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One-dimensional diffusion: Discrepancy between exact results and Monte Carlo calculations
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The exact expression for the collective diffusion coefficient in one dimension, obtained by Payne and Kreuzer
[Phys. Rev. B. 75, 115403 (2007)], is compared with Monte Carlo simulation. Different hopping kinetics are
analyzed. For initial- and final-state interaction kinetics no anomalies are observed. However, for the so-called
interaction kinetics where both initial- and final-state interactions are involved, it is shown that even when
the transition rates satisfy the principle of detail balance, additional constraints are necessary to guarantee the
diffusion of particles. These restrictions give rise to a phase diagram that determines the regions where the exact
solution of the diffusion coefficient seem to be not physically sound. The Monte Carlo simulation allows us to
analyze the mechanism of diffusion in these regions, where in some cases the simulation does not match the
exact solution. A possible explanation is presented.
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I. INTRODUCTION

Theoretical description of the diffusion process is a compli-
cated many-body problem and various approaches have been
applied to it, ranging from analytic ones based on master,
Fokker-Planck, or Kramers equations, to numerical Monte
Carlo simulations. An important background is provided in
various reviews [1–7] and original papers [8–16]. In addition
to the intrinsic interest, the general results for the one-
dimensional (1D) diffusion may be useful for applications
(e.g., for describing adsorbate diffusion along steps [17] or on
carbon nanotubes [18]).

The kinetic lattice gas model (KLGM) is usually the
adequate background to describe diffusion of individual or
collective motion of atoms in one-, two-, or three-dimensional
systems. This approximation can be used when the potential
energy for particle motion is determined by a substrate
and lateral particle-particle interactions. Often the particle-
substrate interaction is sufficiently strong, particles are located
primarily at the potential wells formed by the substrate, and
there are appreciable activation barriers for jumps of particles
between the wells. For this description the usual starting point
is the master equation with the hopping between lattice sites
treated as a Markovian process (i.e., the residence time at sites
is long compared to the time of individual hops). This is also
the easiest route to incorporate the effects of multiple binding
sites within cells and particle interactions, both hardcore within
cells and short range between them. In the case of surface
diffusion such interactions lead to a strong dependence of the
diffusivity on the coverage of the adspecies. The dynamics
in this kinetic lattice gas model are usually simplified to the
specification of transition probabilities with a hopping rate,
but modified by interactions with neighboring particles in
the initial and final configurations, leading to vastly different
diffusion behavior.

A fairly general and relatively simple expression for
the chemical diffusion coefficient was phenomenologically
proposed by Reed and Ehrlich [1], the so-called Reed-
Ehrlich (RE) factorization, where a simple expression for the
chemical diffusion coefficient was proposed as a product of
thermodynamic and kinetic or dynamic factors. Physically,

diffusion jumps represent the simplest Arrhenius processes.
Such processes are usually described by the transition state
theory (TST) [13,14] (as well as other surface processes
[13–15]). In particular, it was shown [13,14,16] that following
TST one can derive the RE expression for the diffusion
coefficient.

A rather general approach has recently been proposed by
Payne and Kreuzer (PK) [19] for one-dimensional lattice gas.
They have exactly corroborated the RE factorization [1] for any
range of interactions and for any form of the jump rates that
satisfies detailed balance. The method of gradient expansion
of the local microscopic particle current used by PK has
been extended to 2D systems, where they have shown, using
transfer matrix methods (TMM), that the RE factorization is
not universal and does not apply (e.g., for generalized hopping
kinetics where initial- and final-state interactions are involved,
such as saddle point interactions [20]).

In the method introduced in Ref. [19], the transition
probabilities are written as an expansion of the occupation
configurations of all neighboring sites. Since the detailed
balance principle determines half of the coefficients that arise
from the expansion, it is necessary to introduce ad hoc a
dynamic scheme to get the rest of them. However, for the
principle of detailed balance, it is a necessary but not sufficient
condition to have an acceptable physical behavior of the
diffusion coefficient and additional constraints on the jump
rates must be introduced, as shown in Ref. [21]. Specifically,
for the so-called interaction kinetics where both initial- and
final-state interactions are involved, it is shown that, even when
the transition rates satisfies the principle of detail balance, there
are certain values of the parameters for which the diffusion
coefficient is negative. As a consequence, a phase diagram that
determines the regions where the exact result for the diffusion
coefficient is positive, has been obtained.

In the present paper, a Monte Carlo simulation to analyze
the diffusion process is proposed. The simulation gives rise
to a deeper understanding of the mechanism of diffusion,
particularly in the forbidden region of the phase diagram. The
comparison between the exact solution and numerical results
is analyzed and a possible explanation is given.
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The outline of the paper is as follows: in Sec. II a brief
description of the model and the exact results is presented; in
Sec. III, the Monte Carlo simulation scheme of the diffusion
process is described; in Sec. IV, the results are presented and
discussed. Finally, Sec. V concludes the paper.

II. THE KINETIC LATTICE GAS MODEL

Let us consider a system composed of N sites in one or two
dimensions. To describe the state of the system one introduces
microscopic occupation numbers ni = 1 or 0, depending on
whether the sites are occupied by an adsorbed particle or
not. There are 2N microstates n = (n1,n2, . . . ,nN ) given by
sequence of zeros and ones. To introduces the dynamics of the
system one writes down a model Hamiltonian

H = Es

∑
i

ni + V
∑
i,a

nini+a + . . . , (1)

where V is the adsorbate-adsorbate interaction energy between
nearest-neighbor NN particles, Es is the interaction between
the substrate and the adatom, and (i,j ) represents pairs of NN

sites. Longer range interactions, like nearest-neighbor, NNN ,
and trio interactions can be included.

Let us introduce a function, P (n,t), which gives the
probability that a given microstate n of the lattice gas is realized
at time t , and the transition probability, W (n; ń), per unit time
as the probability to go from a state ń to n. Treating hopping
as a Markov process P (n,t) must satisfy a master equation

dP (n; t)

dt
=

∑
ń

[W (n; ń)P (ń; t) − W (ń; n)P (n; t)]. (2)

To ensure the approach to equilibrium in an isolated system
each term in the sum must satisfy detailed balance

W (ń; n)Peq(n) = W (n; ń)Peq(ń), (3)

where

Peq(n) = e−[H (n)−μN(n)]/kBT

�
. (4)

Here, kB , T , and μ, are the Boltzmann constant, the tem-
perature, and the chemical potential, respectively. Peq is the
equilibrium probability and � is the grand canonical partition
function given by

� =
∑

n

e−[H (n)−μN(n)]/kBT . (5)

In the absence of adsorption and desorption the number of
adparticles, N (n), is fixed and the form of W (ń; n) depends
on the jump scheme exclusively. When diffusion results from
the hopping of single particles from an occupied site to a
neighboring unoccupied site, one can write this transition
probability as

Wdiff(ń; n) =
∑
i,a

[W>
i + W<

i+a] × δ
1−ni

ní
δ

1−ni+a

ni+á

∏
l �=i,i+a

δ
nl

nĺ
, (6)

where

W>
i = J0ni(1 − ni+1)[(1 − ni−1)(1 − ni+2) + (1 + A1)ni−1

× (1 − ni+2) + (1 + B1)(1 − ni−1)ni+2

+ (1 + A1 + B1 + C11)ni−1ni+2]. (7)

FIG. 1. The four relevant hopping processes and their rates for a
one-dimensional lattice gas with nearest-neighbor interactions.

In the last equation, the probability to jump to the right
from site i to i + 1 is written in terms of the occupation
configurations of all neighboring sites (a similar expression
can be obtain for W<

i+1). For a better comprehension of each
term in the last equation, see the scheme in Fig. 1. The first
term in Eq. (2) represents the jump of a particle that is isolated
before and after the jump, with a rate J0. The second term
represents the separation of a particle from a neighbor with
a rate J0(1 + A1); the particle has no neighbors after the
event. The third term represents the converse of the above
process, with a rate J0(1 + B1). The last term represents the
exchange of a particle and vacancy between two neighbor with
rate J0(1 + A1 + B1 + C11). The elementary hopping rate, J0,
usually has the Arrhenius form.

Payne and Kreuzer have exactly demonstrated the RE
factorization [1,19,20]

D(θ,T ) = χ−1〈W 〉, (8)

where 〈W 〉 = 1
2 〈W>

i + W<
i+1〉 is the average transition rate

for a 1D system and χ−1 is the inverse of the susceptibility
defined as

χ−1 = ∂βμ

∂θ
= [αθ (1 − θ )]−1, (9)

where θ is the coverage and α is related to the chemical
potential, μ, by

exp[βμ] =
(

α − 1 + 2θ

α + 1 − 2θ

)
exp[βV ], (10)

where β = 1/kBT .
By using the same methodology proposed by PK and after

expanding the average transition rate in terms of the occupation
probabilities, one can finally write the collective diffusion
coefficient in a diagrammatic form as

D(θ,T ) = D0χ
−1[〈•◦〉 + A1〈• • ◦〉

+B1〈• ◦ •〉 + C11〈• • ◦•〉], (11)

where

〈•i ◦i+1 . . . •i+k〉 =
∑

n

ni(1 − ni+1) . . . ni+kP (n; t). (12)

Here P ({n},t) represents the probability that a given micro-
scopic configuration {n} = (n1,n2, . . . ,nN ) is realized at time
t , where N is the total number of sites in the line.

The detailed balance principle puts one condition on the
three coefficients, namely,

(1 + A1) = (1 + B1)eβV . (13)
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Various combinations of these coefficients allow one to
describe different scenarios of diffusion involving initial and
final kinetics, including all types of combinations of both
initial and final kinetics, such saddle point kinetics and TST
kinetics [19,21]. To preserve particle-hole symmetry in the
jumping process, the third coefficient C11 must be considered.
In this case, the first and fourth terms in Eq. (2) must be the
same, which requires that A1 + B1 + C11 = 0.

PK have considered different cases [19], the first one
(case I), is the initial-state interaction, characterized by
B1 = C11 = 0. The second kinetic scheme is the final-state
interaction, where A1 = C11 = 0 (case II).

To analyze the hopping kinetics involving initial- and
final-state interactions, PK have proposed the following linear
relation between the coefficients

A1 = −γB1. (14)

Taking into account the detailed balance principle, they obtain

B1 = 1 − exp (βV )

γ + exp (βV )
. (15)

The parameter γ is considered of order unity by PK. Fur-
thermore, no restrictions are imposed on C11. Therefore, they
have analyzed three different cases, with B1 = −A1: (case III)
C11 = 0; (case IV) C11 = −A1; and (case V) C11 = −B1. As
observed in Ref. [19], the behavior of the normalized diffusion
coefficient as a function of the coverage is always bigger
than unity [D(θ )/D(0) > 1] for repulsive lateral interactions
and smaller than unity [D(θ )/D(0) < 1] for attractive lateral
interactions, with the exception of case II, where the behavior
is the opposite. No phase transitions occur in the 1D systems,
therefore the diffusion coefficient should be positive.

No restrictions are imposed by the detailed balance prin-
ciple on γ [15,21]. Moreover, the behavior of the collective
diffusion coefficient, obtained by using Eq. (3), is reasonable
for any positive value of γ . However, for negative values of
γ there are combinations of parameters γ and V that lead to

FIG. 2. Phase diagram for A1 = −γB1 and C11 = 0 showing the
different diffusion zones. The white color corresponds to the region
A. The light gray corresponds to the region B, while the dark gray
corresponds to the region C.

negative diffusion coefficients, at least for certain values of
coverage. These values can be represented in a phase diagram
as shown in Ref. [21].

The phase diagram (Fig. 2) corresponding to case III
contains: i) the allowed region (region 1), where all the rates
define for the hopping processes in Fig. 1 are positive; ii) the
forbidden region (region 2), where only J0(1 + A1 + B1 +
C11) is negative; and iii) the forbidden region (region 3),
where J0(1 + A1), J0(1 + B1) and J0(1 + A1 + B1 + C11) are
negative. Similarly, one can describe the cases IV and V. In
what follows, only case III will be considered.

III. MONTE CARLO SIMULATION

Alternatively, the diffusion process can be calculated by
Monte Carlo simulation [22]. The tracer diffusion coefficient,
DT , is determined from measurement of the mean-square
displacements (MSDs)

ST (t) =
N∑

i=1

〈[ri(t) − ri(0)]2〉 (16)

of N tagged adatoms according to [1,4,23]

DT = lim
t→∞

1

2dNt

N∑
i=1

〈[ri(t) − ri(0)]2〉. (17)

The collective diffusion coefficient can be written, in the
framework of the Kubo-Green theory, as

D(θ,T ) =
(

∂μ/kBT

∂ ln θ

)
DJ =

[ 〈δN〉
〈N〉

]−1

DJ , (18)

where 〈δN〉 is the mean-square fluctuation in an area A

containing 〈N〉 particles. The jump diffusion coefficient, DJ ,
is related to the MSD of the center of mass of the system

SJ (t) =
〈(

N∑
i=1

|ri(t) − ri(0)|
)2〉

(19)

by

DJ = lim
t→∞

1

2dNt

〈(
N∑

i=1

|ri(t) − ri(0)|
)2〉

. (20)

MC results are obtained by performing a random walk of the
particles on the line and using Eqs. (9) and (11).

Usually, to obtain DT and DJ , one plots the MSD of the
tagged particles and of the center of mass of the system,
Eqs. (9) and (11), as function of time in log-log scale. One
calculates the slope of the each curve for a very long time.
Then, from the intercept, one gets the value of DJ and DT [22].
For normal or gaussian diffusion in a one-dimensional system,
DJ ∝ t , while it is demonstrated [24] that DT ∝ t1/2.

IV. RESULTS

Next, the comparison between the exact results and MC
simulation is presented and discussed. For those values of the
parameters γ and V belonging to region 1, the exact and MC
results coincide for the whole range of coverage; starting from
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FIG. 3. Collective diffusion coefficient vs θ for βV = −2 and
γ = −2. Solid line corresponds to exact solution given by Eq. (11),
while symbols correspond to MC simulation.

an initial equilibrium configuration (the equilibrium is attained
by using Kawasaki dynamics) or a random configuration.

For those values of γ and V belonging to region 2 and
3, the exact results obtained by using Eq. (3) differ, in some
cases, from simulations. The reason for these discrepancies is
associated with the negative values of the transition rates.

In region 2, Eq. (3) gives negative values for the diffusion
coefficients at high coverage (see Fig. 3); this is because
J0(1 + A1 + B1 + C11) < 0. However, if one considers that
the transition rates are zero whenever they are negative,
the simulations and exact results are in agreement. Here, the
initial configuration plays an important role in the simulation.
In fact, for coverage, θ > 0.5, and considering that only
J0(1 + A1 + B1 + C11) < 0, the diffusion exists when, in the
initial configuration: i) two nearest-neighbor sites are empty
or ii) an occupied site is surrounded by two empty nearest
neighbors. Otherwise, the situation will be similar to case 3,
which is discussed in the next paragraph.

In region 3 all the transition rates, except J0, are negative,
therefore the collective diffusion coefficients are negative for
some values of coverage. The Monte Carlo calculations of both
DJ and DT coefficients (consequently the collective diffusion
coefficient) present a very different behavior. To attain a deeper
understanding of the behavior of the system, in Fig. 4 the MSD
for the tracer particles for γ = −2, βV = 2, and θ = 0.2
is shown. Three well-defined regimes are distinguished: i) a
short-times regime, where very few particles collisions have
yet occurred, and the particles are diffusing independently
of each other; ii) an intermediate-times regime, where the
dynamics is dominated by particle collisions; and iii) a
long-times regime, where the MSD reaches a saturation value,
ST (t → ∞) = S

eq
T . Since J0(1 + A1) < 0, as soon as two

nearest-neighbor sites are occupied, the pair of particles are im-
mobilized, giving rise to a finite number of traps in the system.
This problem corresponds to the movement of particles in a box
and was addressed for the classical lattice gas system by several
authors [24–30]. Recently, the problem of single-file motion in
a box has been also addressed [31–33]. Although, in Ref. [25],
an analytical solution and the asymptotic limit are obtained for
the diffusion of tagged particles in a concentrated lattice gas,

FIG. 4. Mean-square displacement of the tracer particles vs time,
for βV = 2, γ = −2, and θ = 0.2. The solid lines correspond to the
analytical solution obtained by using Eq. (21).

the problem does not correspond to the present case. This is
because, here, there is nonequivalence between the particles
and the vacancies. Indeed, because J0(1 + B1) < 0 and J0(1 +
A1 + B1 + C11) < 0, the particles behave as dimers (i.e., they
have double occupancy). Taking this characteristic into ac-
count, one can approximate the three regimes for the MSD by

ST (t) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(1 − 2θ )J0t for t 
 t1

2(1−2θ)
θ

√
J0
π

t1/2 for t1 
 t 
 t2

S
eq
T for t2 
 t

. (21)

Clearly, the factor (1 − 2θ ) represents the available sites on
the line. The three regimes are represented by solid lines in
Fig. 4. The time t1 indicates the crossover between the normal
diffusion and subdiffusion, while t2 is the crossover time to
saturation. The expression for the crossover time t1 is

t1 = 1

J0θ2π
. (22)

Using combinatorial analysis (see Appendix) the value of S
eq
T

can by analytically obtained. In Table I, a comparison between
the saturation values of the MSD for tagged particles obtained
by MC simulation and combinatoric analysis, is given. Using
the value of S

eq
T one can obtain the expression for the crossover

time t2 as

t2 = θ2
(
S

eq
T

)2

4(1 − 2θ )2J0
π. (23)

TABLE I. Crossover times and mean-square displacements for
the center of mass of the system as a function of coverage.

θ ln(t2) ln[SJ (t2)]

0.1 12.691 12.499
0.2 9.129 8.823
0.3 6.967 6.240
0.4 5.151 3.799
0.5 3.361 1.303
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FIG. 5. Collapsed curves corresponding to the mean-square
displacement of the tracer particles. In the inset the mean-square
displacements of the tracer particles vs time for βV = 2, γ = −2,
are shown (from top to bottom θ = 0.1,0.2,0.3,0.4,0.5).

Motivated by the results obtained in Ref. [34], and by using
the technique developed in Ref. [35], it is possible by using
similar scaling arguments to obtain the collapse of the MSD
curves. To do that, the two crossover times, t1 and t2, and
the corresponding values of the MSD, ST (t1) and ST (t2), are
determined for each curve. Then, all the curves are translated
in a log-log plot such that the first crossover point is now
located at the origin. This is achieved by plotting ln( ST (t)

ST (t1) ) as
a function of ln( t

t1
). In the second step both axes are rescaled

by the common scale factor λ = 1/ ln( ST (t2)
ST (t1) ) such that in the

log-log plot the second crossover point is fixed. The scaling
can be described by:

ln
(

ST (t)
ST (t1)

)
ln

(
ST (t2)
ST (t1)

) = F

[
ln

(
t
t1

)
ln

(
ST (t2)
ST (t1)

)
]

, (24)

where F (x) is a given scaling function containing the three
characteristic regimes. Figure 5 shows how all the data
corresponding to the MSD for the tracer particles for γ = −2
and βV = 2 and different coverages (see the inset of Fig. 5)
can be collapsed in a single universal function according to the
proposed form, Eq. (12).

Finally, it is possible to use similar arguments of dynamic
scaling for the MSD of the center of mass of the system. One

TABLE II. Comparison between the saturation values of the MSD
for tagged particles obtained by MC simulation and combinatoric
analysis.

θ ln(Seq

T )MC ln(Seq

T )CA

0.1 7.975 7.950
0.2 5.270 5.217
0.3 3.351 3.320
0.4 1.544 1.511
0.5 −0.282 −0.308

FIG. 6. Collapsed curves corresponding to the mean-square
displacement of the center of mass of the system. In the inset the
mean-square displacements for the center of mass vs time for βV = 2,
γ = −2, are shown (from top to bottom θ = 0.1,0.2,0.3,0.4,0.5).

proceeds in the same way as above. Firstly, one determines
the saturation values of the MSD Sj (t2) and the corresponding
crossover time for the saturation t2 (see Table II), then plotting
Sj (t)/SJ (t2) as a function of t/t2 one obtains the collapse of
the curves (see Fig. 6).

V. CONCLUSION

Summarizing, the exact result for diffusion in one dimen-
sion, obtained by Payne and Kreuzer, is compared with Monte
Carlo simulation. This comparison allows the establishment
of the mechanism of the diffusion. In particular, in the
forbidden region two well-defined zones are determined as
a function of the values of the transition rates. It has been
discussed why the PK formula cannot account for the diffusion
behavior of the system in the forbidden regions of the phase
diagram.

In region 2, one can recover the agreement between the
exact results and the simulation by imposing the condition
that the transition rates become zero when they take negative
values. In region 3, the exact solution predicts that the
collective diffusion coefficient is negative for certain values
of the coverage. However, the simulation shows that the
movement of the particles is very much like the single-file
diffusion in a box. Indeed, after equilibrium process, two
particles located in nearest-neighbor sites remain in their
position for the rest of the diffusion process. The spaces
between those pairs of particles are boxes. The size and the
number of the boxes depend on the coverage. As is expected,
the MSD for tagged or tracer particles presents three diffusion
regimes: normal, subdiffusive, and saturation behaviors. Due
to the characteristics of the transition rates, the particles
move as dimers. An approximate solution for the normal and
subdiffusive regimes has been proposed. By combinatorial
analysis, the saturation values of the MSD as a function of
the coverage for any size of the particle are obtained. These
values are in agreement with Monte Carlo simulation. As is
expected, for the MSD of the center of mass, only two regimes
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are observed: the normal diffusion and the saturation regimen.
Collapsing curves are obtained for both the tagged and center
of mass mean-square displacement. Finally, it is important
to remark that the aim of the present study is to show the
mechanisms of diffusion in the forbidden region, which does
not contradict the results obtained by Payne and Kreuzer, but
are complementary.

ACKNOWLEDGMENTS

The authors thank Dr. P. Centres for discussions. This work
was partially supported by the CONICET (Argentina).

APPENDIX

The analytical procedures to obtain the saturation value,
S

eq
T , are based on the fact that for large times the initial

distribution for the position rm of a particle m becomes
uncorrelated from the final distribution. Hence one has

〈[rm(t) − rm(0)]2〉 = 〈([rm(t) − 〈rm〉] − [rm(0) − 〈rm〉])2

= 2
∣∣〈r2

m

〉) − (〈rm〉2
∣∣. (A1)

The right-hand side of this equation can be evaluated by means
of combinatorial analysis. The probability of finding the first
component of particle m of size k (k-mer) at site s, in a chain
of N sites, with m � s � N , is given by

Qm(s,k) =

(
s − 1 − (m − 1)(k − 1)

m − 1

)(
N − s − k + 1 − (

θN
k

− m
)
(k − 1)

θN
k

− m

)
(

N − θN
k

(k − 1)
θN
k

) . (A2)

Here, θN
k

is the number of k-mers in the chain. The two factors
in the numerator count the number of configurations of all
k-mers to the left and right of the k-mer m, respectively, and the
denominator counts the total number of configurations on the
chain. The mean value and the mean square of the position of
the k-mer m can be evaluating numerically using the following
expressions:

〈rm〉 =
N−θN+k(m−1)+1∑

s=km−(k−1)

saQm(s,k) (A3)

and

〈
r2
m

〉 =
N−θN+k(m−1)+1∑

s=km−(k−1)

s2aQm(s,k), (A4)

where a is the lattice constant. Finally one may average
Eq. (12) over m. For k = 1 the exact result obtained in Eq.
(2.46) of Ref. [25] is reproduced, while for k � 2 the exact
calculation is rather cumbersome and numerical evaluation of
the Eq. (A1) is more appropriate.
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