notion of cycles and chains on matchings to calculate
optimal stable matchings. Sotomayor (2011) use Pareto stability concept to
study matching markets with indi¤erences. Despite this weakness, we show
special classes of preferences, under which the closing property holds. The
strict preferences satisfy the closing property. We show that the dichotomous
preferences also satisfy the closing property. In addition, matching models
where one group of agents has dichotomous preferences and another group
has strict preferences, satisfy the closing property.
In the hospital resident model with strict preferences, the rural hospital

theorem (Roth 1984, 1986) is well known. However, when we allow indi-
¤erences in preferences, the rural hospital theorem is not valid. We gene-
ralize the rural hospital theorem over all stable matchings, under the closing
property.
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The rural hospital theorem states that if one hospital has a vacancy in
some stable matching, then the set of residents assigned to it is the same (in
particular, we have the same number of vacancies in any stable matching). In
the context of the marriage model, the theorem states that the set of agents
remaining single is the same for all stable matchings (McVitie and Wilson
1970). The rural hospital theorem is of great importance, since it produces
dissatisfaction in stable allocation mechanisms.
Irving, Manlove and Scott (2000) prove that if the set of super stable

matchings is not empty, then the rural hospital theorem is valid over all
stable matchings. If the set of strongly stable matchings is not empty, since
the strongly matching set satis�es the closing property, the rural hospital
theorem is valid over all strongly stable matchings.
This paper is organized as follows. In Section 2, we formally describe

the model and present some preliminaries, we study matching equivalence
classes. In Section 3, we de�ne the closing property and we show the lattice
structure over equivalence classes of stable matchings. In Section 4, we extend
the rural hospital theorem to the marriage model with indi¤erences. Finally,
we present some concluding comments.

2 The model

In the marriage model with indi¤erences there are two �nite sets of agents,
M = fm1; :::;mng of men and the sets W = fw1; :::; wpg of women. We
sometimes denote a generic agent by i and a generic man and a generic
woman by m and w, respectively. Each agent i 2 M [W; has a complete
and transitive preference ordering Ri (weak order) over the agents on the
other side of the market and the prospect of being alone. We denote by
R = (Ri)i2M[W a preference pro�le of weak orders. We denote by Pi and Ii
the antisymmetric and symmetric parts of the binary relation Ri: Then Pi is
antisymmetric, transitive and irre�exive (strict preference relation) , and Ii
is re�exive, symmetric and transitive (indi¤erence preference relation).
We assume that R satis�es no indi¤erence to the single set. This means

that any agent is not indi¤erent to either remaining single or being assigned to
another agent of the other side of the market. This assumption is commonly
used in the literature; see Erdil and Ergin (2008, 2017).
For the man m for instance, the preference Rm where w1Pmw2; w2Pmw3;
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w2Pmm; and w3Imw4, and by transitivity w1Pmw3 and w1Pmw4; will be de-
noted by

Rm : w1; w2; [w3; w4] ;m:

A speci�c marriage model with indi¤erence will be denoted by the triple
(M;W;R): A woman w is acceptable to a man m if wPmm. Analogously, m
is acceptable to w if mPww.

De�nition 1 A pre-matching � is a correspondence � :M [W !M [W

1. �(m) 6= m implies �(m) 2 W:

2. �(w) 6= w implies �(w) 2M:

De�nition 2 A matching � is a injective function � : M [W !M [W

1. �(m) 6= m implies �(m) 2 W:

2. �(w) 6= w implies �(w) 2M:

3. �(m) = w if and only if �(w) = m:2

Let M denote the set of all matchings. If �(m) = w, then man m and
woman w are said to be matched to one another. If �(i) = i, then agent i is
said to be single or unmatched. A pre-matching � is a matching such that
�(m) = w if and only if �(w) = m:
Given a subset of agents X �M [W , we extend the binary relationship

Ri; Ii and Pi over the set of matchings as follows:

1. �RX�0 when �(i)Ri�0(i) for all i 2 X:

2. �IX�0; when �(i)Ii�0(i) for all i 2 X:

3. �PX�0 when for all i 2 X, �(i)Ri�0(i) and there exists i0 2 X such that
�(i0)Pi0�

0(i0):

2Item 3 is equivalent to say that � is a homogenous function of order two, i.e., �2 (i) = i;
for all i 2M [W:
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When X = fig ; for simplicity of notation, we write �Ri�0 instead of
�Rfig�

0: We write the negation of �Ri�0 as �Ri�0.
In the marriage model with strict preferences RM is a partial order over

the set of matchings, i.e. it is a re�exive, antisymmetric and transitive binary
relation. Nevertheless, in the marriage model with indi¤erences RM is not a
partial order over the set of matchings since it may occur that � 6= �0; �RM�0
and �0RM�: In this case RM is not an antisymmetric relation. (See example
1).

Consider a matching � that matches a pair (m;w): If at least one of the
individuals m and w weakly prefers remaining single rather than be matched
to the other. Such a matching � is blocked by this individual. A matching � is
individually rational if it is not blocked by any individual agent. Formally,
� is individually rational for all i 2 M [W we have that �(i)Rii: Given a
preference pro�le R; we denote the set of individually rational matchings by
IR(R).

De�nition 3 For a given matching �

� A pair (m;w) is said to form a blocking pair ifmPw�(w) and wPm�(m).

� A pair (m;w) is said to form a strongly blocking pair if mPw�(w)
and wRm�(m) or mRw�(w) and wPm�(m):

� A unmatched pair (m;w) is said to form a super blocking pair if
mRw�(w) and wRm�(m).

De�nition 4 For a given matching �

� A matching � is stable if it is individually rational and if there is not
a blocking pair.

� A matching � is strongly stable if it is individually rational and there
is not a strongly blocking pair.

� A matching � is super stable if it is individually rational and there is
not a super blocking pair.

Given a preference pro�le R; we denote the set of stable matchings by
S(R): We denote the set of strongly stable matchings and super stable mat-
chings by SS(R) and SSS(R) respectively.
It follows from the de�nition SSS(R) � SS(R) � S(R):
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Classes of matchings

We de�ne the classes of matchings and we will extend these binary relations
Ri; Ii and Pi to the classes of matchings. Given two matchings � and �0, we
de�ne the following equivalence binary operation:

� � �0 () �(i)Ii�
0(i) for all i 2M [W:

Given a matching � we denote the equivalence class of �;

[�] = f�0 2M : � � �0g :

Observe thatM =[� [�] is a partition ofM.

Example 1 LetM = fm1;m2g be the set of men andW = fw1; w2g be the
set of women. Consider the preference pro�le R :

Rm1 : [w1; w2] ;m1: Rw1 : [m1;m2] ; w1:
Rm2 : [w1; w2] ;m2: Rw2 : [m1;m2] ; w2:

The set of stable matchings consists of the following two matchings:

�1 =

�
m1 m2

w1 w2

�
and �2 =

�
m1 m2

w2 w1

�
:

Observe that �1RM�2 and �2RM�1: Nevertheless � 6= �0: In this example
�1IM�2; and �1IW�2; i.e. [�1] = [�2] :Notice thatRM is not an antisymmetric
relation over the stable matching set, then RM is not a partial order over
S(R): �

The following Lemma is useful for extending the binary relations to classes
of matchings.

Lemma 1 Let (M;W;R) be a marriage model with indi¤erences. Let �1;
�2; �3 2M for all i 2M [W

1. If �1Ii�2 and �2Pi�3 then �1Pi�3:

2. If �1Pi�2 and �2Ii�3 then �1Pi�3:

3. If �1Pi�2 then �
0
1Pi�

0
2 for all �

0
i 2 [�i], i = 1; 2:
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4. If �1Ri�2 then �
0
1Ri�

0
2 for all �

0
i 2 [�i], i = 1; 2:

See the Appendix, for a proof. Given X �M [W ; now as consequence
of Lemma 1, we can extend Ri; Ii and Pi to classes of matchings, in the
following form:

1. [�1]RX [�2] if and only if �1Ri�2 for all i 2 X.

2. [�1] IX [�2] if and only if �1Ii�2 for all i 2 X:

3. [�1]PX [�2] if and only if [�1]RX [�2] and there exists i
0 2 X such that

�1Pi0�2:

For simplicity of notation, we write [�1]Ri [�2] instead of [�1]Rfig [�2].

When X =M [W we write [�1]R [�2] instead of [�1]RM[W [�2] :

Given a preference pro�le R; we denote by S(R)=� = f[�] : � 2 S(R)g
the quotient set.

Now we show that RM 3 is a partial order over the quotient set S(R)=�:

Proposition 1 Let (M;W;R) be a marriage model with indi¤erences. Then
RM is a partial order over S(R)=�; i.e. it is a re�exive, antisymmetric and
transitive binary relation.

See the Appendix for a proof.

3 The structure of stable matchings

When preferences are strict the set of stable matchings S(P ) forms a lattice
under the partial order RM : This structure is absent when we allow indi¤e-
rences in preferences, see Example 3. In order to establish the existence of a
lattice structure, we need to de�ne the closing property for matchings.

3By abuse of notation, we continue to write RM for a order over S(R)=�:
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The closing property

Given �; �0 2M, we de�ne the following sets:

JM(�; �
0) = fm 2M : �(m) 6= �0(m); and �(m)Im�0(m)g ;

JW (�; �
0) = fw 2M : �(w) 6= �0(w); and �(w)Iw�0(w)g :

De�nition 5 Given T � M we say that T satis�es the closing property
if for all �; �0 2 T

�(JM(�; �
0)) = JW (�; �

0):

De�nition 5 speci�es that a subset of matchings satis�es the closing pro-
perty if given two matchings � and �0, the women that are indi¤erent between
� and �0 are matched to men who are also indi¤erent between � and �0. It
means that the indi¤erent agents between � and �0 are matched to each
other.
When T = SS(R) and T = SSS(R); we will show in Proposition 4 and

5, that SS(R) and SSS(R) always satisfy the closing property. However the
stable matching set S(R), sometimes does not satisfy the closing property
(See Example 2).
The following Lemma states that we can exchange the role of M by W

in De�nition 5.

Lemma 2 Given �; �0 2M;

�(JM(�; �
0)) = JW (�; �

0) if and only if �(JW (�; �0)) = JM(�; �0):

Proof =)) Suppose that �(JM(�; �0)) = JW (�; �0): I.e.

�(JM(�; �
0)) � JW (�; �0) and JW (�; �0) � �(JM(�; �0)):

We apply �;

�2(JM(�; �
0)) � �(JW (�; �0)) and �(JW (�; �0)) � �2(JM(�; �0)):

Since � and �0 are homogenous functions of order two we have that

JM(�; �
0) � �(JW (�; �0)) and �(JW (�; �0)) � JM(�; �0):
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Hence �(JW (�; �0)) = JM(�; �0):

(=) The proof is similar to the previous one. �

The following example shows that S(R) does not satisfy the closing pro-
perty.

Example 2 LetM = fm1;m2g be the set of men and W = fw1; w2g be the
set of women. Consider the preference pro�le R :

Rm1 : w1; w2;m1: Rw1 : m2;m1; w1:
Rm2 : [w1; w2] ;m2: Rw2 : m1;m2; w2:

The set of stable matchings consists of the following two matchings:

�1 =

�
m1 m2

w1 w2

�
and �2 =

�
m1 m2

w2 w1

�
:

Observe that

JM(�1; �2) = fm2g and JW (�1; �2) = ;:

Moreover, �1(JM(�1; �2)) = fw2g : So �1(JM(�1; �2)) 6= JW (�1; �2):We have
that S(R) does not satisfy the closing property. Since SS(R) = f�2g ; we
have that SS(R) satis�es the closing property. �

Proposition 2 Let (M;W;P ) be a marriage model with strict preferences,
then S(P ) satis�es the closing property.

Proof Let �; �0 2 S(P ). We assume for any agent �(i)Ii�0(i): Since the
preferences are strict, �(i) = �0(i): Hence JM(�; �0) = JW (�; �0) = ;: Then

�(;) = ;; i.e.

�(JM(�; �
0)) = JW (�; �

0)

so the closing property holds. �

Given a marriage model (M;W;R), we say that R is a dichotomous pro-
�le of preferences where each man evaluates each woman as acceptable or
unacceptable: acceptable partners are indi¤erent to each other.
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The following Proposition shows that if we consider the marriage model
with indi¤erences (M;W;R) such that R is a dichotomous pro�le of prefe-
rences then the stable matching set satis�es the closing property.

Proposition 3 Let (M;W;R) be a marriage model with indi¤erences. If
R is a dichotomous pro�le of preferences then the stable matching set S(R)
satis�es the closing property.

Proof Let �; �0 2 S(R): If JM(�; �0) = JW (�; �
0) = ; then the closing

property holds. We assume that JW (�; �0) 6= ;: We will prove that

�(JM(�; �
0)) = JW (�; �

0):

Firstly, we show that JW (�; �0) � �(JM(�; �
0)): Let w 2 JW (�; �0), we

have �(w)Iw�0(w): Since �(w) 6= �0(w) there exist m and m0 such that

m = �(w)Iw�
0(w) = m0:

By de�nition of matching �(m) = w: Since � 2 IR(R); �(m) = w and �0(m)
are acceptable partners for m: Hence, since R is a dichotomous pro�le of
preferences

w = �(m)Im�
0(m);

i.e. w = �(m) 2 �(JM(�; �0)):
Now, we show that �(JM(�; �0)) � JW (�; �0): Let m 2 JM(�; �0); we have

�(m)Im�
0(m): Since �(m) 6= �0(m) there exist w and w0 such that

w = �(m)Im�
0(m) = w0:

Since � 2 IR(R); �(w) = m and �0(w) are acceptable partners for w: Hence,
since R is a dichotomous pro�le of preferences

m = �(w)Iw�
0(w);

i.e. w 2 JW (�; �0): �

When preferences are strict or dichotomous, we have seen that the set
of stable matchings satis�es the closing property. If we consider a matching
model that is a "combination of both" (the set of agents can be divided into
two disjoint subsets: the set of agents that has strict preferences and the set
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of agents that has dichotomous preferences), then the closing property also
holds.

In order to prove the following Proposition we need Manlove�s Lemma,
see the Appendix for a more detailed explanation.

Proposition 4 Let (M;W;R) be a marriage model with indi¤erences then
SS(R) satis�es the closing property.

See the Appendix, for a proof.

Proposition 5 Let (M;W;R) be a marriage model with indi¤erences then
SSS(R) satis�es the closing property.

See the Appendix, for a proof.

The lattice structure

From now on, we assume that S(R) satis�es the closing property (unless
otherwise speci�ed). We will formulate the results of this section for the set
of men M , symmetrical results are valid for the set of women W: We de�ne
the operations (_M) and (^M) over matchings in the indi¤erence case. We
proved that if stable matchings satisfy the closing property, these operations
are well de�ned over equivalence classes of stable matchings. We de�ne lowest
upper bound and greatest lower bound between equivalence classes of stable
matchings.
We consider the "pointing" function used in the marriage and college

admissions models with strict preferences. Given two stable matchings �1
and �2, suppose we are letting men select the best woman assigned to them
through �1 and �2. In this way, we de�ne �1 _M �2 on M [W:

De�nition 6 Given �1; �2 2M we de�ne a pre-matching
�1 _M �2 :M [W !M [W by

�1 _M �2 (m) =

�
�1(m) if �1Pm�2
�2(m) if �2Rm�1

�1 _M �2 (w) =

�
�1(w) if �2Pw�1
�2(w) if �1Rw�2:
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The operation �1 ^M �2 is de�ned symmetrically, giving m the worst of
�1(m) and �2(m), and giving w the best of �1(w) and �2(w2). Similarly we
can de�ne the pre-matchings �1 _W �2 and �1 ^W �2:
The lattice theorem for the marriage model, Knuth (1976) and the college

admissions problem, Roth and Sotomayor (1990) say that (S(P ); RM ;_M ;^M)
is a lattice on S(P ). To see that in marriage model with indi¤erences frame-
work, (S(R); RM ;_M ;^M) may not be a lattice on S(R) consider Example
3 below.

Example 3 Let M = fm1;m2g be the set of men and W = fw1; w2g be the
set of women. Consider the preference pro�le R :

Rm1 : [w1; w2] ;m1: Rw1 : m1;m2; w1:
Rm2 : w1; w2;m2: Rw2 : m2;m1; w2:

The set of stable matchings consists of the following two matchings:

�1 =

�
m1 m2

w2 w1

�
and �2 =

�
m1 m2

w1 w2

�
Observe that

�1 _M �2(m1) = �2(m1) = w1

but
�1 _M �2(w1) = �1(w1) = m2:

Therefore, the pre-matching �1 _M �2 is not even matching.
Since �2_M �1(m1) = �1(m1) = w2; we have that the pre-matching �1_M �2
is not commutative, i.e., �1 _M �2(m1) 6= �2 _M �1(m1):
Moreover, since JM(�1; �2) = fm1g and �1(JM(�1; �2)) = fw2g we have

that S(R) does not satisfy the closing property. �

The next Lemma shows that if �1 and �2 are stable matchings, then the
pre-matchings �1 _M �2 and �1 ^M �2 are stable matchings.

Lemma 3 Let (M;W;R) be a marriage model with indi¤erences. Let
�1; �2 2 S(R) then

1. �1 _M �2 2 S(R):

2. �1 ^M �2 2 S(R):
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Proof Let �1; �2 2 S(R):
1. We prove that �1 _M �2 is a matching, by showing that
�1 _M �2(m) = w if and only if �1 _M �2(w) = m:
=)) Suppose without loss of generality, that �1 _M �2(m) = �2(m) = w:

By de�nition of �1 _M �2; we have that

w = �2(m)Rm�1(m) (1)

hence
w = �2(m)Im�1(m) or w = �2(m)Pm�1(m): (2)

If
w = �2(m)Im�1(m)

then m 2 JM(�1; �2). By the closing property, we have that
�2(m) = w 2 JW (�1; �2): This means that �2(w)Iw�1(w). By de�nition of
�1 _M �2; we have that �1 _M �2 (w) = �2(w) = m; the result follows. If

w = �2(m)Pm�1(m) (3)

suppose that �2(w)Pw�1(w) then condition (3) implies that the pair (m;w)
blocks �1: This contradicts the stability of �1: If �1(w)Iw�2(w) = m; it
means that �2(m) = w 2 JW (�1; �2); by the closing property, we have that
m 2 JM(�1; �2): This contradicts (3). Then �1(w)Pw�2(w); by de�nition of
�1 _M �2 we have that �1 _M �2 (w) = �2(w) = m: The result follows.
The same reasoning applies to the case �1 _M �2 (m) = �1(m) = w:
(=) To this purpose, we de�ne the following sets:

M
0
= fm : �1 _M �2 (m) 2 Wg and W 0 = fw : �1 _M �2 (w) 2Mg :

We next claim W 0 = �1 _M �2 (M 0): For this,

(a) �1 _M �2(M
0) � W 0 and #�1 _M �2(M

0) � #W 0: Let m0 2 M 0 then
there exists w 2 W such that �1 _M �2 (m

0) = w: By the previous
proof, �1 _M �2 (w) = m0. This means that w 2 W 0:

(b) �1 _M �2 is an injective function. To check that is a function, we prove
that for each element of domain, there is a single image. This follows
from let m 2M we have that �2Rm�1 or �1Pm�2:
To establish that is an injective function, suppose that
�1 _M �2(m) = �1 _M �2(m) = w: By the previous proof,
�1 _M �2 (w) = m = m0: Consider �1 _M �2 jM 0 is a function bijective
hence #�1 _M �2 (M 0) = #M 0:
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(c) #�1(W 0) = #W 0. By de�nition of matching �1 is an injective function.
Considering �1jW 0 is a bijective function therefore #�1(W

0) = #W 0:

Items a, b, and c imply that

#W 0 = #�1(W
0) � #M 0 = #�1 _M �2 (M 0) � #W 0

hence,
#W 0 = #�1 _M �2 (M 0): (4)

Item (a) and condition (4) imply that

W 0 = �1 _M �2 (M 0):

We are now in position to show that for all w 2 W , if �1 _M �2 (w) = m
then �1 _M �2 (m) = w: If w =2 W 0 then �1 _M �2 (w) = w: This contradicts
that �1 _M �2 (m) = w. So w 2 W 0 and �1 _M �2(w) = m then there exists
m0 2M 0 such that �1 _M �2 (m0) = w then �1 _M �2 (w) = m0 = m and the
result follows.
Now, we will show the stability. Suppose that there exist a pair (m;w)

such that

mPw �1 _M �2 (w) and wPm �1 _M �2 (m): (5)

We consider the following cases:
Case i. �1 _M �2(w) = �1(w) (�1 _M �2 (w) = �2(w)) and
�1 _M �2 (m) = �1(m) (�1 _M �2 (m) = �2(m)) so (5) contradicts �1 2 S(R)
(�2 2 S(R)):
Case ii. �1 _M �2 (w) = �1(w) and �1 _M �2 (m) = �2(m): By (5) and
de�nition of �1 _M �2 we have that

mPw�1(w) and wPm�2(m)Rm�1(m)

hence the pair (m;w) blocks �1: This contradicts the stability of �1:
Case iii. �1 _M �2 (w) = �2(w) and �1 _M �2 (m) = �1(m): Like Case ii, we
can contradict the stability of �2.
2. That �1 ^M �2 is a stable matching follows from a similar argument.

�

The following Lemma asserts that [�1 _M �2] and [�1 ^M �2] are inde-
pendent of the particular choices of representatives of the equivalence classes
[�1] and [�2] :
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Lemma 4 Let (M;W;R) be a marriage model with indi¤erences. Let
�1; �2 2 S(R) then for all �0i 2 [�i], i = 1; 2

1. (�01 _M �02)I(�1 _M �2); i.e. �01 _M �02 2 [�1 _M �2] :

2. (�01 ^M �02)I(�1 ^M �2); i.e. �01 ^M �02 2 [�1 ^M �2] :

Proof Let �1; �2 2 S(R) and �0i 2 [�i], i = 1; 2.
1. We claim that (�01 _M �02)I(�1 _M �2): To check it, suppose that
�1 _M �2 (m) = �1(m): By de�nition of �1 _M �2 and �0i 2 [�0i], i = 1; 2 we
have that

�01(m)Im�1(m)Pm�2(m)Im�
0
2(m):

By Lemma 1 �01(m)Pm�
0
2(m). Hence,

�01 _M �02(m) = �01(m)Im�1(m) = �1 _M �2 (m):

This means thatM � JM(�01; �02): Suppose that there exist w 2 W such that
w =2 JW (�01; �02). Rational individuality of �01 and �02 implies that there exist
m 2M such that either

m = �01(w)Pw�
0
2(w) or m = �02(w)Pw�

0
1(w):

This contradicts the fact that m 2 JM(�01; �02): The same reasoning applies
to the case that �1 _M �2 (m) = �2(m).
2. The proof is similar to 1. �

In order to establish the existence of a lattice structure, we need to de�ne
two operations _M and ^M on S(R)=�:

De�nition 7 Given [�1] ; [�2] 2 S(R)=� we de�ne

[�1] _M [�2] = [�1 _M �2]
[�1] ^M [�2] = [�1 ^M �2] :

Similarly, we can de�ne [�1]_W [�2] and [�1]^W [�2] : From Lemma 3 and
4 the binary operations _M and ^M are well de�ned over S(R)=�:
In our context, we can de�ne a lattice on S(R)=� if there exists a par-

tial order RM and two operations _M and ^M on S(R)=� such that for all
[�1] ; [�2] ; [�] 2 S(R)=� the following properties hold:
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(1) [�1] _M [�2] 2 S(R)=�.

(2) [�1] ^M [�2] 2 S(R)=�.

(3) [�1] _M [�2] RM [�1] and [�1] _M [�2]RM [�2] :

(4) [�1]RM [�1] ^M [�2] and [�2]RM [�1] ^M [�2] :

(5) [�]RM [�1] and [�]RM [�2] then [�]RM [�1] _M [�2] :

(6) [�1]RM [�] and [�2]RM [�] then [�1] ^M [�2] RM [�] :

Conditions (1) and (2) say that _M and ^M are binary operations on
S(R)=�. Conditions (3)-(6) say that [�1]_M [�2] and [�1]^M [�2] are, respec-
tively, the least upper bound and the greatest lower bound of [�1] and [�2]
according to the partial order RM . The quadruple (S(R)=�; RM ;_M ;^M) is
called a lattice on S(R)=�:

We are now in position to present our main result of this section.

Theorem 1 Let (M;W;R) be a marriage model with indi¤erences. The
quadruple (S(R)=�; RM ;_M ;^M) is a lattice over S(R)=�.

Proof Let �0i 2 [�i], i = 1; 2:
(1) By de�nition of [�1] _M [�2] we have [�1] _M [�2] = [�1 _M �2] : From
Lemma 3 and 4, �01_M �02 2 S(R) and [�1 _M �2] is independent of the choice
of the representative. This means that [�1 _M �2] 2 S(R)=�; i.e.
[�1] _M [�2] 2 S(R)=�:
(2) This can be proved by arguments similar to (1).

(3) We have that [�1] _M [�2] = [�1 _M �2] : By de�nition of �1 _M �2;

�01 _M �02 RM�01 and �01 _M �02 RM�02:

Then,
[�1 _M �2]RM [�1] and [�1 _M �2]RM [�2] :

Therefore,

[�1] _M [�2] RM [�1] and [�1] _M [�2]RM [�2] :
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(4) This can be proved by arguments similar to (3).

(5) Let [�]RM [�1] and [�]RM [�2]. Let�s assume that [�]RM [�1] _M [�2] :
By de�nition of [�1] _M [�2] ; we have that [�]RM [�1 _M �2] : Then, there
exist j 2M such that

[�1 _M �2]Pj [�]Rj [�1] : (6)

De�nition of �1 _M �2 and condition (6) imply that

�01 _M �02 Pj� 0Rj�01

for all �0i 2 [�i] and � 0 2 [�] : Hence, �01 _M �02 6= �01; i.e. �01 _M �02 = �02 and
�02Pj�

0 which contradicts [�]RM [�2] : Therefore [�]RM [�1 _M �2] :
(6) The proof results similar to (5).

�

Let SS(R) � S(R), (SS(R)=�; RM ; _M ; ^M) is a sublattice of a lattice
(S(R)=�; RM ; _M ;^M) if for all [�1] ; [�2] 2 SS(R)=� the following properties
hold:

(1) [�1] _M [�2] 2 SS(R)=�:

(2) [�1] ^M [�2] 2 SS(R)=�:

The following Theorem asserts that (SS(R)=�; RM ; _M ; ^M) is a sub-
lattice of the (S(R)=�; �; _M ; ^M):

Theorem 2 Let (M;W;R) be a marriage model with indi¤erences. The
quadruple (SS(R)=�; RM ; _M ; ^M) is a sublattice of the
(S(R)=�; RM ; _M ; ^M):

Proof Let �1; �2 2 SS(R) � S(R):
(1) By Lemma 3, �1_M�2 2 S(R): Let�s suppose that there exist �0i 2 SS(R)
and �0i 2 [�i] for i = 1; 2; such that �01 _M �02 =2 SS(R): Then, there exists a
strongly blocking pair (m;w);

wPm�
0
1 _M �02(m) and mRw�01 _M �02(w):
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If mPw �01 _M �02 (w) then the pair (m;w) blocks �01 _M �02: This contradicts
�01 _M �02 2 S(R): So,

wPm �
0
1 _M �02 (m) and mIw�01 _M �02(w): (7)

Suppose that �01_M �02(w) = �01(w): Condition (7) and de�nition of �01_M �02
imply that

wPm �
0
1 _M �02 (m)Rm�01(m) and mIw�01(w):

Then, the pair (m;w) strongly blocks �01: This contradicts �
0
1 2 SS(R): So

�01 _M �02 (w) = �02(w); condition (7) and de�nition of �01 _M �02 imply that

wPm �
0
1 _M �02 (m)Rm�02(m) and mIw�0(w):

Then, the pair (m;w) strongly blocks �02: This contradicts �
0
2 2 SS(R):

Contradiction comes from assuming that �01 _M �02 =2 SS(R): Hence
�01 _M �02 2 SS(R) and [�1] _M [�2] 2 SS(R)=�:
(2) The proof is similar to (1). �

The following example shows that (SS(R)=�; RM ; _M ; ^M) is a strict
sublattice of the (S(R)=�; RM ; _M ; ^M):

Example 4 Let M = fm1;m2;m3;m4g be the set of men and
W = fw1; w2; w3; w4g be the set of women. Consider the preference pro�le
R :

Rm1 : w1; [w2; w3] ;m1: Rw1 : m3; [m1;m2] ; w1:
Rm2 : w1; w4;m2: Rw2 : [m1;m4] ; w2:
Rm3 : w4; w1;m3: Rw3 : [m1;m4] ; w3:
Rm4 : [w2; w3] ;m4: Rw4 : m2;m3; w4:

The set of stable matchings consists of the following four matchings:

�1 =

�
m1 m2 m3 m4

w2 w1 w4 w3

�
; �2 =

�
m1 m2 m3 m4

w3 w1 w4 w2

�
�3 =

�
m1 m2 m3 m4

w2 w4 w1 w3

�
and �4 =

�
m1 m2 m3 m4

w3 w4 w1 w2

�
:

The reader can check that S(R) satis�es the closing property. Observe
that SS(R) = f�3; �4g. Since �1Ii�2 and �3Ii�4 for all i 2M [W . It follows
that [�1] = [�2] and [�3] = [�4] : Thus,

SS(R)=� = f[�3]g  f[�1] ; [�3]g = S(R)=�:
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Note that the preference is not strict or dichotomous, neither is a combi-
nation of both. Nevertheless it satis�es the closing property. �

Con�ict of interests

In the marriage model with strict preferences, the Decomposition Lemma was
originally proved by Knuth (1976). Next, we will prove the Decomposition
Lemma in our context.
Given two matchings �1 and �2, we de�ne the following sets:

M(�2) = fm 2M : �2Pm�1g and W (�1) = fw 2 W : �1Pw�2g :

Lemma 5 (Decomposition Lemma) Let (M;W;R) be a marriage model
with indi¤erences. Let �1; �2 2 S(R) such that [�1] 6= [�2] then for all
�0i 2 [�i] ; i = 1; 2

�02(M(�
0
2)) = W (�

0
1) (or �2(W (�

0
1)) =M(�

0
2))

�01(W (�
0
1)) =M(�

0
2) (or �

0
1(M(�

0
2)) = W (�

0
1)):

Proof Let �0i be stable matchings such that �
0
i 2 [�i] ; i = 1; 2 . Since

[�1] 6= [�2] we have that either M(�02) 6= ; or M(�01) 6= ;. We assume that
M(�02) 6= ;: First, we will show that

�02(M(�
0
2)) � W (�01): (8)

To check it, given m 2 M(�02); by de�nition of M(�02) and rational indivi-
duality of �01; there exists w such that

w = �02(m)Pm�
0
1(m)Rmm: (9)

If
m = �02(w)Pw�

0
1(w); (10)

then conditions (9) and (10) imply that the pair (m;w) blocks �01: This
contradicts �01 2 S(R): Hence,

�01(w)Rw�
0
2(w):
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note that (9) says that m =2 JM(�01; �02): Then by the closing property
�02(m) = w =2 JW (�01; �02): So

�01(w)Pw�
0
2(w)

This means that w 2 W (�01): This proves condition (8).
By de�nition of matching �02 is an injective function. This together with
condition (8) imply that

#M(�02) � #W (�01): (11)

Similarly,
�01(W (�

0
1)) �M(�02); (12)

and
#W (�01) � #M(�02): (13)

Conditions (11) and (13) imply that

#M(�02) � #W (�01) � #M(�02)

Hence,
#M(�02) = #W (�

0
1): (14)

This together with condition (8) imply that

�02(M(�
0
2)) = W (�

0
1): (15)

De�nition of �02 and (15) imply that

�2(W (�
0
1)) =M(�

0
2): (16)

Conditions (12) and (14) imply that

�01(W (�
0
1)) =M(�

0
2):

De�nition of �01 and (16) imply that

�01(M(�
0
2)) = W (�

0
1):

�

Next, we see that agents on one side of the market have a common interest
regarding the set of equivalences classes of stable matchings. If [�2] is a stable
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class that is weakly preferred to other stable class [�1] for all men then [�1]
is weakly preferred to [�2] for all women. Formally,

Proposition 6 (Con�ict of interests) Let (M;W;R) be a marriage model
with indi¤erences. Let [�1],[�2] 2 S(R)=�: If [�2]RM [�1] ; then [�1]RW [�2] :

Proof We assume that [�1]RW [�2]: Then there exist �
0
i 2 [�i] ; i = 1; 2

such that �01RW�
0
2; i.e. there exists w 2 W such that

m = �02(w)Pw�
0
1(w):

This means that w 2 W (�2): By Lemma 5 we have thatm = �02(w) 2M(�01);
i.e.

�01(m)Pm�
0
2(w) = m:

This contradicts [�2]RM [�1] : �

We conclude from Theorem 1 and Proposition 6 that S(R)=� is a lattice
under the common order of men RM ; dual to the common order of women.

4 The rural hospital theorem

In this section we generalize the rural hospital theorem under indi¤erences.
In order to prove the rural hospital theorem, we assume that S(R) satis�es
the closing property.
The following example shows that if S(R) does not satisfy the closing

property then the rural hospital theorem is not valid.

Example 5 Let M = fm1g be the set of men and W = fw1; w2g be the set
of women. Consider the preference pro�le R :

Rm1 : [w1; w2] ;m1: Rw1 : m1; w1:
Rw2 : m1; w2:

The set of stable matchings consists of the following two matchings:

�1 =

�
w1 w2
m1 w2

�
and �2 =

�
w1 w2
w1 m1

�
:
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We have that S(R) does not satisfy the closing property because

JM(�1; �2) and JW (�1; �2) = ;:

On the other hand

�1(JM(�1; �2)) = fw1g 6= JW (�1; �2):

Since �1(w2) = w2 and �2(w2) = m1; we see that the rural hospital theorem
is not valid. �

Irving, Manlove and Scott (2000) studied the indi¤erences in hospital
and residents model and they proved that if the super stable set is not empty
the rural hospital theorem is valid over all stable matchings. If the stable
matching set satis�es the closing property then the rural hospital theorem is
valid, even when the super stable matching set is empty. See the example 1
again below.

Example 1 Let M = fm1;m2g be the set of men and W = fw1; w2g be the
set of women. Consider the preference pro�le R :

Rm1 : [w1; w2] ;m1: Rw1 : [m1;m2] ; w1:
Rm2 : [w1;w2] ;m2: Rw2 : [m2;m1] ; w2:

We have seen that, the set of stable matchings consists of the following two
matchings:

�1 =

�
m1 m2

w1 w2

�
and �2 =

�
m1 m2

w2 w1

�
We have that S(R) satis�es the closing property because

JM(�1; �2) =M and JW (�1; �2) =W

�1(JM(�1; �2)) = �2(JM(�1; �2)) = JW (�1; �2) =W:

We have �1I�2: So the super stable matching set is empty. Since there are
not single agents in �1 and �2; the rural hospital theorem is valid. �

Theorem 3 Let (M;W;R); be a marriage model with indi¤erences. If S(R)
satis�es the closing property then the set of people who are single is the same
for all stable matchings.
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Proof Let �1 and �2 be two stable matchings, and �
0
i 2 [�i] ; i = 1; 2. If

[�1] = [�2] ; the result follows from no indi¤erences to the single set assump-
tion. Suppose that [�1] 6= [�2]. If

w = �02(m)Im�
0
1(m)

for all m 2 M: By the closing property we have that �1Iw�2 for all w 2 W:
Hence [�1] = [�2] : Contradicts the assumption, then there exists m 2 M
such that

w = �02(m)Pm�
0
1(m) or w = �

0
1(m)Pm�

0
2(m):

We assume without loss of generality that

w = �02(m)Pm�
0
1(m) = m:

This means thatm 2M(�02). By Lemma 5 we have thatM(�02) = �01(W (�01));
and there exists w� 2 W (�01) such as �01(w�) = m this contradicts �01(m) = m:
�

If the strongly stable set is not empty by Proposition 4, the strongly
stable set satis�es the closing property so the previous Theorem assures that
the rural hospital theorem holds for all strongly stable matchings.

Corollary 1 Let (M;W;R); be a marriage model with indi¤erences. If
SS(R) 6= ; then the set of people who are single is the same for all strongly
stable matchings.
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Final remarks

We hope this paper contributes to the literature by proposing a new su¢ -
cient condition, the closing property, which allows us to extend results from
the marriage model with strict preferences to the marriage model with indi-
¤erences. In particular, we give a proof of the lattice structure over equi-
valence classes of the set of stable matchings. In addition, since the strongly
stable matching set always satis�es the closing property we generalize the
la-ttice structure over equivalence classes of the set of strongly stable match-
ings (Manlove 2002). The lattice over equivalence classes of strongly stable
mat-chings is a sublattice of the lattice over equivalence classes of stable
matchings. In addition, if the stable matching set satis�es the closing pro-
perty we show the rural hospital theorem over stable matchings.
In the appendix, we show that e¤ectively the closing property is not a

necessary condition to the lattice structure of stable matching set. (See
Example 6)
Although the closing property is de�ned on the matching set and not

on the preferences, we show special preferences that satisfy it. Strict and
dichotomous preferences satisfy the closing property. Moreover a matching
model that is a "combination of both", strict and dichotomous preferences,
also satis�es the closing property. Example 4, shows that there are more
preferences than the strict and dichotomous preferences that satisfy the clo-
sing property. An open question is whether it is possible to characterize the
closing property in terms of preferences of agents. This problem seems to be
di¢ cult to solve. To the best of our knowledge, there are no papers in the
literature on matchings models with indi¤erences that provide characteriza-
tions about the preferences of the agents that allow obtaining results about
the stable matchings set.
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Appendix

Strongly stable matchings and the closing property

Proof of Lemma 1 Let �1; �2; �3 2M for all i 2 A.
1. Let�s assume that �1Ii�2 and �2Pi�3. From the de�nition of Ii and Pi we
have that

�1Ri�2 and �2Ri�1 (17)

�2Ri�3 and �3Ri�2: (18)

The transitivity of Ri and conditions (17), (18) imply that �1Ri�3: Suppose
that �3Ri�1: Condition (17) and transitivity of Ri imply that �3Ri�2: This
contradicts (18). Hence, �3Ri�1 and �1Pi�3:
2. Similarly, we can prove that if �1Pi�2 and �2Ii�3; then �1Pi�3:
3. We assume that �1Pi�2 and �0i 2 [�i] for i = 1; 2: Then,

�01Ii�1 and �1Pi�2: (19)

Condition (19) and the fact that �1Pi�2 imply that

�01Pi�2.

We have that �1Pi�2 and �2Ii�2. By item 2 we have,

�01Pi�
0
2:

4. It follows from 1, 2 and 3. �

Proof of Proposition 1 Let [�1] ; [�2] ; [�3] 2 S(R)=� for all i 2 A and
let �01 2 [�1] ; �02 2 [�2] and �03 2 [�3] :

1. Re�exivity. Since RM is a re�exive relation overM we have that

�01RM�
0
1

so
[�1]RM [�1] :

2. Transitivity. Since RM is a transitive relation overM: If �1Ri�2 and
�2Ri�3 then �1Ri�3; i.e.,

[�1]RM [�2] ; [�2]RM [�3] and [�1]RM [�3] :
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3. Antisymmetric. Assume that

[�1]RM [�2] and [�2]RM [�1]

i.e.,
�1RM�2 and �2RM�1:

Hence �1IM�2 i.e. [�1] = [�2] : �

The following Manlove�s result will be useful in proof of Proposition 4.

Lemma A1 (Manlove) Let (M;W;R) be a marriage model with indi¤e-
rences, and let � and �0 be two strongly stable matchings. Suppose that for
any men m1 2 M; �(m1) = w1 and �0(m1) = w2; where w1 6= w2; and
w2Rm1w1. Then there are sequences of agents involving, m1; w1 and w2 as
follows: for some r > 1; there are r men m1; :::::;mr and r women w1; ::::; wr
which satis�es:

�(mi) = wi (1 � i � r) and �0(mi) = wi+1 (1 � i � r):
(1) If w2Im1w1; then

wi+1Imi
wi (1 � i � r) and miIwimi�1 (1 � i � r):

(2) If w2Pm1w1; then

wi+1Pmi
wi (1 � i � r) and miPwimi�1 (1 � i � r):

Where m0 = mr; mr+1 = m1 and wr+1 = w1:

We could formulate a symmetric Lemma by exchanging the role of women
and men.

Proof of Proposition 4 Let �; �0 2 SS(R), if JM(�; �0) = JW (�; �0) = ;;
then the result follows. We assume that JM(�; �0) 6= ;: We will show that

JM(�; �
0) � �(JW (�; �0)):

Let m1 2 JM(�; �0): This means that

�(m1)Im1�
0(m1):
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Since m1 2 JM(�; �0); we have that �(m1) 6= �0(m1): Then there exist w1
and w2 such that �(m1) = w1 and �0(m1) = w2: Since m1 2 JM(�; �0) we
have that

w1 = �(m1)Im1�
0(m1) = w2:

By Lemma A1 (Manlove) we have that there exist successions of agents
m1; :::mr and w1; ::::; wr such that

�(mi) = wi (1 � i � r) and �0(mi) = wi+1 (1 � i � r):
Also

wi+1Imi
wi(1 � i � r) and miIwimi�1(1 � i � r):

If i = 1 then
m1 = �(w1)Iw1�

0(w1)

i.e. w1 2 JW (�; �0): Hence �(w1) = m1 2 �(JW (�; �0)):
Now, we will show that

�(JW (�; �
0)) � JM(�; �0):

Let �(w1) 2 �(JW (�; �0)): Since w1 2 JW (�; �0) we have that

�(w1)Iw1�
0(w1):

Notice that �(m1) 6= �0(m1): Then there exist m1 and m2 such that
�(w1) = m1 and �0(w1) = m2: By Lemma A1 (Manlove) we have that there
exist successions of agents m1; :::mr and w1; ::::; wr such that

�(wi) = mi (1 � i � r) and �0(wi) = mi+1 (1 � i � r):
Also

mi+1Imi
mi (1 � i � r) and wiIwiwi�1(1 � i � r):

If i = 1 then
w1 = �(m1)Im1�

0(m1)

i.e. m1 2 JM(�; �0): Hence m1 = �(w1) 2 JM(�; �0): �

Proof of Proposition 5 Let �; �0 2 SSS(R), if JM(�; �0) = JW (�; �0) =
;; then the result follows. We assume that JM(�; �0) 6= ;:
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Let m1 2 JM(�; �0): This means that

�(m1)Im1�
0(m1): (20)

Since m1 2 JM(�; �0); we have that �(m1) 6= �0(m1): Then there exist w1
and w2 such that �(m1) = w1 and �0(m1) = w2: Since m1 2 JM(�; �0) we
have that

w1 = �(m1)Im1�
0(m1) = w2: (21)

Since �; �0 2 SSS(R) � SS(R) we can apply Lemma A1 (Manlove). Then
there exist successions of agents m1; :::mr and w1; ::::; wr such that

�(mi) = wi (1 � i � r) and �0(mi) = wi+1 (1 � i � r):
Also

wi+1Imi
wi(1 � i � r) and miIwimi�1(1 � i � r):

If i = 1 then
m1 = �(w1)Iw1�

0(w1): (22)

Condition 21 and 22 imply that the pair (m1; w1) super blocks �0: This con-
tradicts that �0 is a super stable matching. This contradiction came from
assuming that JM(�; �0) 6= ;: So the closing property hold.�

The next example shows that the closing property is not a necessary
condition to the lattice structure of the stable matching set.

Example 6 LetM = fm1;m2;m3g be the set of men andW = fw1; w2; w3g
be the set of women. Consider the preference pro�le R :

Rm1 : [w1; w2] ;m1: Rw1 : m3;m2;m1; w1:
Rm2 : w2; w1; w3;m2: Rw2 : m1;m2; w2:
Rm3 : w3; w1;m3: Rw3 : m2;m3; w3:

The set of stable matchings consists of the following matchings:

�1 =

�
m1 m2 m3

w1 w2 w3

�
; �2 =

�
m1 m2 m3

w2 w1 w3

�
; �3 =

�
m1 m2 m3

w2 w3 w1

�
:

Observe that �1Rmi
�2Rmi

�3, for i = 1; 2; 3: Also �3Rwi�2Rwi�1 for
i = 1; 2; 3: In this example we have a lattice structure over stable mat-
ching set. Nevertheless, the stable matching set does not satisfy the closing
property. We have

JM(�1; �2) = fm1g and JW (�1; �2) = ;:
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So
�1(JM(�1; �2)) = �1(m1) = w1 6= JW (�1; �2):

�
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