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Abstract

Developments in microfabrication technology have enabled the production of neural electrode 

arrays with hundreds of closely-spaced recording sites, and electrodes with thousands of sites are 

currently under development. These probes in principle allow the simultaneous recording of very 

large numbers of neurons. However, use of this technology requires the development of techniques 

for decoding the spike times of the recorded neurons, from the raw data captured from the probes. 

Here, we present a set of novel tools to solve this problem, implemented in a suite of practical, 

user-friendly, open-source software. We validate these methods on data from the cortex, 

hippocampus, and thalamus of rat, mouse, macaque, and marmoset, demonstrating error rates as 

low as 5%.
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Introduction

One of the most powerful techniques for neuronal population recording is extracellular 

electrophysiology using microfabricated electrode arrays1-3. Advances in microfabrication 

have continuously increased the number of recording sites available on neural probes, and 

the number of recordable neurons is further increased by having closely spaced recording 

sites. Indeed, while a single sharp electrode can provide good isolation of one or two 

neurons, placing as few as four recording sites together in a “tetrode” can reveal the firing 

patterns of 10-20 simultaneously recorded cells4-7. This increase is possible because each 

recorded neuron produces extracellular action potential waveforms (“spikes”) with a 

characteristic spatiotemporal profile across the recording sites8-10. The process of using 

these waveforms to decipher the firing times of the recorded neurons is known as “spike 

sorting”11, 12.

Spike sorting, as currently applied in nearly all labs using extracellular recordings, involves a 

manual operator. While some labs use a fully manual system, lower error rates can be 

achieved with a semi-automated process8, consisting of four steps. First, spikes are detected, 

typically by high-pass filtering and thresholding. Second, each spike waveform is 

summarized by a compact “feature vector”, typically by principal component analysis. 

Third, these vectors are divided into groups corresponding to putative neurons using cluster 

analysis. Finally, the results are manually curated, to adjust any errors made by automatic 

algorithms13. This last step is necessary because although fully automatic spike sorting 

would be a powerful tool, the output of current algorithms cannot be accepted without 

human verification. A similar situation arises in many fields of data-intensive science: in 

electron microscopic connectomics, for example, automatic methods can only be used under 

the supervision of human operators14.

For tetrode data this semi-automatic process performs well, reaching error rates of 5% or 

lower, as assessed by ground truth data obtained with simultaneous intracellular recording8. 

However, spike sorting methods developed for tetrodes do not work for a newer generation 

of larger electrode arrays15, 16. This failure occurs for two reasons. First, the automated 

component can fail in high dimensions, for example due to the “curse of dimensionality” 

that affects cluster analysis in high-dimensional spaces17. Second and perhaps more 

critically, the process of manual curation -- while manageable with low-count probes -- 

cannot scale to the high-count case without software that guides the operator to only those 

decisions that cannot be made reliably by a computer. While many different methods for 

spike sorting have been proposed (e.g. refs. 18-24), no method has yet solved these problems 

robustly enough to be widely adopted by the experimental community.

Here we describe a system for the spike sorting of high-channel count electrode data, 

implemented in a suite of freely available software. While the spike sorting problem has 

attracted considerable theoretical research, our goal was to produce a practical system that 

can be immediately used by working neurophysiologists. The ability to process large 

datasets (millions of spikes in hundreds of dimensions) in reasonable human and computer 

time was deemed essential; error rates comparable to those of commonly-used tetrode 

methods were deemed acceptable. We tested the software on data recorded from rat 
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neocortex with 32-site shank electrodes, as well as data from other species and brain regions. 

While traditional methods performed extremely poorly on this data, the new algorithms gave 

close to theoretically optimal performance. The techniques and software have been 

developed in a community-led manner, through extensive feedback from a user base of over 

320 scientists in 50 neurophysiology labs. The software is downloadable and documented at 

http://cortexlab.net/tools, and is supported by a highly active user-group mailing list, 

klustaviewas@groups.google.com.

Results

Our spike sorting pipeline involves three steps: (1) spike detection and feature extraction, (2) 

cluster analysis, and (3) manual curation. We describe these steps in order.

Spike Detection

The first step of the pipeline is spike detection and feature extraction, implemented by the 

program SpikeDetekt.

The primary difference between spike detection for high count silicon probes and for 

tetrodes is that temporally overlapping spikes are extremely common in the former. This 

phenomenon can be seen by examining of a segment of raw data recorded with high count 

probes (Fig. 1). The spikes seen in these data are diverse, with some detected on only one or 

two channels, and others spanning large numbers of channels, as expected of pyramidal cells 

whose apical dendrites are aligned parallel to the shank25. In these data, simultaneous firing 

of multiple neurons is common. However, simultaneously firing neurons are usually detected 

on distinct sets of channels.

To deal with the problem of temporally overlapping spikes, we therefore sought to detect 

spikes as local spatiotemporal events (Fig. 2). This step requires knowledge of the probe 

geometry, which is specified by the user in the form of an “adjacency graph” (Fig. 2a). We 

illustrate the spike detection process with reference to a small segment of data containing 

two temporally overlapping but spatially separated spikes (Fig. 2b).

The first stage of the algorithm is high-pass filtering the raw data to remove the slow local 

field potential signal (Butterworth in forward-backward mode; Fig. 2c). Next, spikes are 

detected using a double-threshold flood fill algorithm (Fig. 2d,e). Specifically, spikes are 

detected as spatiotemporally connected components, in which the filtered signal exceeds a 

“weak threshold” θw for every point, and in which at least one point exceeds a “strong 

threshold” θs (optimal values for these parameters were found to be 4 and 2 times the 

standard deviation of the filtered signal, as described below). Two points are considered 

neighboring if they are on a single channel and separated by one time sample, or at a single 

timepoint on channels joined by the adjacency graph; this allows the algorithm to work with 

probes of any geometry, not just linear ones. The dual-threshold approach avoids spurious 

detection of small noise events, since isolated islands in which only the weak threshold is 

exceeded are not retained. Conversely, spikes will not be erroneously split due to noise, as 

areas joined by weak threshold crossings are merged.
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After detection, spikes are temporally realigned to subsample resolution, to the center of 

mass of the spike’s suprathreshold components, weighted by a power parameter p (see 

Methods). Visual inspection showed that spike times detected with this method correspond 

closely to those that would be assigned by a human operator (Fig. 2e).

The waveforms of each spike are summarized by two vectors. First, a “feature vector” is 

found by principal component analysis of the realigned waveforms on each channel (3 

principal components were kept for the current analysis). All channels are used in 

computing the feature vector; thus our two example spikes have similar feature vectors, as 

their central times are similar (Fig. 2f). Second, a “mask vector” is computed from the peak 

spike amplitude on each detected channel, rescaled and clipped so channels outside the 

connected component have mask 0, and channels with amplitude above θs have mask 1. The 

mask vector allows temporally overlapping spikes to be clustered as separate cells. Indeed, 

although the feature vectors of our two example spikes were very similar, their mask vectors 

are completely different (Fig. 2g).

Performance Validation and parameter optimization

To quantify the performance and optimize the parameters of this algorithm requires “ground 

truth”: knowledge of when the recorded neurons actually fired. We created a simulated 

ground truth dataset by repeatedly adding the spikes of a “donor cell” identified in one 

recording, to a second “acceptor” recording made with same probe; since the extracellular 

medium is a linear conductor26, addition of spike waveforms serves as a sufficient model for 

overlapping spikes. To evaluate the performance of the system, we chose 10 donor cells with 

a variety of amplitudes and waveform distributions (Fig. 3a), using recordings from rat 

cortex with a 32-channel probe shank. To model the variability of waveforms produced by a 

single neuron due to phenomena such as bursting27-29, we scaled each spike to a random 

amplitude in a range that varied by a factor of 2 (see Methods). We refer to the spikes added 

to the acceptor dataset as “hybrid spikes”, and the result as a “hybrid dataset”.

To evaluate spike detection performance, we used a heuristic criterion to identify which 

spikes detected by the algorithm corresponded to which hybrid spikes (see Methods). We 

measured performance as a function of three algorithm parameters (θw, θs and p), using four 

performance statistics.

The first statistic was the fraction of hybrid spikes detected (Fig. 3b). This showed a strong 

dependence on the thresholds: values of θs above 4 times standard deviation (4 SD) resulted 

in poor detection, particularly for low-amplitude cells. The dependence of performance on 

θw was more complex: poor performance resulted not just from overly high values (>2.5 

SD), but also overly low values (<2 SD). Examination of example errors (not shown) 

indicated that overly low values of θw led to inappropriate merging of temporally 

overlapping but spatially separated spikes, while overly high values led to artificial splitting 

of single spikes.

The second statistic was the total number of detection events (Fig. 3c). Because this includes 

noise events as well as true spikes of the hybrid and background cells, this number should be 

as small as possible provided the fraction correctly detected remains high. We found that this 
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statistic most critically depended on the strong threshold, increasing markedly for values 

below 4SD.

The third statistic was timing jitter: the standard deviation of the difference between the 

detected and actual times of each hybrid spike (Fig. 3d). Jitter was in all cases less than one 

sample, and improved for larger values of θs and θw, indicating that spike times are best 

estimated from a minority of larger amplitude spikes. For all hybrid cells, jitter was worse 

for p < 1; for low amplitude cells it showed a further worsening for p > 2, reflecting noise 

introduced by overweighting of peak amplitude times.

The final statistic was mask accuracy (Fig. 3e), which measures how closely the detected 

mask vectors match those expected from the ground truth (see Methods). This showed 

strongest dependence on θw with a peak around 2 SD, and less pronounced dependence on 

θs peaking around 5 SD.

We conclude that close to optimal performance can be obtained using a strong threshold of 4 

SD, a weak threshold of 2 SD and a power weight of 2. Furthermore, using these parameters 

yields around 95% correctly detected spikes, and spike timing jitter of 0.5 samples.

Cluster Analysis

The second step of our spike sorting pipeline is automatic cluster analysis, implemented in 

the program KlustaKwik.

For tetrode data, we previously found that cluster analysis using a mixture of Gaussians fit 

gave close to optimal performance8. This approach cannot be directly ported to high-

channel-count data for two reasons. The first is the “curse of dimensionality”: in high 

dimensions, noise measured on the large number of uninformative channels will swamp 

signals measured on the smaller number of informative channels. Second, because 

temporally overlapping spikes have similar feature vectors (Fig. 2F), further information 

such as the mask vectors must be used to distinguish these spikes.

To solve this problem, we designed a novel method, the “masked EM algorithm”30. This 

algorithm fits the data as a mixture of Gaussians, but with each feature vector replaced by a 

virtual ensemble in which features with masks near zero are replaced by a noise distribution 

(see Methods). Channels with low mask values are thus “disenfranchised”, and do not 

contribute to cluster assignment; the probabilistic nature of this disenfranchisement means 

false clusters are not created when amplitudes cross an arbitrary threshold. The 

computational complexity of this algorithm is better than that of the traditional EM 

algorithm, scaling with the mean number of unmasked channels per spike (which does not 

increase for larger arrays), rather than the total number of channels.

To evaluate the performance of this algorithm, we used the hybrid datasets described above. 

For each dataset, we identified the cluster containing most hybrid spikes and computed the 

false discovery rate (fraction of spikes in the cluster that were not hybrids), and the true 

positive rate (fraction of all hybrid spikes assigned to the cluster). To estimate the theoretical 

optimum performance that could be expected, we used the Best Ellipsoid Error Rate (BEER) 

measure8, which fits a quadratic decision boundary using ground truth data, and evaluates its 
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performance with cross-validation, varying the parameters of the classifier to obtain an ROC 

curve showing optimal performance.

The masked EM algorithm’s performance on an example hybrid dataset was close to the 

optimum estimated by the BEER measure but the classical EM algorithm’s performance was 

poor, with error rates typically exceeding 50% (Fig. 4a). Across all hybrid datasets, we 

found no significant difference between the total error of the masked EM algorithm and 

theoretical optimal performance (p = 0.8, t-test), but a significant difference between the 

performance of the Classical and Masked EM algorithms (p = 0.005, t-test; Fig. 4b). To 

ensure the poor performance of the classical EM algorithm did not simply reflect incorrect 

parameter choice, we reran it for multiple values of the penalty parameter (which determines 

the number of clusters found), but this could not improve Classical EM performance. This 

analysis also demonstrated that the error rates of the masked EM algorithm were largely 

independent of the penalty parameter; using a value corresponding to the Bayesian 

Information Criterion seems a good option for penalty choice, as it led to a reasonably small 

number of clusters without compromising error rates (Fig. 4c,d).

We conclude that the performance of the Masked EM algorithm is close to optimal for this 

clustering problem, yielding false positive and false discovery rates both of the order 5%.

Manual Curation

The final step of the spike sorting pipeline is manual verification and adjustment of cluster 

assignments, which are implemented in the program KlustaViewa.

Although semi-automatic clustering provides more consistency and lower error rates than 

fully manual spike sorting8, further manual corrections are typically required, such as 

merging of clusters split due to electrode drift, bursting, or other reasons27-29. These 

waveform shifts are hard to model and correct mathematically, but can usually be identified 

by inspection of waveforms, auto- and cross-correlograms, and cluster shapes. It is essential 

that this step be done with a minimum of human operator time, a particularly acute problem 

with the very large numbers of neurons recorded by large dense electrode arrays. 

Specifically, if N clusters are produced automatically, it is impractical for a human operator 

to inspect all order N2 potential merges.

We addressed this problem using a semi-automatic “Wizard,” that reduces the number of 

potential merges to order N. The Wizard works by presenting the operator with pairs of 

potentially mergeable clusters, ordered by a measure of pairwise cluster similarity. Because 

the Wizard is used iteratively, this measure must be computable in a fraction of a second, 

even for datasets containing millions of spikes. Thus, only metrics based on summary 

statistics of each cluster, rather than individual points, are suitable. We evaluated several 

candidate similarity measures. The Kullback-Leibler divergence between two Gaussian 

distributions was unsuitable as it overweighted differences in covariance matrix relative to 

differences in the mean. However, good performance was obtained using a single step of the 

masked EM algorithm to compute the similarity of the mean of one cluster to each of the 

others (Fig. 5a). To verify the accuracy of this measure, we simulated automatic clustering 

errors by splitting the ground truth clusters in the hybrid datasets into two subclusters 
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containing high and low amplitude spikes. In all cases, the similarity measure correctly 

identified the other half of the artificially split cluster (Fig. 5b).

The manual stage can take several hours of operator time, and human error is lowest during 

the start of this period. The Wizard therefore iteratively presents the operator with decisions 

that can be made quickly, with the most important decisions presented first. The Wizard 

iterates through all clusters starting with the best currently unsorted spikes. The remaining 

clusters are ordered by similarity to the best unsorted cluster, and the decision of whether to 

merge, split, or delete each merge candidate is in turn made by the operator (Fig. 5c,d). Once 

satisfied that no more potential merges exist for the currently best unsorted cluster, the 

operator either accepts it as a well-isolated neuron, or rejects it as multiunit activity or noise, 

and the top-level iteration begins again.

Although the Wizard guides the operator through the decision process, the operator at all 

times has free access to all data required to make rapid decisions, provided by 

KlustaViewa’s user-friendly and easily-navigable graphical user interface (Figure 6). Using 

this software, the time taken for manual curation scales linearly with the number of clusters, 

with a scaling factor that varies between operators and is generally about 1 minute per 

cluster, regardless of probe size. This software therefore allows for thorough manual 

curation of a dense-array recording in a few hours.

We assessed the performance of 8 human operators (5 experienced spike-sorters, 3 novices) 

using this system (Fig. 7a). First, we asked whether the operators would correctly fix a 

misclustering that was produced by the masked EM algorithm in simulation of electrode 

drift (described further below). All experienced operators, and all but one of the novices did 

this correctly. Second we asked how consistent the results of these operators would be on the 

same dataset (Fig. 7b-d). We separately assessed consistency on spikes that all operators had 

identified be in “good” clusters, on spikes that at least one operator had identified to be in a 

good cluster, and on all remaining spikes. Similarity was assessed with the Fowlkes-Mallows 

index31, which gives a score between 1 for complete agreement, and 0 for complete 

disagreement. For all operators apart from one of the novices, consistency was extremely 

high for those spikes identified as good by at least one operator (Fig. 7e,f); nevertheless the 

judgement of whether a cluster should be considered well-isolated varied between operators 

(Fig. 7g). We conclude that experienced operators are likely to make accurate and consistent 

judgements on cluster merging identification, but that the judgement on which clusters to 

term “good” is inconsistent; we therefore recommend that quantitative metrics32, 33 be used 

to determine isolation quality.

Additional tests

We used the system described above to answer several additional questions regarding the 

process of spike sorting, and the design of electrodes.

First, we used our simulated ground truth dataset to ask how spike sorting performance 

would change for different electrode designs. We considered two cases. In the first (“site 

thinning”; Supplementary Figs. 1 and 2), the electrode was made less dense by omitting 

alternating channels on both sides. We evaluated the performance of spike detection and 
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clustering using the same hybrid spikes described earlier, but only on this subset of channels 

(the adjacency graph was modified to join any two channels that both connected to a missing 

channel). Spike detection was strongly impacted, with correct detection rates dropping to an 

average of below 80% (Supplementary Fig. 1). Clustering performance was also impacted, 

as assessed both by the theoretical optimum, and by the Masked EM algorithm. While some 

cells saw little decrease in clustering performance (typically those found on multiple 

channels), others were strongly impacted by both metrics (Supplementary Figure 2). We 

conclude that performance in rat cortex decreases substantially for site spacing larger the 

40μm same-side site spacing of these test probes.

Next, we simulated removing one side of the probe (Supplementary Figs. 3 and 4). Of the 10 

hybrid cells analyzed, 6 were only detectable on one of the probe’s two sides, while the 

other 4 could be detected on both sides to a greater or lesser extent (Supplementary Table 1). 

The effect of side removal was different to that of site thinning. The performance of each 

unit’s “preferred side” was comparable to that of the full probe. However, for the 4 units that 

were visible on both sides of the probe, performance on the “unpreferred side” was 

substantially worse than performance on the full probe, as assessed both by theoretical 

optimum performance and the actual results of the masked EM algorithm. We conclude that 

in staggered probes, the probe’s two sides function largely independently: the primary 

benefit of two-sided shanks is not to increase the isolation quality of a cell already well 

isolated on one side of the probe, but to record from a larger number of units.

Next, we asked whether similar performance to that seen in neocortex could also be obtained 

in other brain structures and species. We first generated an additional 5 hybrid cells using 

10-site recordings from rat CA1 (Supplementary Figs. 5 and 6). Good performance was 

again obtained; furthermore, the spike detection parameters found to be optimal in cortical 

data were also optimal in CA1 data. We then ran the same code on high-count data collected 

from a wider range of preparations: V1 of awake mouse and awake macaque monkey 

(Supplementary Figs. 7-9), and LGN thalamus of anesthetized marmoset (Supplementary 

Fig. 10). Additional confidence in the method was provided both by further analyses of 

hybrid data (Supplementary Fig. 11) and by the observation of sharp orientation-tuned 

responses (Supplementary Fig. 7c-l), including amongst cells of apparently similar 

waveforms that were nevertheless separated by the spike sorting procedure (Supplementary 

figure 7m).

Next, we asked how well the system would deal with non-stationarity in spike amplitudes. 

Such non-stationarity can occur both because of electrode drift, and also because of activity-

related changes in spike amplitude such as after bursts or prolonged periods of firing27. 

Examination of data from acute recordings (where electrode drift is often stronger than with 

chronic probes), showed that the algorithm often tracked drift successfully, but in other cases 

split the spikes of a single drifty cell into multiple clusters requiring manual merging 

(Supplementary Fig. 12).

To simulate nonstationarity, we constructed 6 hybrid datasets in which spike amplitude 

drifted throughout the recording as a geometric random walk (Supplementary Fig. 13). Spike 

detection was hardly impacted by this nonstationarity (Supplementary Fig. 14). For 
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clustering, only one of the 6 drifty hybrid datasets required manual curation, and once this 

was performed, accuracy of the masked EM algorithm was comparable to the theoretical 

optimum (Supplementary Fig. 15). A different type of nonstationarity, in which the hybrid 

cell simply stopped firing halfway through the recording, also had no effects on performance 

(p=0.75; two-sample t-test on total errors; Supplementary Fig. 16). As an important task is 

often to track cells between recordings made over multiple days – i.e. where drift occurs in 

non-recorded periods – we also asked whether the Wizard’s similarity metric might be used 

for this purpose. Although ground truth data was not available, a conservative criterion gave 

encouraging results, as indicated by the similarities of the autocorrelograms of the units 

associated to each other (Supplementary Fig. 17).

A strategy sometimes used to deal with nonstationarity is to include time as an additional 

feature in the cluster analysis algorithm, in principle allowing the algorithm to track slow 

changes in amplitude. To our surprise, we found that this actually worsened clustering 

performance, which could not always be overcome by manual curation (Supplementary Fig. 

15). We conclude that nonstationarity (at least of the type modelled here) does not present a 

serious problem to automatic sorting performance if time is not added as an additional 

feature, and if manual curation is performed when required.

Discussion

We have produced a software suite for spike sorting of data from large, dense electrode 

arrays. Analysis of simulated ground-truth data indicated that error rates of this approach are 

frequently of the order 5%.

A critical step in this system, and all others currently in wide use for in vivo data, is manual 

curation. Extracellular array recordings are subject to numerous sources of error including 

electrode drift, overlapping spikes, and the fact that neuronal spike waveforms are not 

constant, but change according to firing patterns including but not limited to bursting27-29. 

While most working neurophysiologists have a good understanding of these potential 

artifacts, formalizing this knowledge into a reliable mathematical model has proved 

challenging. Because spike sorting errors could lead to erroneous scientific conclusions29, it 

remains essential that a scientist is able to inspect the results produced by an automatic 

algorithm, then correct or discard its results. We found that experienced operators tended to 

make similar judgements during the manual curation process, but that their judgements of 

which units were well-isolated were subjective. Fortunately, quantitative criteria exist for 

assessing the quality of unit isolation32, 33, and we therefore recommend that these be used, 

rather than human judgements, when deciding which cells to include in further scientific 

analysis.

The current performance of the system is sufficient for practical analysis of data produced 

by current, commercially-available silicon probes. Nevertheless, there remain areas for 

further improvement. The first of these concerns execution time. KlustaKwik is several 

orders of magnitude faster than standard mixture of Gaussians fitting; nevertheless, when 

running on large datasets, it can take hours or even days to complete on a standard single-

core machine. Hardware acceleration such as GPUs34 or cloud computing35 may speed up 
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this analysis stage, as may alternative cluster analysis algorithms that exclude the most 

computationally expensive step of covariance matrix estimation (e.g. Refs. 36, 37). Faster 

versions of the code presented here, currently under development, are available at https://

github.com/kwikteam/klustakwik2 and https://github.com/kwikteam/phy. A second 

opportunity for improvement regards the detection of spatiotemporally overlapping spikes. 

While the current algorithm can detect the majority of temporally overlapping spikes, which 

occur on distinct sets of channels, it cannot resolve spikes that overlap in both space and 

time. Template-matching algorithms have solved this problem in the case of in vitro retinal 

array data38, 39, but these data are much less noisy than in vivo brain recordings. While 

recent research suggests that certain forms of template matching may succeed at least for 

tetrode data in vivo18, 21, such methods are not at present widely applied to in vivo 
recordings, and numerous challenges need to be overcome, most critically regarding the 

manual curation step. The platform we have described here constitutes both a practical 

solution to today’s spike sorting challenges, and also a framework from which to develop 

solutions for future generations of electrodes containing thousands of channels.

Methods

A supplementary Methods checklist is available.

Test data

To test the algorithm, we created simulated ground truth data using a method termed “hybrid 

datasets”. The primary raw data used to construct this ground truth (shown in the main text 

figures) consisted of two separate recordings from somatosensory cortex (−3.8 mm from 

bregma, 3 mm lateral to midline, 1mm depth) of sleeping adult rats, using silicon probes 

with 32 non-activated platinum-plated recording sites of size 10×16 μm arranged in a 

staggered shank configuration (vertical spacing 20 μm between adjacent sites on opposite 

sides of the shank, 40 μm between adjacent sites on the same side), mounted on a home-

made microdrive. Ground and reference electrodes were stainless steel screws over the 

cerebellum. Data was continuously recorded wideband (1Hz-Nyquist), at a sampling rate of 

20 kHz. During the recording session, the signals were amplified (1000×), bandpass filtered 

(1 to 5000 Hz), and acquired continuously at 20 kHz on a 128-channel DataMax system (16-

bit resolution; RC Electronics). All protocols were approved by the Institutional Animal 

Care and Use Committee of Rutgers University.

To perform additional tests (supplementary figures 5-12), we analyzed data collected in 

additional brain structures and species. Data was collected from the septal third of 

hippocampal CA1 region in male rats using 10-site silicon probes using the same methods as 

above. All protocols were approved by the Institutional Animal Care and Use Committee of 

Rutgers University. To obtain recordings in mouse V1, mice were implanted with a custom-

built head post and recording chamber (4 mm inner diameter) under isoflurane anesthesia. 

After several days acclimatization to head-fixation, animals were anesthetized under 

isoflurane and a ~1 mm craniotomy was performed over area V1 one day prior to the first 

recording (see Refs. 40, 41 for further details). Data were recorded with an acutely-inserted 

32-site Neuronexus Edge probe (20 micron spacing). Experiments were conducted 
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according to the UK Animals (Scientific Procedures) Act, 1986 under personal and project 

licenses issued by the Home Office following ethical review. Non-chronic recordings were 

obtained from cortical area V1 of two awake, behaving, adult male rhesus monkeys (macaca 
mulatta) using Neuronexus Poly2 and custom-designed Edge (60 micron spacing) Vector 

probes. Animals were first implanted with scleral search coils and fit with a custom-built 

titanium head post and recording chamber (see Refs. 42, 43 for further details). Subsequently, 

a 2-3mm diameter trephination was performed through which daily penetrations would be 

made. Data were acquired as broad-band signals (0.5–16 kHz, sampled at 32 kHz), digitized 

at 24-bits using PXI-4498 cards (National Instruments, Austin, TX). All procedures were 

conducted in accordance with the ethical guidelines of the National Institutes of Health and 

were approved by the Baylor College of Medicine IACUC. To obtain recordings from dorsal 

lateral geniculate nucleus (LGN) of sufentanil-anaesthetised adult male marmoset monkey 

(Callithrix jacchus), a craniotomy was made over the right LGN and a Neuronexus A16×2 

probe (500μm probe separation, 50μm spacing between contact points on each shank) was 

lowered into LGN and allowed to settle for at least 30 minutes before recording. Data were 

band-pass filtered (0.3–5kHz, sampled at 24kHz), and digitized by a Tucker-Davis 

Technologies RZ2 real time processor (see Ref. 44 for further details). All procedures were 

approved by the University of Sydney Animal Ethics Committee and conform to Australian 

National Health and Medical Research Council (NHMRC) policies on the use of animals in 

neuroscience research.

Hybrid datasets

To create the hybrid datasets, we first completed a full spike sorting of each dataset, 

including manual verification. Five clusters were chosen from each dataset, corresponding to 

neurons spanning the range of amplitudes and channel distributions observed in the data 

(Figure 3A). The mean unfiltered waveform of each neuron was computed, its mean was 

subtracted, and its value at each end was set to exactly zero by tapering with a Hamming 

function. These “donor waveforms” were added at prescribed times to the raw unfiltered 

data of the other “acceptor” recording. To simulate amplitude variability, we linearly scaled 

each added waveform by a random factor chosen from the range [ ] causing 

amplitudes to vary by a factor of two, which suffices to capture the variability typical of 

bursting neurons 27. The interspike intervals typical of bursting neurons were not simulated 

as this does not affect the spike detection or clustering process; instead, hybrid spikes were 

added regularly at rates in the range 2-4 spikes per second. To ensure that the simulated data 

tested the ability of our software to realign spikes to subsample resolution, each added spike 

was shifted by a random subsample offset using cubic spline interpolation. For simulations 

of drifty cells, amplitude was as geometric random walk (i.e. the exponential of a Brownian 

random walk), which was then normalized so that the mean amplitude remained the same as 

its non-drifty counterpart.

File format

To implement the software, we designed an HDF5-based file format to store raw data, 

intermediate analysis results (such as extracted spike waveforms and feature vectors), as 

well as final data such as spike times and cluster assignments 45. The format makes use of 
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HDF5 links to allow a single, small file (the “.kwik file”) containing all data required for 

scientific analysis (e.g. spike times, cluster assignments, unit isolation quality measures). 

Bulky raw data and intermediate processing steps such as feature vectors are stored in 

separate files (the “.kwd” and “.kwx” files). This “detachable” format is designed for data 

sharing applications, allowing users to download as much data as required for their needs. A 

full specification of the format can be found at https://phycortexlab.net/format.

SpikeDetekt

Spike detection was implemented by SpikeDetekt, a custom program written in Python 2.7 

using the packages NumPy, SciPy, and PyTables.

The first step of the program is to filter the raw voltage trace data to remove the low-

frequency local field potential (LFP). This is achieved with a 3rd order Butterworth filter 

used in the forward-backward mode to ensure zero phase distortion. Filter parameters can be 

specified by the user; for the analyses described here we used a band-pass filter of 500 Hz to 

0.95*Nyquist.

The second step is threshold determination. Spike detection thresholds are specified as 

multiples of the standard deviation of the filtered signal; at the option of the user, a single 

threshold is used for all channels in order to avoid emphasizing noise from low-amplitude 

channels. To boost execution speed while minimizing the chance of biased estimates, the 

standard deviation is estimated from five data chunks of length 1 second each, picked 

randomly from throughout the recording. The standard deviation is computed with a robust 

estimator, median(|V|)/.6745, to avoid contamination by spike waveforms.

The next step is spike detection. The spike detection code operates on consecutive chunks of 

data (1s length) for memory efficiency. Spatiotemporally connected regions of weak 

threshold crossing are detected using a non-recursive flood fill algorithm, with spatial 

continuity defined using a user-specified adjacency graph. Only connected components for 

which at least one point exceeds the strong threshold are kept for further analysis.

Spike alignment is computed based on a scaled and clipped transformation of the filtered 

voltage V(t,c):

Note that ψ(t, c) can never be negative within a spike, as the floodfill algorithm only finds 

points for which −V(t, c) > θw. The center time for each spike S is computed as
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where (t, c) ∈ S denotes the set of times and channels, for all points assigned to this spike by 

the floodfill algorithm. If p = 1, this formula measures the spike’s center of mass; if p = ∞, 

it measures the time of the spike peak.

Spikes were realigned on  to subsample resolution using cubic spline interpolation (note 

that the center time will, in general, not be an integer number of samples). Feature vectors 

are computed for each channel separately by principal component analysis; the number of 

features per channel is a user settable parameter, with default value 3. Finally, mask vectors 

are computed for each spike S as zero for channels not appearing in the connected 

component, and as the maximum scaled waveform for all channels inside the component:

To evaluate the performance of SpikeDetekt, required identifying which detected spikes 

correspond to ground truth spikes. This was done with a dual criterion: the difference 

between the detected time and ground truth needed to be less than 2 samples, and the 

detected mask vector ms needed to have a similarity to the ground truth mask vector mG of 

at least 0.8, defined by the mask similarity measure

Note that mask similarity cannot exceed 1, by the Cauchy-Schwartz inequality. The validity 

of this criterion was verified by showing that detected spike timing jitter rapidly increased 

for similarity threshold for values less than 0.8, but was insensitive to threshold value above 

0.8. Once the detected spikes corresponding to ground truth had been identified, the four 

measures in figure 3 were computed. This analysis used the Python library Joblib to prevent 

unnecessary recomputation.

KlustaKwik

Automatic clustering was performed by KlustaKwik, a custom program written in C++. The 

first version of this program was designed for tetrode data, implemented a hard EM 

algorithm for maximum-likelihood fitting of a mixture of arbitrary-covariance Gaussians, 

and was released in 2000 but not specifically described in a published manuscript. Here, we 

have implemented several modifications of this software to enable automatic sorting of high-

count probe data. The program now implements a novel “masked EM algorithm” 30 

designed for high-dimensional classification, as well as other features such as cache 

optimization resulting in a speed increase of over 10,000%.

The masked EM algorithm takes as input both feature vectors and mask vectors. It works by 

fitting a mixture of Gaussians to a virtual dataset in which each feature vector is replaced by 

a probability distribution:
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Here, xn, S represents the nth component of the feature vector for spike S; mn, S represents 

the nth component of the mask vector for spike S; and N (vn, ) denotes a univariate 

Gaussian distribution with mean and variance equal to those of the subthreshold noise 

distribution of the nth feature.

The masked EM algorithm consists of alternation of an “E step” in which each spike is 

assigned to the cluster for which it has highest posterior probability, and an “M step” in 

which the means and covariances of each cluster are estimated. We have derived analytic 

formulas for the expectation of the cluster assignment probability used in the E-step, and the 

cluster mean and variance used in the M step, over the virtual probability distribution  30. 

Thus, explicit sampling from the virtual distribution does not need to be performed; 

furthermore, these expectations can be computed much faster than those of the full EM 

algorithm as they scale with the square of the number of unmasked features, rather than the 

square of the total number of features.

KlustaKwik automatically determines the number of clusters that best fit the data, 

determined using a penalty function that encodes a preference for fits with smaller numbers 

of clusters. We have found a modification of the Bayesian Information Criterion to deal with 

masked data works well in practice 30. Because the algorithm allows for dynamic splitting 

and merging of clusters during the fitting process, a search for the optimal number of 

clusters can be achieved in a single run of the algorithm. We have found that starting the 

algorithm from an initial clustering determined heuristically from the mask vectors avoids 

the problem of local maxima, and allows good results to be obtained from a single run.

KlustaViewa

Manual correction of automatic clustering is performed with KlustaViewa, a custom 

program written in Python 2.7. The manual stage requires interactive visualization of very 

large numbers of data points, for which existing libraries such as matplotlib were not 

suitable. We therefore designed a new Python library for rapid interactive data visualization 

named Galry 46. Galry leverages the computational power of modern graphics processing 

units 34 through the OpenGL graphics library 47. High performance is achieved by porting 

most visualization computations to the GPU using custom shaders, and by minimizing the 

number of OpenGL API calls through batch rendering techniques.

To ensure rapid adoption by the experimental community, we designed KlustaViewa’s user 

interface by the integrating novel features necessary for high-count probes into a user 

interface as similar as possible to existing manual spike sorting environments such as 

Klusters 13. In addition to data views familiar from previous spike sorting systems (such as 

waveform, auto- and cross-correlograms, and similarity matrix), we implemented several 

new features. The most important of these is the Wizard (described in the main text), that 

automatically leads the user through the manual verification and merging process, while 
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always allowing the user free access to all of the views familiar from standard spike sorting 

systems. In addition, a number of enhancements were designed specifically to make the 

sorting of high-count probe data tractable. These include features to allow display of 

masking information; rapid and automatic display of the channels relevant to selected 

clusters; transient color brushing 48; and automatic downsampling to ensure low latency 

display when dealing with very large datasets.

The Wizard is based on a metric of similarity for each pair of clusters. This was computed 

by running a single step from the EM algorithm to compute the posterior probability for 

assigning the mean of cluster i to cluster j:

Here wj represents the weight of cluster j (i.e. the fraction of points already assigned to this 

cluster); μj and Cj represent its mean and covariance as computed by the M-step of the 

masked EM algorithm. The quality of each cluster j was defined as the diagonal element pjj, 

i.e. the posterior probability for classifying cluster j’s mean as coming from cluster j itself. A 

high value for pjj therefore indicates that cluster j has no close neighbors.

The difference between two clusterings C,C′, consisting of K and K′clusters, respectively, 

and confusion matrix entries, nkk′ where measured using the Fowlkes-Mallows31 index, 

, where:

nk′ = Σk nkk′ , n′ k′ = Σk′ nkk′, , k = 1,…,K,k′ = 1,…,K′. W1 is the probability that a pair 

of points which are in the same cluster under the clustering C is also in the same cluster in C
′. W2 is the same with the two clusterings interchanged. The Fowlkes-Mallows index 

symmetrizes these two asymmetric quantities by taking their geometric mean.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. High-count silicon probe recording
(a), Layout of the 32-site electrode array used to collect test data. (b), Short segment of data 

recorded in rat neocortex with this array. Color of traces indicates recording from the 

corresponding colored site in (a). Black rectangles highlight action potential waveforms; 

note the frequent occurrence of temporally overlapping spikes on separate recording 

channels.
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Figure 2. Local spike detection algorithm
(a), Adjacency graph for the 32-channel probe. (b), Segment of raw data showing two 

simultaneous action potentials on spatially separated channels (scale bars indicate 0.5mV / 

10 samples). (c), High-pass filtered data shown in pseudocolor format (units of standard 

deviation). Vertical lines on the colorbar indicate strong and weak thresholds, θs and θw 

(respectively 4 and 2 times standard deviation). (d), Gray-scale representation showing 

samples which cross the weak threshold (gray), and the strong threshold (white). (e), Results 

of two-threshold flood fill algorithm, showing connected components corresponding to the 

two spikes in orange and brown. Note that isolated weak threshold crossings resulting from 
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noise are removed. White lines indicate alignment times of the two spikes. (f), Pseudocolor 

representation of feature vectors for the two detected spikes (top and bottom). Each set of 

three dots represents three principal components computed for the corresponding channel 

(arbitrary units). Note the similarity of the feature vectors for these two simultaneous spikes 

(top and bottom). (g), Mask vectors obtained for the two detected spikes (top and bottom; 0 

represents completely masked, 1 completely unmasked). Unlike the feature vectors, the 

mask vectors for the two spikes differ. Each set of three dots represents the three identical 

components of the mask vector for the corresponding channel.
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Figure 3. Evaluation of spike detection performance
(a), Waveforms of the 10 donor cells used to test spike detection performance, in order of 

increasing peak amplitude (left to right). (b), Fraction of correctly detected spikes as a 

function of strong threshold θs (left), weak threshold θw (center), and power parameter p 
(right). Colored lines indicate performance for the correspondingly colored donor cell 

waveform shown in A; black line indicates mean over all donor cells. (c-e), Dependence of 

the total number of detected events, timing jitter, and mask accuracy on the same three 

parameters.
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Figure 4. Evaluation of automatic clustering performance
(a), Receiver-Operating Characteristic (ROC) Curve showing the performance of the 

Masked EM algorithm (blue) and Classical EM algorithm (red) on one of the 10 hybrid 

datasets; each dot represents performance for a different value of the penalty parameter. The 

cyan curve shows a theoretical upper bound for performance, the best ellipsoid error rate 

(BEER) measure obtained by cross-validated supervised learning. (b), Mean and standard 

error of the total error (false discovery plus false positive) over all 10 hybrid datasets for 

theoretical optimum (BEER measure), Masked EM and Classical EM algorithms. For each 

dataset and measure, the parameter setting leading to best performance was used. (c), Effect 

of varying the penalty parameter (as a multiple of the AIC penalty) on the total error for both 

algorithms. The dotted line indicates the parameter value corresponding to BIC. Note that 

the Masked EM algorithm performed well for all penalty values. (d), The number of clusters 

returned by the Masked EM algorithm as a function of the penalty parameter.

Rossant et al. Page 22

Nat Neurosci. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. The “Wizard” for computer-guided manual correction
(a), Illustration of the measure used to quantify cluster similarity. pij represents the posterior 

probability with which the EM algorithm would assign of the mean of cluster i to cluster j. 
(b), To test this measure, the clusters corresponding to hybrid spikes were artificially cut into 

halves of high and low amplitude. In each case, the similarity measure identified the second 

half as the closest merge candidate. (c), The Wizard identifies the best unsorted cluster as the 

one with highest quality (top), and finds the closest match to it using the similarity matrix. 

(d), The Wizard algorithm. The best unsorted cluster and closest match are identified. The 

operator can choose merge the closest match into the best unsorted, ignore the closest match, 

or delete it by marking it as multiunit activity or noise; the wizard then presents the next 

closest match to the operator (blue arrows). After a sufficient number of matches have been 

presented, the operator can decide that no further potential matches could have come from 

the same neuron, and either accept the best unsorted cluster as a well-isolated neuron, or 

delete it as multiunit activity or noise. The wizard then finds the next best unsorted cluster to 

present to the operator (orange arrows).
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Figure 6. Screenshot of the KlustaViewa graphical user interface
In order to make the decisions presented by the Wizard, the operator has access to 

information including waveforms (center panel; gray waveforms correspond to masked 

channels), principal component features (top right), auto- and cross-correlograms (bottom 

right), and an automatically computed similarity metric for each pair of clusters (inset). To 

enable rapid navigation, all views are integrated; for example, clicking on a particular 

channel in the Waveform View will update other views to show the selected channels or 

clusters.

Rossant et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7. Consistency of manual curation across operators
(a), Performance of 8 human operators (5 experts, 3 novices) on a “drifty” hybrid cell 

requiring manual curation (see supplementary figure 13b). A tick indicates correct merging 

of the split hybrid cell, a cross indicates this merge was not performed. (b-d), consistency of 

assignments of multiple operators over all cells in this dataset. Each submatrix shows the 

conditional probability of the first operator’s cluster assignments given the assignments of 

the second operator (color scale at bottom of (d)). (b), consistency of cluster assignments for 

spikes marked as well-isolated by all operators; (c), consistency of cluster assignments for 
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spikes marked as well-isolated by at least one operator; (d), consistency of whether spikes 

were marked as well-isolated by different operators. (e-g): Operator consistency for the 

analyses of (b-d) was quantified using the Fowlkes-Mallows index, for which 1 represents 

complete agreement and 0 complete disagreement. Note that while cluster assignments were 

highly consistent between all expert operators, the operators were often inconsistent in their 

judgements of which units were well-isolated.
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