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Abstract

A graph is clique-Helly if any family of mutually intersecting cliques has non-empty
intersection. Dourado, Protti and Szwarcfiter conjectured that every clique-Helly
graph contains a vertex whose removal maintains it as a clique-Helly graph. We will
present a counterexample to this conjecture.
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1 Introduction

A set family F satisfies the Helly property if the intersection of all the mem-
bers of any pairwise intersecting subfamily of F is non-empty. This property,
originated in the famous work of Eduard Helly on convex sets in the Euclidean
space, has been widely study in diverse areas of theoretical and applied math-
ematics such as extremal hypergraph theory, logic, optimization, theoretical
computer science, computational biology, data bases, image processing and,

1 Partially supported by SEP-CONACyT, grant 285362.



clearly, graphs theory. A few surveys have been written on the Helly property,
see for instance [1,2,4,5].

From the computational and algorithm point of view, the relevance of the
Helly property has been highlighted in the survey [3]. In the section Proposed
Problems of that work, the authors posed the following open question:

Conjecture 1.1 (Dourado, Protti and Szwarcfiter) Every clique-Helly
graph (the family of maximal cliques of the graph satisfies the Helly property)
contains a vertex whose removal maintains it as a clique-Helly graph.

In this work, we prove the conjecture is false: in Section 3 we will exhibit a
clique-Helly graph G such that G−v (the graph obtained from G by removing
vertex v) is not clique-Helly for every vertex v of G.

2 Definitions and preliminary results

Given a finite and simple graph G, we let V (G) and E(G) denote the vertex
set and the edge set of G, respectively.

The open and the closed neighborhood of a vertex v ∈ V (G) are de-
noted by NG(v) and NG[v] respectively. The degree of v is the cardinality of
NG(v).

If S ⊆ V (G) then the subgraphs of G induced by S and by V (G) \ S are
denoted by G[S] and G − S, respectively. When S contains a unique vertex
v, we write G− v for G− {v}.

The complete graph on n vertices is denoted by Kn. A complete set of
G is a subset of V (G) inducing a complete subgraph. A clique is a maximal
(with respect to the inclusion relation) complete set. We let C(G) be the family
of cliques of G. When C(G) satisfies the Helly property, we say that G is a
clique-Helly graph. The clique graph K(G) of G is the intersection graph
of C(G): the vertices of K(G) are the cliques of G and two different cliques of
G are adjacent in K(G) if and only if they have non-empty intersection.

A chordless cycle in G is a sequence of at least three distinct vertices
v1, v2, . . . , vk of G such that two of them are adjacent in G if and only if they
are consecutive in the sequence or they are v1 and vk. The positive integer k
is the length of the cycle. The chordless cycle of length k is denoted by Ck.
The girth g(G) of G is the length of a shortest chordless cycle in G (if G has
no cycles, then g(G) = ∞). The local girth of G at a vertex v ∈ V (G)
is the girth of the subgraph induced by the open neighborhood of v in G, i.e
lgv(G) = g(G[N(v)]). The minimum of the local girths at the different vertices
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Fig. 1. The icosahedron.

of G is denoted by lg(G) and named the local girth of G, i.e.

lg(G) = min{lgv(G) : v ∈ V (G)}.

Theorem 2.1 [6] If the local girth of the graph G is greater than 6 (i.e.
lg(G) ≥ 7) then K(G) is clique-Helly.

Definition 2.2 A graph G is critical clique-Helly if G is clique-Helly and
G− v is not clique-Helly for every v ∈ V (G).

Notice that in terms of the previous definition the conjecture of Dourado,
Protti and Szwarcfiter postulates that there are no critical clique-Helly graphs.
In what follows, a counterexample to that conjecture will be obtained as the
clique graph of the tensor product of the icosahedron and the complete graph
with three vertices K3 (which is also called a triangle).

The icosahedron I is the graph with vertex set {1, 2, . . . , 12} depicted in
Figure 1. The following properties of I can be easily checked.

Proposition 2.3 (i) Every vertex of I has degree 5.
(ii) The open neighborhood of each vertex of I induces a C5.
(iii) The cliques of I are precisely its faces which are all triangles.
(iv) Every vertex of I is in exactly 5 cliques.



(1, 1)

(2, 2) (3, 3)

(4, 2)

(5, 3)

(6, 2)

(2, 3)(3, 2)

(4, 3)

(5, 2)

(6, 3)

(8, 1)

Q0

A

B

C

Fig. 2. A partial drawing of I ×K3.

The tensor product I×K3 is the graph with V (I×K3) = V (I)×{1, 2, 3}
and E(I ×K3) defined as follows: two vertices (i, j) and (i′, j′) are adjacent
in I × K3 if and only if i is adjacent to i′ in I and j ̸= j′. Clearly, I × K3

is a graph on 36 vertices. Figure 2 shows an induced subgraphs of I × K3

including the neighborhood of the vertex (1, 1).

Lemma 2.4 (i) Every vertex of I ×K3 has degree 10.
(ii) The open neighborhood of each vertex of I ×K3 induces a C10.
(iii) The cliques of I × K3 are triangles {(i, 1), (j, 2), (k, 3)} for {i, j, k} any

triangle of I.
(iv) Every vertex of I ×K3 is in exactly ten cliques; and any other clique of

I×K3 (i.e. any clique which does not contain the given vertex) intersects
at most three of those ten cliques.



Proof. 1. Consider the vertex (1, 1) of I × K3. Since NI(1) = {2, 3, 4, 5, 6}
(see Figure 1), we have that NI×K3((1, 1)) = {(i, j) : i ∈ {2, 3, 4, 5, 6} and j ∈
{2, 3}}. The regularity of I extends the proof to any other vertex of I ×K3.

2. Again consider the vertex (1, 1) of I × K3 and its ten neighbors. It is
easy to check that the adjacencies between them are exactly the ones depicted
in Figure 2; thus NI×K3((1, 1)) induces a C10 in I × K3. The regularity and
symmetry of I extends the proof to any other vertex of I ×K3.

3. It is a clear consequence of the previous two items.
4. One more time, without loss of generality, consider the vertex (1, 1) of

I × K3. That (1, 1) is in exactly ten cliques follows from items 1 and 2, see
Figure 2. On the other hand, if Q is a clique which does not contain the vertex
(1, 1) then Q contains at most two consecutive vertices of the cycle induced
by the neighbors of (1, 1) which implies that Q intersect at most three of the
ten cliques containing (1, 1). 2

3 The main theorem

Theorem 3.1 The graph K(I ×K3) is critical clique-Helly.

Proof. By item 2 of Lemma 2.4, the local girth of I×K3 equals 10, therefore,
by Theorem 2.1, K(I ×K3) is clique-Helly.

Let Q0 be any vertex of K(I ×K3), i.e. Q0 is a clique of I ×K3. Without
loss of generality assume Q0 = {(1, 1), (2, 2), (3, 3)} (see Figure 2). We will
prove that K(I ×K3)−Q0 is not clique-Helly.

For i ∈ {1, 2, 3}, let Di be the set of vertices of K(I × K3) − Q0 corre-
sponding to the cliques of I ×K3 containing the vertex (i, i), that is

Di = {Q ∈ C(I ×K3) : (i, i) ∈ Q} \ {Q0}.

By item 4 of Lemma 2.4, Di is a clique of K(I ×K3)−Q0 for i ∈ {1, 2, 3}.
We claim these three cliques are pairwise intersecting but the intersection of all
three of them is empty: Indeed, the vertices of K(I×K3)−Q0 corresponding to
the cliques {(1, 1), (2, 2), (6, 3)}, {(2, 2), (3, 3), (8, 1)} and {(1, 1), (3, 3), (4, 2)}
of I × K3 (named A, B and C respectively in Figure 2) belong to D1 ∩ D2,
D2 ∩D3 and D1 ∩D3, respectively. And, finally, assume in order to obtain a
contradiction that a vertex Q of K(I × K3) − Q0 belongs to D1 ∩ D2 ∩ D3,
then, by definition of theses sets, Q is a clique of I×K3 such that (i, i) ∈ Q for
i ∈ {1, 2, 3}. Thus, by item 3 of Lemma 2.4, Q = {(1, 1), (2, 2), (3, 3)} = Q0

which contradicts the fact that Q is a vertex of K(I ×K3)−Q0. 2
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