
Physica B 406 (2011) 1096–1105
Contents lists available at ScienceDirect
Physica B
0921-45

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/physb
Dimer adsorption on square surfaces with first- and
second-neighbor interactions
A.J. Phares a,�, P.M. Pasinetti b, D.W. Grumbine Jr. c, F.J. Wunderlich a

a Department of Physics, Villanova University, Mendel Science Center, Villanova, PA 19085-1699, USA
b Departamento de Fı́sica, Instituto de Fı́sica Aplicada, Universidad Nacional de San Luis—CONICET, Chacabuco 910, 5700, San Luis, Argentina
c Department of Physics, Saint Vincent College, Latrobe, PA 15650-4580, USA
a r t i c l e i n f o

Article history:

Received 27 September 2010

Received in revised form

10 December 2010

Accepted 25 December 2010
Available online 5 January 2011

Keywords:

Dimer

Adsorption

Square lattice
26/$ - see front matter & 2011 Elsevier B.V. A

016/j.physb.2010.12.053

esponding author. Tel.: +1 610 519 4889; fax

ail address: alain.phares@villanova.edu (A.J. P
a b s t r a c t

Dimer adsorption on surfaces simulates the adsorption of particles that bind onto two nearest-neighbor

sites. In 1993, we constructed a transfer matrix (T-matrix) for the study of dimers on stepped surfaces,

consisting of M-sites wide square terraces, considering only first-neighbor interaction energies. Here,

we consider a more realistic model by including both first- and second-neighbor interaction energies, V

and W. The non-trivial construction of the T-matrix to include second-neighbor interactions is used to

obtain the low-temperature energy phase diagrams of the dimer system for any M, when first-

neighbors are attractive, and for values of Mo7 when first-neighbors are repulsive. New crystallization

patterns and phases are observed and extrapolated to infinite M. Monte Carlo simulation techniques

confirm our T-matrix results, but the T-matrix method is found to be computationally more efficient

and more precise. However, Monte Carlo parallel tempering simulations combined with finite-size

scaling, while limited in precision, are more efficient to obtain the critical temperature of the various

order–disorder transitions as a function of W=jV j, from the study of the heat capacity and the order

parameter as functions of temperature. We also discuss the relevance of these results to experiments.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The theoretical investigations of the dimer problem and dimer
adsorption on surfaces with different geometries have been going
on for several decades. Listing the achievements made over these
decades goes well beyond the scope of this paper. There are a
number of excellent review articles in the field and we would like
to refer to one of the most recent ones by Wu [1]. Recently, by
using Monte Carlo (MC) simulations, histogram reweighting, and
finite-size scaling techniques, Rzysko et al. have studied a wide
variety of systems in the presence of multisite occupancy [2–7].
Included among them are attracting dimers in the presence of
energetic heterogeneity [2,3], heteronuclear dimers consisting of
different segments A and B adsorbed on square lattices [4–6], and
heteronuclear dimers in 3-dimensional systems [7]. In these
leading papers, a rich variety of phase transitions was reported
along with a detailed discussion about critical exponents and
universality class.

The effect of second-neighbor interactions on the crystalliza-
tion patterns of adsorbed dimers has not been investigated. The
aim of this work is to study this effect when adsorption takes
ll rights reserved.

: +1 610 519 7465.

hares).
place on stepped surfaces consisting of M-sites wide, infinitely
long (1 0 0) terraces, and on the infinite 2-dimensional (1 0 0)
surface. There are two possible experimental applications. The
first is that monomer particles, adsorbed onto two nearest-
neighbor (first-neighbor) sites, often bond to form an adsorbed
dimer. The other is that bridge adsorption of a particle between
two first-neighbor sites often behaves as a dimer occupying these
two sites. This is the case of, for example, CO-molecules with their
C-ends bonding to two first-neighbor sites, when the substrate is
Ni(1 0 0), Pt(1 1 1) [8], or Pd(1 1 1) [9].

The numerical computations on terraces of finite length L, and
finite width M, are carried out using a transfer-like T-matrix
method we have developed in 1993 [10]. Our method does not
use periodic boundaries in the L or M direction, and yields a
sparse T-matrix. All of the eigenvalues of this matrix contribute to
the partition function Z of the system. For infinitely long terraces,
we have shown that the only contribution to Z is its largest
eigenvalue. Since this method does not use periodic boundaries
and finite-size scaling, it is computationally much more efficient
and precise than using Monte Carlo (MC) simulations to generate
the low-temperature energy phase diagrams for infinitely long
terraces. The extrapolation to infinite M (infinite 2-dimensional
square surface) of the results obtained with the T-matrix method
is possible and confirmed by MC simulations, which consider the
extrapolation of the results on (1 0 0) surfaces having L� L atomic
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Fig. 1. The four possible states of occupancy of the first site in a horizontal row of

M sites in the width of a square terrace. Only the first three sites are shown

starting from the right side.
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sites with the usual periodic boundary conditions in both the
length and the width of the lattice. Sections 2–4 present our
T-matrix method and its numerical application for finite M, and
the extrapolation of its results in the infinite-M limit. Sections 5
and 6 are devoted to the results obtained in the infinite M limit
using the more computationally efficient, but less accurate, MC
simulations for the study of the order–disorder transitions.
Section 7 discusses the experimental relevance of these theore-
tical findings.

Transfer matrix methods and MC simulation techniques are
well-known and widely used. The T-matrix method we have
developed for the study of dimers adsorbed on M-sites wide
(1 0 0) terraces, limited to first-neighbor interactions, was first
introduced in 1993, as mentioned above [10]. Several years later,
we found this method capable of providing a unified treatment of
monomer adsorption on terraces and nanotubes, not only for a
number of different lattice geometries, but also for any number of
pair-wise adsorbate–adsorbate interactions [11]. Dimer adsorp-
tion models, with non-periodic boundaries, are more difficult to
develop beyond first-neighbor interactions. Unlike monomer
adsorption, the construction of the T-matrix cannot be easily
generalized to different lattice geometries, or for any number of
pair-wise interactions. Even in the simplest case of a square
geometry, the derivation that includes second-neighbor interac-
tions is very lengthy as compared to the one presented in the
1993 paper, which considers only first-neighbor interactions.
Without any derivation, Section 2 presents the elements neces-
sary to recursively construct the T-matrix used in this study, in a
manner that recovers the results of the 1993 paper as a special
case. The MC simulation techniques, relevant to our investigation,
are described in Section 5.

The notation used in this paper is the same as those used in
recently published articles on monomer adsorption on surfaces,
whether terraces or nanotubes, with equilateral triangular, or
(1 1 1), geometry [12–19]. Here the stepped surface consists of
infinitely long, M-sites wide, (1 0 0) terraces. A square cell
represents a surface site, and a dumbbell, with its ends occupying
the centers of two nearest-neighbor cells, represents an adsorbed
dimer particle. The particles come from a medium, which is either
a gas or a solution. Their chemical potential energy, mu, in the
medium is determined by the pressure, if a gas, or the concentra-
tion, if a solution. The adsorbate–substrate interaction energy V0

is assumed to be the same at step- and bulk-sites of the terraces,
and the relevant quantity is the shifted chemical potential
m¼ muþV0, from here on referred to as the chemical potential.
First- and second-neighbor interaction energies between dimers
are denoted V and W, with the convention that positive values
refer to attraction and negative values to repulsion. The absolute
temperature T of the system can be controlled and we assume
thermodynamic equilibrium.

The medium-substrate system is characterized by three
dimensionless parameters, u¼W=jV j, v¼ m=jV j, and t¼ kT=jV j

(k is Boltzmanns constant), leading to a 3-dimensional tempera-
ture-energy phase space. The (uv)-plane is viewed as horizontal
with the t-axis as vertical. Evolution of the system at constant tem-
perature takes place in a horizontal section of the phase space. In
this horizontal plane, when u is kept fixed while the reduced
chemical potential (v) is varied, a crystallization pattern, or phase,
is observed when the surface coverage remains unchanged over a
relatively wide range of v. Thus, a series of phases, intermediate
between zero-coverage (empty) and full coverage, are formed as
the external pressure of the gas or concentration of the solution is
increased, that is with increasing v. A numerical search in this
(uv)-plane is conducted to obtain all of the possible phases that
may appear at a given t. The largest number of intermediate
phases occurs when the temperature is below a certain threshold
t0 ¼ kT0=jV j, which varies with the width M of the terrace and
the interaction energies. Using the T-matrix method, this thresh-
old value is numerically found in the range 0.01–0.1 for the
values of M considered. Experimentally, and for a typical value of
jV j ¼ 15 kcal=mol, this corresponds to a temperature T0 in the
range of 76–760 K. By setting tot0, one generates the low-tem-
perature energy phase diagram. As t is increased, certain phases in
the 2-dimensional (uv)-plane begin to disappear, and eventually
one reaches a continuous transition from empty to full coverage
with no intermediate phases.

Sections 3 and 4 present the numerical results, obtained using
the T-matrix method, leading to the low-temperature energy
phase diagrams for attractive and repulsive first-neighbors, with
increasing terrace width M, and their extrapolation in the infinite-
M limit. Sections 5 and 6 use MC simulations to obtain an
estimate, from the heat capacity and the order parameter cumu-
lant, of the critical temperature at which there is a transition from
the ordered phases (determined in the infinite-M, or infinite-L,
limit) to disorder, as a function of u.
2. The transfer matrix method

The technique of constructing the T-matrix for dimer adsorp-
tion on terraces or on nanotubes is very similar to that of
monomer adsorption [11]. The major difference here is that the
matrix is sparse. Following [11], the first step is to determine all
possible occupational configurations of a row of M sites across the
width of the square terrace, which provides the rank D(M) of the
T-matrix. This number is obtained recursively, as exemplified in
Fig. 1. This figure considers the four possible states of occupation
of the first atomic site on the right side of a row of M sites. The
first state is a vacancy (0) indicated by a cross. The second state
(1) is the one for which the other end of the dimer occupying this
first site is in the row below; the third state (2) is the one for
which the dimer’s other end is in the row above; and the fourth
state (3) is the one for which its other end is in the same row
occupying the second site. Thus, in each of the first three cases,
the number of all possible states of occupation is the number of
states of the remaining M�1 sites, or D(M�1). The number of
states when the first two sites are occupied by a dimer is D(M�2).
Consequently,

DðMÞ ¼ 3DðM�1ÞþDðM�2Þ: ð1Þ

When M¼1, there is only one site in the row, which may be in
states (0), (1), or (2) yielding D(1)¼3. Thus, the rank of the
T-matrix is recursively obtained using Eq. (1) with the initial
conditions D(0)¼1 and D(�1)¼0.

The ordering of all of the states of occupation of the M sites in a
given row follows automatically from the recursive relation Eq. (1)
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Fig. 2. Two consecutive rows of M¼8 sites in the width of a square terrace

corresponding to a possible state of occupation by dimers. The states of dimer

occupation of the top and bottom rows are associated with a given set column and

row numbers of the T-matrix. The corresponding T-matrix element is then obtain

as the product xaybzc , where a, b, and c are, respectively, given by the number of

dimers indicated in light gray, the number of first-neighbors indicated in solid

lines, and the number of second-neighbors indicated in dotted lines.
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and the order chosen for the state of occupation of the first site. The
ordered D(M) configurational states are then used to label the row
and column entries of the T-matrix. In this manner, a matrix element
of row number i and of column number j corresponds to two specific
configurational states, the i-state and j-state. The corresponding
matrix element is obtained by considering two consecutive rows of
M sites in the horizontal width of the lattice, such that the configura-
tional state of occupation of the bottom row is the i-state and the
occupational configuration of the top row is the j-state. When no
matching between these two states is possible, the correspond-
ing matrix element is zero. Non-zero elements are of the form xaybzc ,
where x, y, and z are the activities associated with m, V, and W,
namely,

x¼ expðm=kTÞ, y¼ expðV=kTÞ, z¼ expðW=kTÞ: ð2Þ

Exponent a is the number of dimers in the top row of sites that do
not have one end in the bottom row. Exponents b and c are,
respectively, the numbers of first- and second-neighbors that occur
between the dimers of the top row, and between the dimers of the
top row and the dimers of the bottom row, following the selection
rule exhibited in Fig. 2. In this figure, we show the state of occupation
of two consecutive rows of a terrace 8-atoms wide. The top row is in
the j-state and the bottom row in the i-state. The dimers considered
to belong to the top row, indicated in light gray, are those that
contribute to the number a. These dimers do not have an end
belonging to the bottom row. In this case a¼4. The remaining
dimers, indicated in dark gray, belong to the bottom row. The first-
neighbors that contribute to the number b (here b¼7) are connected
by solid lines. They occur between the ends of dimers located on the
top row, and between the ends of dimers in the top row and those in
the bottom row. The second-neighbors that contribute to the
number c (here c¼8), occurring between the ends of dimers found
in the top row and those found in the bottom row, are connected by
dotted lines.

The recursive construction of the T-matrix is based on the
above analysis. The derivation is not straightforward but is very
similar to the one derived in 1993 for dimers on a square lattice
when only first-neighbor interactions are considered [10]. In this
latter case, the T-matrix associated with dimer adsorption on an
M-wide square terrace, T(M), is related to itself evaluated at M�1,
and to four other matrices of different structures, P, K, L, and J,
which are related to T and themselves evaluated at lower values
of M. The notation used here to construct the T-matrix is chosen
in such a way as to recover the results obtained in 1993 as a
special case for which the second-neighbor interaction energy
W¼0, or z¼1. There are two types of each of the T, P, or K
matrices, Tn, Pn, Kn (n¼1, 2). For convenience, we label the L- and
J-type matrices found in the absence of second-neighbor interac-
tions as L1 and L2, respectively. In this manner, the reader can make
the comparison between the relations obtained in the 1993-paper
and the following relations:

TnðMÞ ¼

T1ðM�1Þ 0 xzn�1P1ðM�1Þ xzn�1K1ðM�1Þ

T2ðM�1Þ 0 xyzn�1P2ðM�1Þ xyzn�1K2ðM�1Þ

0 zn�1P2ðM�1Þ 0 0

L1ðM�1Þ 0 xyzn�1L2ðM�1Þ xy2znþ1P2ðM�2Þ

2
66664

3
77775:

ð3Þ

PnðMÞ ¼

T1ðM�1Þ 0 xyzn�1P1ðM�1Þ xyzn�1K1ðM�1Þ

zT2ðM�1Þ 0 xy2znP2ðM�1Þ xy2znK2ðM�1Þ

0 yznP2ðM�1Þ 0 0

zL1ðM�1Þ 0 xy2znL2ðM�1Þ xy3znþ2P2ðM�2Þ

2
66664

3
77775:

ð4Þ

Kn ¼

zn�1P1ðM�1Þ

yznP2ðM�1Þ

0

yznL2ðM�1Þ

2
66664

3
77775; ð5Þ

LnðMÞ ¼ zn�1T2ðM�1Þ 0 xynznP2ðM�1Þ xynznK2ðM�1Þ
h i

: ð6Þ

The Tn(M) and Pn(M) are D(M)�D(M) matrices. The Kn(M) are
D(M)�D(M�1) matrices, and the Ln(M) are D(M�1)�D(M)
matrices. They satisfy the initial conditions Tn(0)¼Pn(0)¼1, and
there are no Kn(0) or Ln(0). This completes the recursive construc-
tion of all of the matrices and T1(M) is the T-matrix associated with
dimer adsorption on an M-wide square terrace.

As follows from the general T-matrix formulation [11,10], the
partition function Z(M; x, y, z) associated with this adsorption
study is obtained in terms of all of the eigenvalues of the transfer
matrix T1(M). However, in the limit as the length of the terrace
becomes infinite, the largest eigenvalue R(M; x, y, z), which is real
and positive since all elements of T1(M) are real and non-negative,
is the only contribution to Z, namely,

ZðM; x,y,zÞ ¼ RðM; x,y,zÞ1=M : ð7Þ

At thermodynamic equilibrium, the statistical average of the
coverage y0, the number per site of first-neighbors y, and the
number per site of second-neighbors b are

y0 ¼
2x

MR

@R

@x
, y¼

y

MR

@R

@y
, b¼

z

MR

@R

@z
: ð8Þ

The statistical average of the energy per site, e, and the entropy
per site divided by Boltzmann’s constant, S (from here on referred
to as entropy) follow as

e¼ my0

2
þVyþWb, S¼

1

M
lnðRÞ�

e
kT
: ð9Þ

The state of the adsorption system is then given by the set fy0,y,bg
and the entropy S. The zero-coverage or empty phase E¼ f0,0,0g
with S¼0 (perfect order) occurs at relatively low chemical poten-
tials and the full coverage phase F¼ f1,ð3M�2Þ=2M, 2ðM�1Þ=Mg

with Sa0 (partial order) occurs at relatively high chemical poten-
tials. Kasteleyn has derived the values of S for semi-infinite square
lattices of arbitrary width M, fully covered by dimers [20]. These
values with increasing M are used as one of many checks of the
validity of our numerical computations.

In the low-temperature energy phase diagram, consider two
contiguous phases, fy01,y1,b1g and fy02,y2,b2g, with differential
values among their occupational characteristics, Dy0, Dy, and Db.
It was shown in the past [11,10], that, when the transition
between two phases is second-order, the point at which the
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entropy has a local maximum occurs at the value of the chemical
potential given by

vt ¼�2ðDb=Dy0Þu�ðDy=Dy0Þ: ð10Þ

It was also shown that, when the transition between two phases
is first-order, the discontinuity occurs at the value of the chemical
potential given by Eq. (10). This equation is used as a consistency
check of the numerical results, and is used to report, in the low-
temperature phase diagram, the equation of the boundary line
between two phases. When the transition is second-order, the
occupational characteristics y and b, in the low temperature
transition region, can be shown numerically to be linearly related
to the coverage y0 according to

y¼ ðDy=Dy0Þðy0�y01Þþy1, b¼ ðDb=Dy0Þðy0�y01Þþb1, ð11Þ
Fig. 4. Low-temperature energy phase diagrams for terraces M sites wide (M odd)

in the case of attractive first-neighbors, V 40.
3. Low-temperature energy phase diagram: attractive
first-neighbors

The low-temperature energy phase diagrams for attractive first-
neighbors ðV 40Þ were determined for terraces width M up to and
including M¼8. All of the numerical results are found to fit exact
analytic expressions in M and are grouped into even and odd M series.

For M even, the phase diagram has two u-regions, uo�1=2
and u4�1=2. In the first region, the phases intermediate
between empty (E) and full (F) coverage are f1=2,1=4,0g, which
is perfectly ordered, and fðMþ2Þ=2M,ðMþ6Þ=4MÞ,2=Mg, which is
partially ordered. The entropy of the latter phase is numerically
obtained in terms of the golden ratio j¼ ð1þ

ffiffiffi
5
p
Þ=2, namely

S¼ ð1=MÞlnj. In the second u-region, u4�1=2, there are no
intermediate phases, as shown in Figs. 3 and 4. The transitions
between phases are all first-order. However, at the discontinuity
between E and {1/2, 1/4, 0}, which occurs at v¼�1, the numerical
results show an equal mixture of patches of vacant sites and of
patches of the perfectly ordered {1/2, 1/4, 0} phase.

For M odd, the phase diagram has the same two u-regions, as
shown in Fig. 4. The difference occurs in the first region, uo�1=2,
where there is only one phase between E and F, namely,
fðMþ1Þ=2M,ðMþ1Þ=4MÞ,0g, which is perfectly ordered. Again,
the transition between phases are all first-order; and at the
Fig. 3. Low-temperature energy phase diagrams for terraces M sites wide (M even) in

the case of attractive first-neighbors, V 40.
discontinuity between E and fðMþ1Þ=2M,ðMþ1Þ=4MÞ,0g, which
occurs at v¼�1, the results show an equal mixture of patches of
vacant sites and of patches of the ordered phase fðMþ1Þ= 2M,
ðMþ1Þ=4MÞ,0g. As expected, the two series of phase diagrams have
the same infinite-M limit.
4. Low-temperature energy phase diagram: repulsive
first-neighbors

For repulsive first-neighbors ðV o0Þ, the low-temperature phase
diagrams with increasing M do not show the similarities obtained in
the attractive case. The individual phase diagrams can show the
gradual progression toward the infinite-M limit. Most importantly,
they can be used as a guide in suggesting new experiments on dimer
adsorption on (1 0 0) stepped surfaces, and in analyzing the newly
acquired data to determine the interaction energies from the
observed phases. Table 1 provides the characteristics of all of the
phases that could be observed at low temperatures for values of M up
to and including M¼7. The low-temperature energy phase diagram
for a given M is unique, and could, in principle, be generated from the
list of phases in Table 1. The phase diagram for M¼7, given in Figs. 5
and 6, is presented as a sample. To conserve space, the other diagrams
are available upon request. Excluding empty and full coverage, the
occupational configurations of a number of non-trivial phases, which
show common patterns with increasing M, are grouped into series in
M. These are:
1.
 The series fðMþ1Þ=3M,0,0g is partially ordered. Phase {8/21, 0,
0} belongs to this series and appears in the phase diagram of
Figs. 5 and 6, which corresponds to M¼7. This series consists
of a mixture of horizontal and vertical dimers with no first- or
second-neighbors. The entropy (per site) changes with M follo-
wing two subseries, one for even and the other for odd M. For
even M up to and including M¼8, the numerical results give
S¼ ð1=6MÞlnðM=2Þ, which can be derived theoretically, and
shows that it approaches zero in the infinite-M limit. We were
unable to find closed form expressions for the numerical values
of S obtained for odd M. These values are listed in Table 1.
2.
 The series f1=2,ðM�2Þ=4M,0g, valid for even M, and
fðMþ1Þ=2M,ðMþ1Þ=4M,0g, valid for odd M are perfectly ordered,



Table 1
Occupational characteristics of all of the phases, encountered at low temperature,

of dimer adsorption on square terraces with M¼2 to 7-sites wide.

M y0 y b S

2 1/2 0 0 0

1/2 0 1/4 0

2/3 1/6 1/2 0

3/4 3/8 1/2 1/8 ln 2

3 4/9 0 0 0

1/2 0 1/6 0

1/2 0 1/3 0

2/3 1/3 0 0

2/3 2/9 4/9 1/9 ln 2

2/3 2/9 2/3 0

4/5 8/15 8/15 1/15 ln 2

4/5 8/15 4/5 1/15 ln 2

6/7 2/3 16/21 1/21 ln 2

4 5/12 0 0 1/24 ln 2

1/2 0 1/4 0

1/2 0 3/8 0

1/2 1/8 0 0

2/3 1/4 7/12 1/12 ln 2

2/3 1/4 3/4 0

3/4 7/16 11/16 0

3/4 7/16 11/16 0

3/4 1/2 1/2 0

4/5 11/20 17/20 0

7/8 13/16 1 0.163624

5 2/5 0 0 0.056239

12/25 0 6/25 0

1/2 0 2/5 0

8/15 1/15 1/3 0

14/25 3/25 8/25 0

3/5 3/20 1/2 0

3/5 3/20 3/5 0

3/5 3/10 0 0

2/3 4/15 8/15 0

2/3 4/15 4/5 0

4/5 3/5 4/5 0

4/5 3/5 24/25 0.064377

6 7/18 0 0 1/36 ln 3

1/2 0 1/3 0

1/2 0 5/12 0

1/2 1/6 0 0

7/12 1/8 1/12 0

3/5 7/45 19/30 0

2/3 5/18 11/18 0

2/3 5/18 5/6 0

2/3 5/12 1/3 0

7/10 23/60 19/30 0.038508

11/15 31/60 3/5 0.049928

3/4 23/48 11/12 1/24 ln 2

25/33 17/33 53/66 0.037657

23/30 31/60 9/10 1/30 ln 3

23/30 11/20 4/5 0

23/30 17/30 23/30 1/30 ln 2

7/9 5/9 8/9 0

4/5 19/30 31/30 0

5/6 3/4 1 0.126471

5/6 11/12 4/3 0

7 8/21 0 0 0.051076

10/21 0 2/7 0

1/2 0 3/7 0

11/21 1/21 8/21 0

4/7 2/7 0 0

4/7 3/28 1/2 0

38/63 1/6 2/3 0

13/21 11/42 8/21 1/42 ln 2

2/3 2/7 2/3 0

2/3 2/7 6/7 0

36/49 23/49 38/49 0

3/4 27/56 13/14 0

58/77 38/77 10/11 0

16/21 11/21 8/9 0

27/35 41/70 4/5 2/35 ln 2

60/77 45/77 68/77 0

39/49 63/98 44/49 2/49 ln 2

Fig. 5. Low-temperature energy phase diagram for a terrace M¼7 sites wide in

the case of repulsive first-neighbors, V o0 (for uo1=2).

Fig. 6. Low-temperature energy phase diagram for a terrace M¼7 sites wide in

the case of repulsive first-neighbors, V o0 (for u41=2).
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and correspond to dimers parallel to the edges of the terrace. In
the infinite-M limit, they all merge to the {1/2, 1/4, 0} phase which
is also found for attractive first-neighbors. Phase {4/7, 2/7, 0} of
Fig. 5 belongs to the series valid for odd M, since M¼7 in that case.
3.
 There is another 1/2-coverage series of perfectly ordered phases,
f1=2,0,ðM�1Þ=2Mg, valid for both even and odd values of M,
which corresponds to f1=2,0,3=7g for M¼7 and appears in the
phase diagram of Figs. 5 and 6. There exists only one occupa-
tional configuration of dimers with these occupational character-
istics, for which all dimers are parallel to the edges of the terrace.
Here the transition from empty to f1=2,0,ðM�1Þ=2Mg is first-
order for all M.
4.
 Finally, there is a 2/3-coverage series, f2=3,ðM�1Þ=3M,ðM�1Þ=Mg,
valid for both even and odd values of M, which has a zero-entropy
per site, and corresponds to dimers that are parallel to the edges
of the terrace. For M¼7, this corresponds to the phase
f2=3,2=7,6=7g, which appears in Figs. 5 and 6. In this series of
phases, there are 2M�1 zigzag occupational configurations of
dimers that can only be parallel to the edges of the terrace while
satisfying the required occupational characteristics. The entropy
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per site (divided by Boltzmann’s constant) is the natural logarithm
of the number of occupational configurations, ln 2M�1, divided by
the number of sites, which is infinite for an infinitely long terrace.
It is numerically verified that the entropy per site is exactly zero
for all M. Therefore, the infinite-M limit of this series of phases,
{2/3, 1/3, 1}, has zero-entropy per site, and an infinite number of
zigzag occupational configurations of parallel dimers. There are
energy regions with boundaries that are M-dependent with a
direct transition from empty to this phase, and from this phase to
full coverage. Both transitions are first-order for all M.

For any finite value of M, there is no common boundary
between the phase, f1=2,ðM�2Þ=4M,0g for even M, or fðMþ1Þ=2M,
ðMþ1Þ=4M,0g for odd M, and the phase f1=2,0,ðM�1Þ=2Mg. The
remaining possible transitions between the above series of phases
are second-order, and are listed in Table 2 as, transition (a), E-
fðMþ1Þ=3M,0,0g, transition (b), from fðMþ1Þ=3M,0,0g-f1=2,
ðM�2Þ=4M,0g for even M, or fðMþ1Þ=2M,ðMþ1Þ=4M,0g for odd
M, and transition (c), f1=2,ðM�2Þ=4M,0g-f2=3,ðM�1Þ=3M, ðM�1Þ=
Mg. In Table 2, we provide the maximum entropy and the corre-
sponding coverage. The reduced chemical potential at which this
occurs, and the corresponding values of first- and second-neighbors
per site, are numerically verified as given by Eqs. (10) and (11), and
consequently are not reported.

The phases identified in Table 1 that do not belong to any of
the above series have configurational occupations in the bulk of the
terrace that are similar to the features found in these series. The
crucial question is whether the series of phases identified above are
the only ones that survive in the infinite-M limit. This could not
be answered in an unequivocal way. A number of the phases listed
in Table 1 showed occupational configurations that were very
similar to those of the identified series, while others did not show
any particular pattern. The answer is given by MC simulations and
finite-size scaling computations, described in Section 5. These
computations show in a definite manner that, for the infinite two-
dimensional (2-D) surface, there are no non-trivial phases other
than those obtained by extrapolation of the series identified above,
namely, {1/3, 0, 0}, {1/2, 1/4, 0}, {1/2, 0, 1/2} and {2/3, 1/3, 1}. The
low-temperature energy phase diagram for dimer adsorption on the
2-D surface follows as shown in Fig. 7.

Section 6 is the study of the order–disorder transition from any
of the four ordered phases of the 2-D surface as the temperature
of the system is increased.
2u
3u+1

4u+3

{1/3, 0, 0} {1/2, 0, 1/2}

Empty

1 1/2 0 21

Fig. 7. The low-temperature energy phase diagram in the infinite-width limit of a

terrace in the case of repulsive first-neighbors.
5. The Monte Carlo simulation method

Monte Carlo (MC) simulations in the canonical ensemble are
applied to study the critical behavior of the system using finite-
size scaling technique as L is increased to the point where edge
effects become negligible. The focus is on the determination of the
critical temperature, tc, of the order–disorder transition and its
Table 2
Low temperature occupational characteristics at transition (a) between empty and the

either f1=2,ðM�2Þ=4M,0g valid for even M, or fðMþ1Þ=2M,ðMþ1Þ=4M,0g valid for M odd

M Transition (a) Transition (b)

y0 S y0

2 2/7 (1/2) ln 2 N/A

3 0.251559621 0.317295223 0.548660785

4 0.245815066 0.312611447 0.453411112

5 0.236489921 0.307485654 0.493198860

6 0.231297196 0.303758725 0.439574480

7 0.228139809 0.301586857 0.469107941
dependence on the parameter u. The simulations are carried out
as follows:
�

fðM

; an
The lattice sites are arranged in a square structure of size L� L,
with conventional periodic boundary conditions in both
directions.

�
 Appropriate values of L are used in such a way that the

adsorption structures at the critical regime are not perturbed.

�
 The analysis is conducted for repulsive first-neighbors,

because in the attractive case and at low temperature, the
only non-trivial phase in the infinite-L limit is {1/2, 1/4, 0},
which is also observed in the repulsive case.

�
 Both repulsive and attractive second-neighbor interactions are

considered.

We have used an efficient exchange MC or simulated temper-
ing method [21,22]. As in Ref. [21], we build a compound system
that consists of m non-interacting replicas of the system con-
cerned, which are copies of the complete system: the L� L sites
with their own occupational states, Xi, where i¼1ym. The ith
replica is associated with a heat bath at temperature ti

(or bi ¼ 1=ti). This method of simulating several temperatures in
a single run has a faster convergence and is much less time
demanding than performing independent simulations each at a
single temperature.

To determine the set of temperatures ti, the highest tempera-
ture t1 is chosen to be in the range of the disordered phase, where
the relaxation (correlation) time, t, is expected to be very short,
and there is only one minimum in the free energy space. The
þ1Þ=3M,0,0g phase; at transition (b) between the fðMþ1Þ=3M,0,0g phase and,

d at transition (c) between f1=2,ðM�2Þ=4M,0g and f2=3,ðM�1Þ=3M,ðM�1Þ=Mg.

Transition (c)

S y0 S

N/A 0.588504411 0.140599787

0.187466383 0.593866863 0.123489979

0.101916235 0.597022973 0.115817416

0.168974512 0.598978417 0.111565430

0.125600041 0.600271977 0.108888704

0.161148002 0.601179603 0.107055819
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lowest temperature tm is chosen in the range of one of the ordered
phases being investigated. Finally, the difference between any
two consecutive temperatures, ti and ti + 1 with ti4tiþ1, is set at
ti�tiþ1 ¼ ðt1�tmÞ=ðm�1Þ.

Under these conditions, the algorithm to carry out the simula-
tion process is built on the basis of two subroutines:
(i)
 Replica update: Interchange vacancy-dimer. The procedure is
as follows. (a) One out of the m replicas is randomly selected,
for example, the ith replica, and is identified by its tempera-
ture ti. (b) A dimer and a vacancy, both belonging to the
replica chosen in (a), are randomly selected and their coordi-
nates are established. (c) An attempt is made to interchange
its occupancy state with probability G¼min½1,expð�DhÞ�, as
given by the Metropolis rule [23], where Dh¼DH=kT repre-
sents, at temperature T, the dimensionless change in the
energy of the system due to the interchange between a dimer
and two vacant adjacent sites (vacancy).
(ii)
 Exchange. Exchange of the two configurations (occupational
states) Xi and Xj, corresponding to the ith and jth replicas,
respectively, is tried and accepted with probability GðXi,bij

Xj,bjÞ. In general, the probability of exchanging configurations
of the ith and jth replicas is given by [21]

GðXi,bijXj,bjÞ ¼
1 for Dr0

expð�DÞ for D40

(
, ð12Þ

where D¼ ðbi�bjÞ½hðXjÞ�hðXiÞ�. As in Ref. [21], we restrict the
replica exchange to the case j¼ i+1, since for non-adjacent
replicas that probability is negligible.
The complete simulation procedure consists of four steps:
(1) initialization, (2) replica update, (3) exchange, and (4) repeat
from step (2), m� L� L times. This simulation process is referred
to as a Monte Carlo step (MCs). The initialization of the compound
system of m replicas, step (1), is as follows. One fixes the coverage
y0 and the Nð ¼ y0L2Þ dimers are randomly distributed. The
configuration of replica 1 is obtained after n1 MCs’ at temperature
t1 (MCs’ consists of L� L realizations of the replica update
subroutine). Second, for i¼{2,y,m}, the configuration of the ith
replica is obtained after n1 MCs’ at ti, taking as the initial
condition the configuration of the replica to ti�1. This method
results in a more efficient than a random initialization of each
replica.

Steps (1)–(4) are repeated for increasing lattice sizes as
required by finite-size scaling. For each lattice, the equilibrium
state can be well-reproduced after discarding the first n2 MCs.
Then, averages are taken over nMCs successive MCs. Successive
test simulations are carried out by doubling, each time, numbers
n1, n2, and nMCs and by observing the changes in the different
observables until the fluctuation level drops below 5 percent.
Values of n1¼105 and n2¼nMCs¼5�105 were found to be
sufficient in almost all cases. In the particular case of y0 ¼ 2=3
in the region uo0, and also in some low-temperature cases, up to
106 MCs were necessary. Comparatively, it would be necessary for
roughly ten times more MCs in the case of applying the standard
MC algorithm, without the replica exchange mechanism, to
obtain similar results.

As mentioned above, a set of equally spaced temperatures is
chosen in order to accurately calculate the physical observables in
the close vicinity of tc. The thermal average /QS of a physical
quantity Q is obtained through simple averages,

/QS¼
1

nMCs

XnMCS

t ¼ 1

Q ½XiðtÞ�: ð13Þ

Here Xi stands for the state of the ith replica (at temperature ti)
and t stands for the simulation time or MC steps.
The heat capacity at constant volume C (in units of k) is
sampled from energy fluctuations,

CðTÞ ¼
CL

k
¼

/h2ST�/hS2

L2
, ð14Þ

where h represents the dimensionless energy and L2 the volume
of the system. In most of the cases, the value of t at which the
maximum of C occurs, for the largest value of L considered, is a
good estimate of the critical temperature of the order–disorder
transition.

As is standard for order–disorder phase transitions, an order

parameter j is introduced. The resulting adsorption structures
shown in Fig. 7 present a strong orientational symmetry of the
dimers, both for y0 ¼ 1=2 and 2=3. These configurations allow the
definition of an order parameter based on the orientation instead
of considering partial coverages of different sublattices. Thus, a
possible definition of j is

j¼ jNv�Nhj

N
, ð15Þ

where Nv and Nh represent the numbers of vertical and horizontal
dimers, respectively, and N¼NvþNh ¼ y0L2. This order parameter
has a minimum when both orientations appear in equal numbers
and the system is disordered, which occurs at t4tc . A preferred
orientation, or ordered phase, appears when the temperature
drops below the critical value tc, where j reaches a maximum.
This choice of order parameter has been shown in previous works
[24,25] to be more efficient in the study of the order–disorder
phase transitions than the one obtained from sublattice
coverages.

The reduced fourth-order cumulant, UL(T), for a given size L,
introduced by Binder [26] is related to the order parameter
according to

UðTÞ ¼ 1�
/j4ST

3/j2S2
T

: ð16Þ

Another way to estimate the critical temperature is from the
temperature dependence of U(T), as follows from finite-size
scaling theory. This theory indicates that U(Tc) is independent of
L. In other words, the scaled critical temperature, tc, is determined
from the intersection of the curves U(T) for various values of L.

Finally, in order to discuss the nature of the transition, we
calculate the fourth-order energy cumulant UE, which is defined
in a manner similar to that of the Binder cumulant, U, of Eq. (16)

UEðTÞ ¼ 1�
/h4ST

3/h2S2
T

: ð17Þ
6. Results from the Monte Carlo simulations

As described in Section 5, two methods are used to determine
the critical temperature tc of the order–disorder transitions. One
relies on the properties of the fourth-order cumulant of the order
parameter, and the other determines tc from the location of the
maximum of the heat capacity C. The efficiency and applicability of
each method depend on the phase under study and the u-region in
which it is found in the low-temperature phase diagram.

The dependence on u of the critical temperature, tc, of the
order–disorder transition for the 1/2-coverage phase found in the
region �1=2ouo1, or {1/2, 0, 1/2}, is shown in Fig. 8. In this
case, the position of the heat capacity maximum for the largest
system (L¼96) provides an estimate of tc. The tc versus u curve
reaches a maximum at approximately u¼0.2. As u is varied from
repulsive to attractive second-neighbors, the data shows no
discontinuity at u¼0, corresponding to no second-neighbor



Fig. 8. (a) Critical temperature tc versus u ð ¼W=jV jÞ at 1/2-coverage, correspond-

ing to the phase {1/2, 0, 1/2}, found in the energy range �1=2ouo1. The error

estimate for each point is smaller than the size of the symbol used to represent it.

The data were obtained by extrapolation of the maximum of the heat capacity to

the infinite size L of the lattice. (b) Extrapolation of the maximum of the heat

capacity to the infinite size L of the lattice for the points at u¼�0:2 and 0:2.

Fig. 9. (a) Same as Fig. 8(a) applied to the phase {1/2, 1/4, 0} found in the energy

region uo�1=2. (b) The critical temperature tc is obtained from the intercept of

all of the curves, for different sizes L, of the order parameter cumulant, U, versus t

for the value u¼�1:8. The error in each measurement is smaller than the size of

the symbols.
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interactions. At this point, the critical temperature is tcffi0:332;
this is in agreement with the computations previously obtained in
Refs. [24,27] for the case of dimers (k¼2) where second-neighbor
interactions were not considered.

The other 1/2-coverage phase, {1/2, 1/4, 0}, occurs in the region
uo�1=2. In this case, the u-dependence of tc was obtained from the
cumulant-crossing method, as is shown in Fig. 9, for system sizes up
to L¼120. The tail end of this curve, as it approaches u¼�1/2, is also
shown on the tc-plot that corresponds to the other 1/2-coverage
phase in Fig. 8. In this plot, the two curves on either side of u¼�1/2
clearly show a cusp formation at the boundary, which is obtained by
linear extrapolation as tcffi0:209ð5Þ.

The 2/3-coverage phase, {2/3, 1/3, 1}, occurs in the region
�1ouo2. The tc-curve shown in Fig. 10 has been obtained also
from the cumulant-crossing method, for sizes L¼96, 120, 180,
and 240. The tc-curve presents a monotonic behavior that drops to
almost zero as u approaches �1/2 (in the region �1ouo�1=2,
the critical temperature is so low that it could not be numerically
computed). The curve has no discontinuity at u¼0 (no second-
neighbor interactions) where it takes the value tcffi0:18, in
agreement with previous results obtained in Ref. [25] where
second-neighbor interactions were not considered.
For the 1/3-coverage phase, {1/3, 0, 0}, which occurs in the region
uo0, we considered lattice sizes up to 96�96. This phase is highly
degenerate and the critical temperature is very low. This is why it is
very difficult to perform accurate simulations with increasing values
of L, and ultimately reach the level of confidence previously obtained
in the finite-size scaling limit. The order-disorder transition for this
phase is determined from the heat capacity curves for L¼96. These
curves have a very broad maximum resulting in large error bars in
the determination of tc, as shown in Fig. 11. Despite the qualitative
character of these results, it is still possible to observe a very clear
increasing trend with increasing values of juj.

Finally, to determine the order of the phase transitions, we use
finite-size analysis of the energy cumulant, UE, and of the order
parameter cumulant, U, as functions of t, while one increases the
lattice size, L. The UE-curves have a minimum, which is expected
to become sharper and deeper as L increases, when the transition
is first-order [26]. Otherwise the minimum of the UE-curves levels
off and approaches the value of 2/3, as expected for a continuous
or second-order phase transition. On the other hand, the U-curves
develop a sharp negative minimum with increasing L, when the
transition is first-order; otherwise the U-curves smoothly drop
from 2/3 to 0, for a continuous or second-order transition [28–31].
Samples of these results are shown in Fig. 12(a–c).



Fig. 10. (a) Same as Figs. 8(a) and 9(a) applied to the phase {2/3, 1/3, 1} found in

the energy region �1ouo2. (b) The critical temperature tc is obtained by

extrapolation of the maximum of the heat capacity to the infinite lattice size L,

for u¼ 0:6 and 1:4. The error in each measurement is of the order of the

symbol’s size.

Fig. 11. Same as Figs. 8(a), 9(a), and 10(a) applied to the phase {1/3, 0, 0} found in

the energy region uo0. The data were obtained from the location of the heat

capacity maximum for u¼�0:2, as shown in the inset. The error bars correspond

to the increasing width of the heat capacity curves.

Fig. 12. (a) Energy (UE) and order parameter (U) cumulant versus temperature t

for the {1/2, 0, 1/2} phase; (b) UE versus t for the {1/2, 1/4, 0} phase; (c) UE versus t

for the {2/3, 1/3, 1} phase. These curves have been generated for sizes L¼24, 36,

48, 60, 96, and 120 to determine whether the order-disorder phase transition is

first- or second-order.
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For the case of {1/2, 0, 1/2}, shown in Fig. 12(a), we find that
the UE- and U-curves suggest the existence of a first-order
transition, for both attractive and repulsive second-neighbor
interactions. In contrast, the well-studied case u¼0 (W¼0) of
Ref. [24] shows a continuous second-order transition of a new
universality class.

The UE-curves of Figs. 12(b) and (c), corresponding to the
phases {1/2, 1/4, 1} and {2/3, 1/3, 1}, respectively, show the
characteristics of a second-order transition. The numerical com-
putations in the analysis of the phase {1/3, 0, 0} have been
inconclusive and for that reason are not presented.
7. Summary and discussion

The T-matrix method has been applied using long double
precision arithmetic. It provides the complete study of low
temperature dimer adsorption on finite width M square terraces,
in the entire range of first- and second-neighbor interactions.
With this precision, most of the numerical results are found to fit
exact analytic expressions in M. For attractive first-neighbors, we
were able to obtain the low-temperature energy phase diagram
for any M, thus allowing the straightforward extrapolation to the
infinite 2-D surface. For repulsive first-neighbors, the occupa-
tional characteristics of the phases all have closed form expres-
sions. We were able to identify phases with increasing values of M

which have similar occupational configurations and therefore can
be grouped into series in M, which are readily extrapolated to the
2-D surface. However, the low-temperature energy phase dia-
gram in the infinite-M limit could not be uniquely determined
based on these results. The definite answer was obtained using
MC simulations and finite-size scaling. At low temperature, the
long double precision arithmetic has also allowed the study of the
transitions between phases, determining whether they are first-
or second-order. Since the only phases that survive in the infinite-
M limit are those that fit exact analytic expressions in M, the
T-matrix method also provides, at low temperature, the proper-
ties of all of the transitions between the phases of dimers
adsorbed on the 2-D surface.

Exchange MC simulations and finite-size scaling have been used
in the case of repulsive first-neighbors. They were essential in
following the evolution with temperature starting from any of the
four ordered phases, identified on the 2-D square surface, reaching
the fully disordered state. Some of these transitions have the
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signature of second-order transitions, but further work is required to
determine the universality class to which they belong and the
nature of the remaining transitions. The critical temperature at
which these transitions occur depends on the interaction energies,
and we provided the complete study of such a relationship.

We have been unable to find experimental data that shows the
precise distribution of either bridge sites adsorptions or of two
nearest-neighbor monomers’ bonds that can therefore be treated as
dimers. We would like to suggest experiments capable of determining
such a distribution whether on 2-D (1 0 0) surfaces or (1 0 0) terraces
of finite width, both at relatively low temperature (to determine the
nature of the crystallization patterns) and with increasing tempera-
ture (to determine the critical temperature of the transition from the
ordered to the disordered state). Comparison between the low
temperature results and the low-temperature energy phase diagram
of the model (Figs. 5 and 6, or 7) provides a set of constraints on the
interaction energies. Comparison between the experimental value
obtained for the critical temperature and the curves generated for all
possible ordered phases, will further reduce the range of uncertainty
on the interaction energies (Figs. 8–11). Low temperature experi-
ments may also be performed to determine the chemical potentials at
which transitions between ordered phases occur. It will then become
possible to determine the precise interaction energies Eq. (10).

The assumption made above is that the change in pressure or
concentration ðmuÞ has a negligible effect on adsorbate–adsorbate
interactions (lateral interactions, V and W) or adsorbate–substrate
interaction (V0). For example, consider the low-temperature
energy phase diagram associated with the 2-D (1 0 0) surface of
Fig. 7, corresponding to repulsive first-neighbors. In this case, no
change in the lateral interactions means that u is fixed; and, as mu
is experimentally varied (v is changing), the evolution of the
system is represented in Fig. 7 by a straight-line path parallel to
the v-axis. Then the model predicts six possible sequences of
phases with increasing mu or v¼ ðmuþV0Þ=jV j:
1.
 E-f1=3,0,0g-f1=2,1=4,0g-F, if u is less than �1;

2.
 E-f1=3,0,0g-f1=2,1=4,0g-f2=3,1=3,1g-F, if u is in the range

(�1, �1/2);

3.
 E-f1=3,0,0g-f1=2,0,1g-f2=3,1=3,1g-F, if u is in the range

(�1/2, 0).

4.
 E-f1=2,0,1g-f2=3,1=3,1g-F, if u is in the range (0, 1).

5.
 E-f2=3,1=3,1g-F, if u is in the range (1, 2); and

6.
 a direct transition from empty to full coverage, E-F, if u is

greater than 2.

Should the change in pressure or concentration ðmuÞ affect the
adsorbate–substrate interaction, V0, but not the lateral interactions,
V and W, this would be experimentally detected from observing a
shift between the measured value of v at the transition between
phases and its predicted value, vt, given by Eq. (10), since
v¼ ðmuþV0Þ=jV j.
Finally, should a change in mu affect the lateral interactions
then the path followed in the phase diagram of Fig. 7 will
definitely not be parallel to the v-axis.
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[24] F. Romá, A.J. Ramirez-Pastor, J.L. Riccardo, Phys. Rev. B 72 (2005) 035444.
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