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Abstract. We show that all classes that are neither semisimple nor

unipotent in finite simple Chevalley or Steinberg groups different from

PSLn(q) collapse (i.e. are never the support of a finite-dimensional

Nichols algebra). As a consequence, we prove that the only finite-

dimensional pointed Hopf algebra whose group of group-like elements

is PSp2n(q), PΩ+
4n(q), PΩ−

4n(q),
3D4(q), E7(q), E8(q), F4(q), or G2(q)

with q even is the group algebra.
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1. Introduction

This is the fifth of a series of papers where we study a set of group-
theoretical questions on conjugacy classes of finite simple groups of Lie type
because of their consequences on the classification of finite-dimensional Hopf
algebras (over an algebraically closed field of characteristic 0, say C). Let
us start with a brief discussion of the reduction from the latter problem to
the former. See the Introductions of [2, 5] for a more detailed exposition.

(1) Let G be a group. There is a braided tensor category CG
CGYD of so called

Yetter-Drinfeld modules over (the group algebra of) G. Each V ∈ CG
CGYD

gives rise to a graded Hopf algebra B(V ) in CG
CGYD, called the Nichols

algebra of V . See e.g. [1] for details.
(2) Let H be a pointed Hopf algebra whose group of group-like elements is

isomorphic to G. There is a Nichols algebra B(V ) attached as a funda-
mental invariant to H. For instance dimH < ∞ implies dimB(V ) < ∞;
in fact B(V ) controls much of the structure of H.

(3) Assume that G is finite. Then CG
CGYD is semisimple and its simple objects

are parametrized by pairs (O, ρ), where O is a conjugacy class of G and
ρ ∈ IrrCG(x) is an irreducible representation of the centralizer of a
fixed element x in O; let M(O, ρ) be the simple object corresponding
to (O, ρ). By the previous discussion, we need to determine the pairs
(O, ρ) with dimB(M(O, ρ)) < ∞ as a necessary initial step to classify
finite-dimensional pointed Hopf algebras with group of group-likes G.
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(4) The second reduction goes as follows. It turns out that the Nichols
algebra B(M(O, ρ)) depends only (in an appropriate sense) on the rack
structure of O (with rack operation given by conjugation: x⊲y = xyx−1)
and a suitable 2-cocycle q arising from ρ. In this way, it is more efficient
to deal with Nichols algebras B(O,q) of pairs (O,q) where O is a rack
and q is a 2-cocycle, as the same such pair may arise from different
groups.

(5) Let us say that a rack O collapses if B(O,q) has infinite dimension
for any suitable cocycle q, cf. [6, 2.2]. Remarkably there are rack-
theoretical criteria that imply that a rack collapses, without computing
neither cocycles nor Nichols algebras. These criteria can be spelled out
in group-theoretical terms, once a realization of the rack in consideration
as a conjugacy class is fixed. See §2.8.

In this series we investigate the applicability of these criteria for finite
simple groups of Lie type, excluding the Suzuki and Ree groups treated
in [9]. For alternating and sporadic groups, see [6, 11, 7, 12]. Let G be
a finite simple Chevalley or Steinberg group defined over a finite field Fq

where q = pm, with m ∈ N and p prime. An element of G is semisimple,
respectively unipotent, if its order is coprime to p, respectively a power of
p. These notions are unambiguous except when G is one of the following:

PSL2(4) ≃ PSL2(5), PSL3(2) ≃ PSL2(7), PSU4(2) ≃ PSp4(3).(1.1)

A class is semisimple or unipotent if any element of it is so. This paper deals
with mixed conjugacy classes i.e., which are neither semisimple nor unipo-
tent; evidently there are no mixed classes in PSL2(q). For the groups in
(1.1), unipotent, semisimple or mixed will mean so in one of the realizations
(with some ambiguity unless the realization is clear from the context). The
mixed conjugacy classes of PSLn(q) were treated in [2]. In the previous four
papers of the series [2, 3, 4, 5] we concluded the analysis of the unipotent
conjugacy classes of G which is summarized in Table 1. Elaborating on
these results we obtain the first main theorem of this paper:

Theorem 1.1. A mixed conjugacy class in a simple Chevalley or Steinberg

group collapses.

This Theorem and its proof propagate in many directions. For instance, if
̟ : H → G is a projection from a finite group H to our G and x ∈ H is such
that ̟(x) is neither semisimple nor unipotent, then OH

x collapses. Here and
below we use the notation OH

x for the conjugacy class of x in H and we omit
H if clear from the context. For example let H = G1×G2 · · ·×Gt, where all
Gj ’s are simple Chevalley or Steinberg groups and x = (x1, . . . , xt) ∈ H. If
xj is neither semisimple nor unipotent for at least one j, then OH

x collapses.
Another application of Theorem 1.1 is to Nichols algebras of Yetter-Drinfeld
modules over our G.
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Theorem 1.2. Let G be a simple Chevalley or Steinberg group and V ∈
CG
CGYD. Assume that G is not listed in (1.1). If dimB(V ) < ∞, then

V ≃ M(O, ρ) is simple and O is semisimple.

Notice that we are not claiming the converse in Theorem 1.2. Indeed
Theorem 1.1 is the culmination of our analysis of unipotent classes where
we rely on the combinatorial description of such classes in the algebraic
group behind G. We started the consideration of the semisimple classes in
G = PSLn(q) in [4]; already in this case the situation is much more involved
and requires a different type of arguments.

As for the groups listed in (1.1), we have the following. Let V ∈ CG
CGYD.

◦ G ≃ PSL2(4) ≃ PSL2(5) ≃ A5: dimB(V ) = ∞ by [14, 15].
◦ G ≃ PSL3(2) ≃ PSL2(7): If dimB(V ) < ∞, then V is simple, hence
isomorphic to M(Ox, ρ) for some x and ρ by [19, Corollary 8.3]. We
conclude that the order of x is 4 and ρ(x) = −1 by [15].

◦ G ≃ PSU4(2) ≃ PSp4(3): dimB(V ) = ∞. Indeed, assume otherwise.
Arguing as in the proof of Theorem 1.2, necessarily V ≃ M(Ox, ρ) and
the order of x is odd and not divisible by 3; by inspection, it is 5. Now
there is only one class of elements of such order, hence this class is real.
But this contradicts [8].

For some Chevalley or Steinberg groups the arguments for Theorem 1.2
can be pushed even further. A folklore conjecture claims that there is no
finite-dimensional pointed Hopf algebra whose group of group-like elements
is simple non-abelian, except the group algebra. The conjecture is known to
hold for the simple alternating groups [6], the sporadic groups (including the
Tits group) except Fi22, B and M [7] and for some families of PSLn(q)’s
[14, 4]. As we just saw, it also holds for PSU4(2) ≃ PSp4(3); otherwise the
Conjecture is open. We add to the list of confirmations of the Conjecture
the families in (1.2), except from PSL2(q) for q even, that had already been
treated.

Theorem 1.3. Let q be even and let G be a simple group in one of the

following families:

PSL2(q), PSp2n(q), PΩ+
4n(q), PΩ−

4n(q),

3D4(q), E7(q), E8(q), F4(q), G2(q).
(1.2)

Let H be a finite-dimensional pointed Hopf algebra whose group of group-like

elements is isomorphic to G. Then H ≃ CG.

Here is the structure of the article. In Section 2 we set the notation
and collect basic preliminary results used in the paper. In order to prove
Theorem 1.1 we adopt the following strategy. Let x = xsxu be the Chevalley-
Jordan decomposition of x ∈ G (which amounts to the p-decomposition in
the theory of finite groups) where we assume that neither xs nor xu are
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trivial. Recall that there is a surjective group homomorphism π : GF → G,
where G is a simply connected simple algebraic group and F is a Steinberg
endomorphism–see Section 2 for details. We pick x ∈ GF such that π(x) =
x. If x = xuxs is its Chevalley-Jordan decomposition, then xu = π(xu).
There is a natural inclusion of racks (3.1) of OK

xu
in OG

x , where K is the

centraliser of xs in GF ; we restrict our attention to OK
xu
. The structure

of K is known and OK
xu

contains a product of unipotent conjugacy classes
of smaller groups of Lie type. Thus the unipotent classes in the factors of
the centraliser must occur in Table 1. In this way we are able to provide
strong restrictions to potential kthulhu classes, see (3.5) and (3.6). Then
we focus on the resulting reduced list of classes and we bring the action of
the Weyl group into the picture, providing further techniques to deal with
most of the potential kthulhu classes. These methods are still quite general
and allow to cover a considerable list of groups, see Proposition 3.8, and
leave out a few exceptions in the remaining ones. The substance of the
preceding sketch is contained in Section 3. The classes for which all above
techniques fail can be described with sufficient precision, allowing us to carry
out the final analysis. However, this part of the proof is laborious and it
needs several ad-hoc considerations and a separation of the treatment for
Chevalley (Section 4) and Steinberg groups (Section 5), where a case-by-case
analysis is performed. Finally we prove Theorems 1.2 and 1.3 in Section 6.

2. Notation and Preliminaries

In this Section we establish notation, recall some known facts about racks
and simple algebraic groups over finite fields, and collect some results on
unipotent conjugacy classes that are used throughout the paper.

For k ≤ l, k, l ∈ N we set Ik,l := {k, k + 1, . . . , l} and Il = I1,l.

Let p be a prime, q = pm for m ∈ N, k = Fq.
Let G be a simple algebraic group over k; we fix a maximal torus T and

a Borel subgroup B ⊃ T. We denote by U the unipotent radical of B. Let Φ
be the root system of G, let Φ+ be the set of positive roots associated with
(T,B) and let ∆ = {αi, i ∈ Iℓ} be the corresponding base, with ωi, for i ∈ Iℓ
the set of fundamental weights. The root subgroup corresponding to α will
be denoted by Uα. It is the image of a monomorphism of groups xα : k → G.
Since we will consider conjugacy classes as racks (see Subsection 2.8), the
conjugation action of g ∈ G on h ∈ G will be indicated by g ⊲ h. Adopting
the notation from [24, 8.1.4], we have the commutation rule:

t ⊲ xα(a) = txα(a)t
−1 = xα(α(t)a), t ∈ T, α ∈ Φ, a ∈ k.(2.1)

We shall also make use of Chevalley’s commutator formula [27, Lemma 15,
p. 22 and Corollary, p. 24]. Namely, for α, β ∈ Φ+ such that α + β ∈ Φ+

and any order on the set Γ of positive roots of the form iα+ jβ for i, j ∈ N,
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there exist integers cαβij such that

xα(ξ)xβ(η)xα(ξ)
−1xβ(η)

−1 =
∏

iα+jβ∈Γ

xiα+jβ(c
αβ
ij ξiηj), ∀ξ, η ∈ k.(2.2)

For further unexplained notation and commutation rules we refer to [3,

Section 3]. By α0 we will denote the highest root in Φ, and we set ∆̃ := ∆∪
{−α0}. As usual, W = NG(T)/T denotes the Weyl group, acting naturally
on T and sα is the reflection with respect to the root α. Let σ ∈ W be
represented by σ̇ ∈ NG(T) and let M be a subgroup of G normalized by T.
Then the subgroup σ̇Mσ̇−1 is independent of the choice of σ̇ and we shall
simply write σM.

If we insist that G is simply-connected, we shall write Gsc. For an alge-
braic group M, we shall denote by M◦ the connected component containing
the identity. If φ is an automorphism of a group H, then Hφ will denote
the set of elements of H that are fixed by φ.

2.1. The groups G. Let F be a Steinberg endomorphism of G, and assume
T and B are F -stable. Let G := GF

sc/Z(GF
sc) and let π : GF

sc → G be the
natural projection. In most cases G is simple and, conversely, every finite
simple group of Lie type is obtained this way (except the Tits group that
was treated in the paper [7] with the sporadic groups). Here we deal with
Chevalley or Steinberg groups; thus, F is the composition of a standard
graph automorphism ϑ of G with the Frobenius map Frq. Then ϑ determines
an automorphism θ of the Dynkin diagram of G. If θ = id, then G is a
Chevalley group, whereas if θ 6= id, then G is a Steinberg group. In the
latter case, T and B are chosen to be both F -stable and Frq-stable and in
both cases Frq(t) = tq for any t ∈ T. Since T is F -stable, F acts on W and
we denote by WF the subgroup fixed by F . Thus WF = W for Chevalley
groups. For each w ∈ WF , there exists a representative ẇ ∈ NGF (T), see
[21, Prop. 23.2]. Also, for any representative ẇ ∈ NG(T) of w ∈ W and any
α ∈ Φ one has that ẇ ⊲Uα = Uw(α).

2.2. F -stable tori. We recall that a maximal torus gTg−1 in G is F -stable
if and only if ẇ = g−1F (g) ∈ NG(T) and this relation induces a map φ
from the set of F -stable maximal tori to W . In addition, two F -stable
maximal tori T1 and T2 are conjugate by an element in GF if and only if
their images φ(T1) and φ(T2) lie in the same F -twisted conjugacy class in
W [21, Prop. 25.1]. If this is the case, their fixed points subgroups TF

1 and
TF
2 are also conjugate in GF . We will indicate by Tw a maximal torus gTg−1

such that g−1F (g) = ẇ ∈ NGFrq (T). Observe that every w in WFrq = W has
a representative ẇ in NGFrq (T) by [21, §23.1] and existence of a g ∈ G such
that g−1F (g) = ẇ is guaranteed by the Lang-Steinberg theorem. Hence,
such a torus always exists.
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2.3. The elements wθ. Let ϑ be as above and let θ be the associated
automorphism of the Dynkin diagram; it extends to an automorphism of
the root system of G that we denote again by θ. Assume that θ = id or
θ = −w0, where w0 is the longest element in W . The latter occurs for
Steinberg groups with root system of type: Aℓ for ℓ ≥ 2; Dℓ for ℓ ≥ 5 and
odd; and E6. Let w ∈ W and take Tw, ẇ ∈ NGFrq (T) and g as in Subsection

2.2. We set wθ := ww
|θ|−1
0 . Since CW (wθ) = CW (wθ), [21, Prop. 25.3]

guarantees that there exists a representative ẇθ of wθ in NG(T) such that
gẇθg

−1 ∈ NGF (Tw). If θ = −w0, then we set ẇ0 := ẇ−1ẇθ.

2.4. Semisimple classes. Every semisimple element of GF lies in an F -

stable torus T̃ [21, Prop. 26.6]. In particular, if φ(T̃) = w and s ∈ GF ∩ T̃,

then TF
w is GF -conjugate to T̃F , so OGF

s ∩ Tw 6= ∅.

Let s ∈ GF ∩ Tw = TF
w, with g, ẇ as in Subsection 2.2. We set Fw :=

Ad(ẇ) ◦ F . Then s = gtg−1 for some t ∈ TFw , so

F (t) = w−1(t) = Ad(ẇ−1)(t).(2.3)

Sometimes it is convenient to consider other F -stable tori intersecting

OGF

s . Assume that G = Gsc and pick σ ∈ W such that σ−1(t) = F (t), i. e.
σ and w lie in the same left coset for the stabiliser of t in W . Then for every
representative σ̇ ∈ NG(T) and every gσ such that g−1

σ F (gσ) = σ̇ we have

s′ := gσtg
−1
σ ∈ GF ∩ OG

t
⋆
= OGF

s

so OGF

s has a representative in TF
σ for any such σ. Here ⋆ holds because

CG(s) is connected, since G = Gsc is simply-connected, [20, Theorem 2.11].

2.5. Commuting elements in a semisimple class. Let s,w, g and t be

as in Subsection 2.4. We look for powers of s lying in OGF

s . If θ = id or
θ = −w0, we have:

(gẇ−1
θ g−1) ⊲ s = (gẇ−1

θ ) ⊲ t = g ⊲ (w
|θ|−1
0 w−1t)

= g ⊲ (w
|θ|−1
0 θtq) =

{
g ⊲ tq = sq, if θ = id,

g ⊲ t−q = s−q, if θ = −w0,

so either OGF

s = OGF

sq (when θ = id) or OGF

s = OGF

s−q (θ = −w0).
Assume that θ = id. Even when sq = s we get some information. In

this case, t ∈ GF , so t ∈ OG
s ∩ GF . If, in addition, G = Gsc then CG(s) is

connected, [20, Theorem 2.11], and OGF

s = OGF

t . Hence OGF

s ∩TF 6= ∅, that
is, the class intersects T.

2.6. Real classes. Assume w0 = − id and let s, Tw, ẇ and g as in Subsec-
tion 2.2. Then w0 ∈ CW (wθ) so there exists a representative ẇ0 of w0 in
NG(T) such that gẇ0g

−1 ∈ NGF (Tw). Then

(gẇ0g
−1) ⊲ s = (gẇ0) ⊲ t = g ⊲ t−1 = s−1 ∈ OGF

s .
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2.7. Non-central elements in the torus. We need the following fact on
algebraic groups. Assume G = Gsc. We recall that, for t ∈ T− Z(G), there
always exists α ∈ ∆ such that sα(t) 6= t. Indeed, suppose that sα(t) = t for
every α ∈ ∆. Then w(t) = t for every w ∈ W . By [20, §2.2], W is then
the Weyl group of the reductive group CG(t) = 〈T,Uα | α(t) = 1〉. Now
the Dynkin diagram of CG(t) can be read off from the Coxeter graph of W ,
except when G is of type Bℓ or Cℓ. This forces CG(t) = G (because the two
groups have the same Dynkin diagram, or by comparison of the dimensions),
a contradiction as t is not central.

Such an α also satisfies α(t) 6= 1. Indeed, t commutes with Uα if and only
if α(t) = 1 if and only if t commutes with U−α. In addition, sα(t) = ṡα ⊲ t
for any representative ṡα of sα in NG(T ). Since there is a representative
of sα lying in UαU−αUα [24, 8.1.4], we get a contradiction and whence the
claim follows.

2.8. Racks. We recall the notion of rack and some definitions that will be
needed later. In the present paper all racks are (unions of) conjugacy classes.
See [4] for details and more information.

A rack is a set X 6= ∅ with a self-distributive operation ⊲ : X ×X → X
such that x ⊲ is bijective for every x ∈ X. The standard example is
the conjugacy class OM

z of an element z in a group M with the operation
x ⊲ y = xyx−1, for x, y ∈ OM

z . A subrack of a rack X is a non-empty subset
Y such that x ⊲ y ∈ Y for all x, y ∈ Y . A rack X is abelian if x ⊲ y = y,
for all x, y ∈ X. In [6, 2, 4] the notions of racks of type D, F and C were
introduced. Since we will deal with subracks of conjugacy classes, we recall
the translation of these notions in this case.

Definition 2.1. A conjugacy class O in a finite group M is of type

C if there exist H ≤ M and r, s ∈ O ∩H such that

(a) rs 6= sr,

(b) OH
r 6= OH

s ,

(c) H = 〈OH
r , OH

s 〉,

(d) either min(|OH
r |, |OH

s |) > 2 or max(|OH
r |, |OH

s |) > 4;

D if there exists r, s ∈ O such that

(a) (rs)2 6= (sr)2,

(b) O
〈r, s〉
r 6= O

〈r, s〉
s ;

F if there exists ri ∈ O, for i ∈ I4 such that

(a) rirj 6= rjri, for i 6= j,

(b) O
〈ri, i∈I4〉
ri 6= O

〈ri, i∈I4〉
rj , for i 6= j.

A rack is kthulhu if it is neither of type C, D nor F.

Remark 2.2. The properties of type C, D, F are well-behaved with respect

to projections and inclusions, [6, Section 3.2], [2, Remark 2.9 (a)],[4, Lemma
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2.10]. In other words, if a rack X has either a quotient or a subrack which

is not kthulhu, then X is not kthulhu.

The main motivation for seeking conjugacy classes that are not kthulhu
stems from the classification of finite-dimensional Nichols algebras.

Theorem 2.3. [6, Theorem 3.6], [2, Theorem 2.8], [4, Theorem 2.9]. A

conjugacy class O of type D, F or C collapses. �

Remark 2.4. Let M be a finite group whose order is divisible by p. Let

y, z ∈ M and write y = ysyu and z = zszu as products of their p-regular

and p-parts. Then 〈y, z〉 = 〈ys, yu, zs, zu〉 and if yszu 6= zuys or yszs 6= zsys

then yz 6= zy. In particular, if M is a finite group of Lie type, then 〈y, z〉

is generated by the semisimple and unipotent parts of y and z and non-

commutation of y and z can be checked on their semisimple or unipotent

parts.

The next lemma is instrumental to detect classes of type C in finite groups.

Lemma 2.5. Let M be a finite group whose order is divisible by p. Let

y, z ∈ M and write y = ysyu and z = zszu as products of their p-regular

and p-parts. If

(2.4) yszu 6= zuys and zsyu 6= yuzs,

then yz 6= zy, |O
〈y,z〉
y | ≥ 3 and |O

〈y,z〉
z | ≥ 3. If in addition y and z are

conjugate in M and O
〈y,z〉
y ∩ O

〈y,z〉
z = ∅, then OM

y is of type C.

Proof. By Remark 2.4 any of the inequalities in (2.4) implies that yz 6= zy.

Moreover, O
〈y,z〉
y contains the orbits 〈zs〉 ⊲ y and 〈zu〉 ⊲ y. Since by (2.4) we

know that zu and zs are nontrivial, one of these two elements has odd order

bigger than 1. This implies that |O
〈y,z〉
y | ≥ 3. The inequality |O

〈y,z〉
z | ≥ 3

follows by symmetry. The last assertion follows by taking the subgroup

H = 〈y, z〉. �

2.9. Known results on unipotent classes. In this paper we analyze con-
jugacy classes that are neither semisimple nor unipotent in finite simple
groups of Lie type (mixed classes), in order to determine when such a class
is non-kthulhu. By Remark 2.2, it is enough to find subracks or quotients
which are not kthulhu. With this aim, we will first look for non-kthulhu
subracks that are isomorphic to unipotent classes in simple groups, rely-
ing on the results in [2, 3, 4, 5] on unipotent conjugacy classes. These are
summarized in the following theorem.
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Theorem 2.6. Let G = GF
sc/Z(GF

sc) be a Chevalley or a Steinberg group

and let O 6= {e} be a unipotent conjugacy class in G, not listed in Table 1.

Then O is not kthulhu. �

Table 1. Kthulhu unipotent classes

G class q

PSL2(q) (2) even, or 9, or odd not a square
PSL3(2) (3) 2

PSp2n(q), n ≥ 2 W (1)n−1 ⊕ V (2) even
PSp2n(q), n ≥ 2 (2, 12n−2) 9, or odd not a square

PSp4(q) W (2) even
PSUn(q), n ≥ 3 (2, 1n−2) even

Remark 2.7. We list some properties of the unipotent classes from Table 1,

see [2, 3, 5].

(1) For every group in Table 1 there are at most two unipotent conjugacy

classes labeled as in the second column of the table and they are isomor-

phic as racks. There is only one class labeled by (3) in PSL3(2). Also,

there is only one class labeled by (2) in PSL2(q) for q even.

(2) Assume O is a class different from the one labeled by (3) in PSL3(2).

Then O is represented by an element in Uβ where β is either the highest

root in Φ+ or the highest short root in Φ+, so F (Uβ) = Uβ. If there are

two such classes, then one of these is represented by xβ(1).

(3) All classes in Table 1 are Frp-stable. Indeed, Frp being an automorphism

of G, stabilizes the set of kthulhu classes and preserves the label and

the order of the elements. If there are two classes with the same label,

the one represented by xβ(1) is clearly Frp-stable, therefore Frp must

stabilize the second one, too.

(4) Let q be even. When n = 2, the non-standard graph automorphism

interchanging long and short roots in PSp4(q) maps the class labeled

by W (2) to the one labeled by W (1) ⊕ V (2). For any n ≥ 2, there is

only one class labeled by W (1)n−1 ⊕ V (2) in PSp2n(q).

(5) There is only one class labeled by (2, 1n−2) in PSUn(q) for q even.

Indeed, let u ∈ SUn(q) have label (2, 1n−2). Then u is conjugate in

GUn(q) to xβ(1). Since every element in GUn(q) is the product of a

diagonal matrix d fixed by F and a matrix in SUn(q), u is conjugate in

SUn(q) to an element in UF
β . A direct computation shows that UF

β =
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U
Frq
β and that all nontrivial elements in U

Frq
β are conjugate to xβ(1) by

a matrix in SUn(q) of the form diag(η, 1 . . . , 1, η−1) for η ∈ F×
q .

(6) Some of the groups occurring in the table are not simple. We need to

consider them to implement an induction procedure.

We also recall, for the purpose of application of Theorem 2.6, that unipo-
tent conjugacy classes in a simple group of Lie type G = GF

sc/Z(GF
sc) are

isomorphic as racks to the corresponding unipotent conjugacy class in GF

for any G isogenous to Gsc.

2.10. Results on products of racks. Another approach for detecting non-
kthulhu conjugacy classes is to find subracks isomorphic to a product of
conjugacy classes in a smaller group and apply results from [2, 3]. With this
in mind, we will make use of the following Lemma.

Lemma 2.8. [2, Lemma 2.10] Let O be a conjugacy class in a finite group

M containing a subrack of the form X1 ×X2 such that

there are x1, x2 ∈ X1 such that (x1x2)
2 6= (x2x1)

2,(2.5)

there are y1 6= y2 ∈ X2 such that y1y2 = y2y1.(2.6)

Then O is of type D. �

In order to apply Lemma 2.8, we determine which unipotent conjugacy
classes satisfy (2.5) or (2.6).

Lemma 2.9. If X1 is a conjugacy class occurring in Table 1, then it satisfies

(2.5). If X2 is a class occurring in Table 1 but not in Table 2, then it satisfies

(2.6). In particular, if O is a conjugacy class of a finite group M containing a

subrack isomorphic to a product of unipotent conjugacy classes in Chevalley

or Steinberg groups, not both listed in Table 2, then O is not kthulhu.

Table 2. Kthulhu unipotent classes not satisfying (2.6)

G class q

PSL2(q) (2) 2, 3
PSU3(q) (2, 1) 2

Proof. LetO be the class in PSUn(q) occurring in Table 1. For all conjugacy

classes occurring in Table 1 different from O, conditions (2.5) and (2.6)

are proved in [5, Lemma 3.5]. Assume X1 = O. We set x1 = idn+e1,n,

σ := e1,n + en,1 +
∑

i 6=1,n ei,i, x2 := σ ⊲ x1 and (2.5) holds. We now prove
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(2.6) for X2 = O and (n, q) 6= (3, 2). Let ζ be a generator of F×
q2
. If n = 3

and q > 2 we take

d = diag(ζ, ζq−1, ζ−q), y1 = id3 +e1,3, y2 = d ⊲ y1.

If n > 3, we take σ := e1,2 + e2,1 + en−1,n + en,n−1 +
∑

i∈I3,n−2
ei,i, y1 =

idn+e1,n and y2 := σ ⊲ y1. This settles the first statement.

Let now X = X1 ×X2 ⊂ O with Xi for i = 1, 2 isomorphic to a product

of unipotent classes in Chevalley or Steinberg groups. If X1 or X2 is not in

Table 1, then X is not kthulhu. If X1 nd X2 are in Table 1 and X2 is not in

Table 2, then the statement follows from the preceding and Lemma 2.8. �

Lemma 2.10. Let O 6= O′ ⊂ GF be unipotent conjugacy classes in Table 1

corresponding to the same label. If q 6= 3, then there exist x1 ∈ O, x2 ∈ O′

such that (x1x2)
2 6= (x2x1)

2. If q = 3, then there exist x1 ∈ O, x2 ∈ O′ such

that x1x2 6= x2x1.

Proof. By Remark 2.7 (1) and (5) the classes O and O′ occur either in

PSL2(q) or in PSp2n(q). By Remark 2.7 (2) we may assume xβ(1) ∈ O for

β the highest root or the highest short root in Φ+ and y1 ∈ O′ ∩ UF
β . Let

ṡβ be a representative of sβ in NGF (T) and let ṡβ ⊲ y1 = x−β(ξ) ∈ O′ ∩UF
−β.

A computation in 〈Uβ,U−β〉 shows that xβ(1)x−β(ξ) 6= x−β(ξ)xβ(1) always

and that (xβ(1)x−β(ξ))
2 6= (x−β(ξ)xβ(1))

2 if and only if ξ(2 + ξ) 6= 0. A

direct verification in SL2(q) and Sp2n(q) shows that if q 6= 3, then ṡβ can

always be chosen in such a way that ξ satisfies the latter condition. We take

x1 = xβ(1) and x2 = ṡβ ⊲ y1. �

Remark 2.11. The inequalities in Lemmata 2.9 and 2.10 can be written as in-

equalities between unipotent elements. Since the restriction of an isogeny to

unipotent elements is an isomorphism, such inequalities hold independently

of the isogeny type of G.

3. Mixed classes

In this Section we introduce some reduction techniques in order to deal
with mixed classes. From now on G = Gsc is simply-connected and G 6=
PSLn(q), since these last groups have been treated in [2].

Let x ∈ G and let x ∈ GF such that π(x) = x, with Chevalley-Jordan
decomposition x = xsxu. Then x has Chevalley-Jordan decomposition x =
xsxu with xs = π(xs), xu = π(xu). We assume that OG

x is mixed, that
is xs, xu 6= 1. By construction xu belongs to K := CG(xs) ∩ GF , thus
xu ∈ K := π(K).



NICHOLS ALGEBRAS OVER MIXED CLASSES 13

We recall the morphisms of racks from [2, Lemma 1.2]

(3.1) OK
xu

≃ OK
xu

→֒ OG

x ,

where the isomorphism follows from injectivity of the restriction of the
isogeny G → G/Z(G) to unipotent elements. This motivates the quest

for classes OGF

x such that OK
xu

is not kthulhu and a better understanding of
the group K. For the latter we will use [10].

3.1. Classes in centralisers of semisimple elements. By the discussion
in Subsection 2.4, we may assume that xs = gtg−1 for some t ∈ T, and some
g ∈ G such that g−1F (g) = ẇ ∈ NGFrq (T). Let H := CG(t). By [20, 2.2], H
is connected and reductive, so H = Z(H)◦[H,H], it is given by

H = 〈T, Uα | α ∈ Φ, α(t) = 1〉 .

and Frq H = CG(t
q) = H. Since Φt := {α ∈ Φ | α(t) = 1} is W -conjugate to

a root system with base a subset of ∆̃, [23, Proposition 30], up to replacing
t by σ̇ ⊲ t, g by gσ̇−1 and ẇ by σ̇ẇF (σ̇−1) for σ̇ a suitable element in NG(T),

we may always assume that Φt has a base Π contained in ∆̃. The subset Π
is unique up to W -action.

If Ad(ẇ)−1(t) = F (t), then Ad(hẇ)−1(t) = F (t) for every h ∈ H, so ẇ
could be replaced by σ̇ẇ ∈ GFrq for any σ̇ ∈ NH(T) and w could be replaced
by σw, for σ ∈ NH(T)/T = WΠ, the group generated by the reflections with
respect to roots in Π.

Let Fw := Ad(ẇ) ◦ F . Then H is Fw-stable and

K = (gHg−1)F = gHFwg−1,

[3, Remark 2.5(c)]. By uniqueness of the Chevalley-Jordan decomposition,
xu lies in (g[H,H]g−1)F = g[H,H]Fwg−1 .

For the rest of the paper, we assume that x = xsxu = gtvg−1 with t ∈ T,
v ∈ [H,H]Fw and xs = gtg−1, xu = gvg−1.

This leads us to the following statement.

Lemma 3.1. With notation as above, if O
[H,H]Fw

v is not kthulhu, then OG
x

is again so.

Proof. This follows from (3.1) and the inclusion g ⊲O
[H,H]Fw

v ⊂ OK
xu
. �

We explore now several conditions ensuring that the hypothesis of Lemma
3.1 is satisfied. In order to do so, we describe the structure of the Fw-stable
and Frq-stable, hence Ad(ẇ)ϑ-stable, semisimple group [H,H]. There exist
uniquely determined Frq-stable simple algebraic subgroups Gj ≤ [H,H] for
j ∈ Ir satisfying:

[H,H] = G1 · · ·Gr, [Gi,Gj ] = 1 if i 6= j, Gi ∩
∏

j 6=i

Gj ⊆ Z([H,H]).(3.2)
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We will denote by Φi
t the root system of Gi with base ∆i ⊆ ∆̃. The auto-

morphism Ad(ẇ)ϑ permutes the factors Gi and the systems Φi
t, inducing a

permutation of the indices i ∈ Ir which we denote by ω. By suitably rear-
ranging the indices, we may assume that ω is a product of l disjoint cycles

of the form cj = (ij +1, . . . , ij + aj) with
∑

j aj = r and ij =
∑j−1

b=1 ab, so ω

is completely determined by the aj, j ∈ Il. Let Cj := {ij + 1, . . . , ij + aj}
and Hj :=

∏
l∈Cj

Gl. Then each Hj is semisimple and Fw-stable, since it is

Frq-stable and Ad(ẇ)ϑ-stable. As a consequence of (3.2) we have:

[H,H] = H1 · · ·Hl, [Hi,Hj ] = 1 if i 6= j, Hi ∩
∏

j 6=i

Hj ⊆ Z([H,H]).(3.3)

The element v decomposes accordingly as v =
∏l

j=1 vj with vj ∈ Hj unipo-
tent. The equation

l∏

j=1

Fw(vj) = Fw(v) = v =
l∏

j=1

vj

implies that vjFw(vj)
−1 = zj ∈ Z([H,H]). Hence, vj = zjFw(vj) with vj,

Fw(vj) unipotent, forcing zj = 1 for every j ∈ Il. Thus, v ∈
∏l

j=1H
Fw

j .

We analyse now the structure of HFw

j , for j ∈ Il. For simplicity, we
assume for the moment that l = 1, so v = v1. We set a := a1. Let uk be the
(unipotent) component of v in Gk. Since v is Fw-invariant, we have

a∏

j=1

uj = v = Fw(v) =
a∏

j=1

Fw(uj), Fw(uj) ∈ Gj+1, j ∈ Ia−1, Fw(ua) ∈ G1.

By (3.2) and the unipotency of the uj we have

uj = F j−1
w (u1), j ∈ I1,a F a

w(u1) = u1.(3.4)

In other words, v lies in the subgroup G1 of H1 consisting of elements whose
components satisfy (3.4). Projection onto the first component induces an

isomorphism G1 ≃ G
F a
w

1 . Since, by construction, Frq(ẇ) = ẇ, we have

F a
w = (Ad(ẇ)ϑ)a ◦ Fraq

where (Ad(ẇ)ϑ)a is an automorphism of the simple algebraic group G1 and
F a
w is a Steinberg endomorphism of G1. The corresponding finite simple

group will be Chevalley or Steinberg according to whether (Ad(ẇ)ϑ)a is an
inner automorphism of G1 or not [26, 10.9].

If l > 1, a similar analysis shows that v ∈
∏l

j=1Gj where Gj ≃ GF
aj
w

ij+1.

Thus, the rack O
[H,H]Fw

v contains the subrack O
∏

j Gj

v which is isomorphic

to
∏

j O
Gj
vj . Each component is a unipotent conjugacy class among those

studied in [2, 3, 4, 5]. By abuse of notation we will identify Gj and GF
aj
w

ij+1

and vj with its component in GF
aj
w

ij+1.
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Let Jv := {j ∈ Il | vj 6= 1}.

Lemma 3.2. Assume that one of the following conditions holds for OG
x :

(1) For some j ∈ Jv, the class O
Gj
vj is not in Table 1,

(2) |Jv | ≥ 2 and for some j ∈ Jv, O
Gj
vj is not in Table 2.

Then OG
x is not kthulhu.

Proof. (1) The rack OK
xu

contains O
Gj
vj which is not kthulhu. (2) The rack

OK
xu

contains a subrack satisfying the hypothesis of Lemma 2.9. �

3.2. Subracks obtained by the action of the Weyl group. From now
on we assume that we are in the following situation: either

|Jv| = 1 and OG1
v1 occurs in Table 1, or(3.5)

|Jv | ≥ 2 and for every j ∈ Jv the rack O
Gj
vj occurs in Table 2.(3.6)

The latter case occurs only when qaj ∈ {2, 3} for every j ∈ Jv , whence

ω(j) = j for every j ∈ Jv. Observe that if (wθ)aj (Φj
t ∩ Φ+) = Φj

t ∩ Φ+ for
some j ∈ Jv , then we may always assume vj ∈ U. In particular, if q 6= 2 and

wθ acts trivially on Φj
t , then by Remark 2.7 we may take vj ∈ UF

β for β the

highest root or the highest short root in Φj
t .

Remark 3.3. In order to deal with mixed classes satisfying (3.5) or (3.6), we

need to look at subracks of OGF

x that are different from those in Lemma 3.2.

Since for every Fw-stable subgroup M of G, we have (gMg−1)F = gMFwg−1,

we have the rack isomorphism

g ⊲ : OGFw

tv
∼
→ OGF

x ,(3.7)

and we will mainly perform calculations in GFw . We will often make use

of the fact that any σ in the centraliser CW (wθ) has a representative in

NG(T) ∩ GFw , [21, Proposition 25.3]. In addition Z(GF ) = Z(GFw) so the

isomorphism of racks (3.7) is compatible with the isogeny Gsc → Gad.

Lemma 3.4. Assume that there exists σ ∈ W such that:

(1) σ ∈ CW (wθ);

(2) σ(Hj) = Hj for some j ∈ Jv;

(3) σ(t) 6∈ Z(GF )t.

Then OG
x is not kthulhu.

Proof. Observe that the subgroup σHj is well-defined because Hj is normal-

ized by T. Let σ̇ ∈ NG(T) ∩GFw be a representative of σ. Let

X := tOHFw

v , and Y := σ̇ ⊲ X = σ(t)OHFw

σ̇⊲v .
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Condition (3) ensures that X ∩ Y = ∅ and that the restriction of π to

X
∐

Y is injective. By Condition (1), σ(t) commutes with σ(Hj) = Hj,

whence with Gj . In addition, Hj commutes with all Hi and σ(Hi) for i 6= j,

hence it commutes with the subgroup they generate. Thus, in order to verify

the non-commutation of elements in X and Y it is enough to look at the

components in O
Gj
vj and O

Gj

σ̇⊲vj
. For this reason we assume for simplicity that

Jv = {1}, so v = vj = v1. Notice that σ̇ ⊲ v ∈ G1 has the same label as v.

(a) Assume q even. Since v and σ̇ ⊲ v have the same label, σ̇ ⊲ v ∈ OG1
v by

Remark 2.7. By Lemma 2.9 applied to OG1
v , there exist x1, x2 ∈ OG1

v

such that (x1x2)
2 6= (x2x1)

2. Then, for r := tx1 ∈ X and s := σ(t)x2 ∈

Y we have O
〈r,s〉
r ⊆ X, O

〈r,s〉
s ⊆ Y and (rs)2 6= (sr)2. This shows that

OGF

x is of type D.

(b) Assume q odd. Either by Lemma 2.9 or by Lemma 2.10, there exists

v′ ∈ OG1
σ̇⊲v such that vv′ 6= v′v. Let

r = tv ∈ X, s = σ(t)v′ ∈ Y, H := 〈r, s〉 = 〈t, σ(t), v, v′〉.

By construction, t, σ(t) ∈ Z(H), rs 6= sr, OH
r ⊂ X, OH

s ⊂ Y , so

OH
r ∩ OH

s = ∅. Also, H ≤ 〈OH
r , OH

s 〉 ≤ H. Finally, v and v′ are

p-elements, so v, v′ ⊲ v and (v′)2 ⊲ v are all distinct, hence
∣∣OH

r

∣∣ =
∣∣tOH

v

∣∣ =
∣∣OH

v

∣∣ =
∣∣∣O〈v,v′〉

v

∣∣∣ ≥ 3

and similarly for
∣∣OH

s

∣∣.
Since OG

x contains the subrack π(X ∐ Y ) ≃ X ∐ Y , from the discussion

above it follows that OG
x is of type D or C. �

Remark 3.5. Conditions (1) and (2) from Lemma 3.4 are verified in the

following situations:

(a) θ = id or θ = −w0 and σ = w−1
θ . Here σ(t) = t±q.

(b) w0 = −1 and σ = w0. Here σ(t) = t−1.

In the above situations, CG(σ(t)) = H, so (2) holds for any j ∈ Jv.

Lemma 3.6. Assume that one of the following conditions holds

(1) G is Chevalley and tq 6∈ Z(GF )t.

(2) G is Steinberg with θ = −w0 and t−q 6∈ Z(GF )t.

(3) w0 = −1 and t2 6∈ Z(GF ).

Then O is not kthulhu.

Proof. It is a direct consequence of Lemma 3.4 and Remark 3.5 because

w−1
θ (t) = tq when θ = id and w−1

θ (t) = t−q when θ = −w0. �
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The following remark will be useful to locate the cases in which the hy-
potheses of Lemma 3.4 or, more specifically, 3.6 do not hold.

Remark 3.7. Let τ ∈ W and s =
∏

j∈Iℓ
α∨
j (ξj) ∈ T. We set

I(τ) = {i ∈ Iℓ | si occurs in a reduced decomposition of τ}, and

I(s) = {i ∈ Iℓ | ξj 6= 1}.

We recall that I(τ) does not depend on the chosen reduced decomposition

and that the coefficients ξj are uniquely determined.

(1) For τ and s as above, τ(s) ∈ s
∏

i∈I(τ)
α∨
i (k).

(2) If for some σ ∈ W , z ∈ Z(GF ) and t ∈ T we have σ(t) = zt then

I(z) ⊆ I(σ).

(3) In the special case in which θ = id or θ = −w0, z ∈ Z(GF
sc)− 1 and

t ∈ TFw satisfy w−1
θ (t) = zt, we necessarily have I(z) ⊆ I(wθ).

Proposition 3.8. Assume q is even and Φ is of type A1, Bn, Cn, D2m, E7,

E8, F4 or G2. Then OG
x is not kthulhu.

Proof. In this case w0 = −1 and ord t is odd. By Lemma 3.6 the statement

could fail only if t2 ∈ Z(GF ), but this would force t ∈ Z(GF ) contradicting

our assumption on xs. �

We end this Subsection with a lemma that will be useful to discuss some
of the cases not covered by Lemmata 3.2, 3.6 or Proposition 3.8, both in
Chevalley and Steinberg groups.

Lemma 3.9. Let {βi, i ∈ I3} ⊂ Φ be the base of a root subsystem of type

A3 such that

(1) {β1, β3} ⊂ Φt and {β1, β3} is wθ-stable;

(2) Uβ2 is Fw-stable and β2 6∈ Φt;

(3) v ∈ ((Uβ1 − 1)Uβ3)
Fw .

Then OG
x is of type C.

Proof. Let Ũ = 〈Uβi
, i ∈ I3〉 and B̃ = TŨ. Then Ũ and B̃ are Fw-stable as

well as Frq-stable. Let r := tv = txβ1(ξ)xβ3(ξ
′) ∈ tŨ for ξ ∈ k×, ξ′ ∈ k. Since

wθ(β2) = β2 we have wθsβ2 = sβ2wθ so we may find a representative ṡβ2 of

sβ2 in GFw ∩NG(T). We set: t′ = ṡβ2 ⊲ t, v
′ := ṡβ2 ⊲ v = xβ1+β2(ζ)xβ2+β3(ζ

′)

for some ζ ∈ k× and ζ ′ ∈ k, and s := ṡβ2 ⊲ r = t′v′ ∈ t′Ũ. Since 〈r, s〉 ⊂ B̃,

then O
〈r,s〉
r ⊂ tŨ and O

〈r,s〉
s ⊂ t′Ũ. In addition, since sβ2(β1) /∈ Φt by (2), it

follows that CG(t
′) 6= H so t′ 6∈ Z(G)t. Therefore, π(O

〈r,s〉
r ) ∩ π(O

〈r,s〉
s ) = ∅.

Since (β1 + β2)(π(t)) = (β1 + β2)(t) 6= 1 and β1(π(t
′)) = β1(t

′) 6= 1, by (2.1)
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the inequalities (2.4) in Lemma 2.5 hold for y = π(r) and z = π(s). Hence,

π(OGF

r ) is of type C. �

4. Mixed classes in Chevalley groups

In this Section, F = Frq and Φ is not of type An. We keep the notation
introduced in Section 3.

By Lemma 3.6 and Proposition 3.8 it remains to deal with the cases
x2s ∈ Z(GF ) if w0 = −1 and q is odd, and x

q−1
s ∈ Z(GF ) if w0 6= −1. In the

latter situation q > 2 because xs 6∈ Z(GF ). In other words, we have to deal
with the following cases:

(1) Φ of type Bℓ, ℓ ≥ 3; Cℓ, ℓ ≥ 2; D2n, n ≥ 2; E7; E8; F4; G2; q is odd and
x2s ∈ Z(GF ) (every z ∈ Z(GF ) has order ≤ 2) [21, Table 24.2];

(2) Φ of type D2n+1, n ≥ 2; E6 and x
q−1
s ∈ Z(GF ) (here |Z(GF )| ≤ 4);

and v satisfies either (3.5) or (3.6).

4.1. The case xs ∈ TF . We recall from Subsection 2.5 that if xq−1
s = 1,

then t ∈ TF and we may assume xs = t ∈ TF . We now deal with this
situation.

Lemma 4.1. Let xs ∈ TF − Z(GF ). By Subsection 2.7 there always exists

α ∈ ∆ such that sα(xs) 6= xs. Assume that we are not in the situation:

G is of type Bℓ, q is odd, t satisfies sαj
(t) 6= t ⇐⇒ j = ℓ.(4.1)

Then the root α can be chosen so that sα(xs) 6∈ xsZ(GF ).

Proof. The statement follows when G is of type E8, F4, G2, because Z(G) =

Z(GF ) is trivial in these cases. In the general case, assume that sα(xs)
⋆
= zxs

for some z ∈ Z(GF )− 1. Applying sα, we get z
2 = 1. Thus G is not of type

E6 (here Z(G) ≃ Z/3) and q should be odd. By ⋆, we have

ωi(xs) = ωi(zsα(xs)) = ωi(z)sα(ωi)(xs), ∀i ∈ Iℓ.(4.2)

Say α = αj , j ∈ Iℓ. If i 6= j then sα(ωi) = ωi, hence ωi(z) = 1. Now such z

exists only if we are in (4.1), see the description of Z(GF ) in Table 3. �

Lemma 4.2. Let xs ∈ TF −Z(GF ), let α ∈ ∆ be as in Subsection 2.7, and

let P be the minimal standard F -stable parabolic subgroup with standard Levi

complement L associated with α. Let L = LF . Then OL
xs

is of type C.

Proof. Let X1 = xsU
F
α and X2 = sα(xs)U

F
α . Then X1 = UF

α ⊲ xs = UF
αxs and

X2 = UF
α ⊲sα(xs) = UF

α sα(xs), using (2.1) and α(sα(xs)) 6= 1. Hence, Xi⊲Xj =

Xj for i, j ∈ I2. Set Y = X1∪X2. Note that 〈Y〉 = 〈xs, sα(xs),U
F
α 〉 ⊆ L. Then

X1 ∩ X2 = ∅, xs ∈ X1 = O
〈Y〉
xs , sα(xs) ∈ X2 = O

〈Y〉
sα(xs)

and |X1| = |X2| = q > 2.

Taking r = xs and s = sα(xs)xα(1), we conclude that Y is of type C. �
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Table 3. Center of GF
sc, q odd; ζ, ω ∈ F×

q , |ζ| = 4, |ω| = 3

type Z(GF
sc)

Bℓ 〈α∨
ℓ (−1)〉

Cℓ, ℓ > 2

〈

∏

i odd

α
∨
i (−1)

〉

Dℓ, ℓ ∈ 2Z

〈

∏

i odd

α
∨
i (−1), α∨

ℓ−1(−1)α∨
ℓ (−1)

〉

Dℓ, ℓ ∈ 2Z+ 1, q ≡ 1(4)

〈

∏

i odd≤ℓ−2

α
∨
i (−1)α∨

ℓ−1(ζ)α
∨
ℓ (ζ

3)

〉

Dℓ, ℓ ∈ 2Z+ 1, q ≡ 3(4)
〈

α
∨
ℓ−1(−1)α∨

ℓ (−1)
〉

E6, q ≡ 1(3) 〈α∨
1 (ω)α

∨
3 (ω

2)α∨
5 (ω)α

∨
6 (ω

2)〉
E6, q 6≡ 1(3) 1

E7 〈α∨
2 (−1)α∨

5 (−1)α∨
7 (−1)〉

Lemma 4.3. If xs ∈ TF − Z(GF ) and we are not in the situation (4.1),

then OG
x is not kthulhu.

Proof. In this case we take g, ẇ = 1, so Hi = Gi for all i ∈ Ir (cf. Subsections

2.4, 3.1). Recall that v satisfies either (3.5) or (3.6). Since ẇ = 1, the

class in PSUn(q) does not occur because PSUn(q) does not occur in the

decomposition of [H,H]F , see Subsection 3.1. Also, we may assume that

q > 2, as the classes in groups over F2 occur only for xs = 1 Thus, each

component in v = xu can be chosen to lie in a UF
β for some β ∈ Φ+ such

that β(xs) = 1. By the hypothesis on xs, there is α ∈ ∆ as in Lemma

4.1. Let P be the standard F -stable parabolic subgroup with standard Levi

complement L associated with α, and let P = PF , L = LF . Then for

πL : P → L we have that πL(O
P
xsxu

) = OL
xs

is of type C by Lemma 4.2. Let

Y as in the proof of Lemma 4.2 and let

X′1 := π−1
L (X1) ∩ OP

x = xsU
F ∩ OP

x ,

X′2 := π−1
L (X2) ∩ OP

x = sα(xs)U
F ∩OP

x ,

Y ′ := π−1
L (Y) ∩ OP

x = X′1 ∪ X′2.

Let π : GF → G be the isogeny and let a 6= b ∈ Y ′ such that π(a) = π(b),

i.e. there is z ∈ Z(GF ), z 6= 1, such a = zb. Hence either a = xsu and

b = sα(xs)v for some u, v ∈ UF , or vice versa. In any case, xs = zsα(xs),

impossible by our choice of α. Hence, the restriction of π to Y ′ is injective

and OG
x is of type C. �
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In the next lemma we deal with the case in which xs ∈ TF −Z(GF ) is as
in (4.1). Then xs has the form

xs =



∏

i∈Iℓ−1

α∨
i ((−1)i)


α∨

ℓ (η), where η2 = (−1)ℓ.(4.3)

Notice that if ℓ is odd, then such an xs belongs to GF if and only if q ≡ 1(4).

We shall also need a realization of the symplectic group Sp2n(k) for q
odd. We choose it to be the subgroup of GL2n(k) consisting of matrices
preserving the skew-symmetric bilinear form with associated matrix

J̃2n =
(

0 Jn
−Jn 0

)
, where Jn =

(
1

. .
.

1

)
.(4.4)

When clear from the context, we shall omit the index n from Jn and J̃2n.

Lemma 4.4. Assume Φ is of type Bℓ and q is odd. Let x = xsxu with

xu 6= 1 and xs is as in (4.1). Then OG
x is not kthulhu.

Proof. Here H = CG(xs) = CG(t) is simple with Φt of type Dℓ. As ℓ > 2

is not compatible with (3.5) nor (3.6), we have ℓ = 2, G ≃ Sp4(k) and

H ≃ SL2(k)×SL2(k) is semisimple. Our assumptions on xu = v give either:

(1) q = 9 or not a square and only one component of xu in SL2(k)×SL2(k)

is non-trivial; or else

(2) q = 3 and the two components of xu in SL2(k)×SL2(k) are non-trivial.

To deal with (1), we work in GF = Sp4(9) for simplicity. In this case,

BF is the subgroup of Sp4(9) consisting of upper triangular matrices. Let

π : GF → G. We take

x = xsxα2(a) =

(
−1 0 0 0
0 1 a 0
0 0 1 0
0 0 0 −1

)
, a ∈ F×

9 .

Let

σ =

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
, r = σ ⊲ x =

(
1 0 0 a
0 −1 0 0
0 0 −1 0
0 0 0 1

)
,

xα1(1) =

(
1 1 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

)
, s = xα1(1) ⊲ x =

(
−1 2 a a
0 1 a a
0 0 1 2
0 0 0 −1

)
.

A direct computation shows that (π(r)π(s))2 6= (π(s)π(r))2. Also, r, s ∈

BF = TFUF and, for V = 〈UF
β | β ∈ Φ+ − α2〉 by Chevalley’s commutator

formula we have BF ⊲ r ∈ TFV whereas BF ⊲ s ∈ TFxα2(F
×
9 )V . Hence,

O
〈π(r),π(s)〉
π(r) 6= O

〈π(r),π(s)〉
π(s) and OG

x is of type D.
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There are 2 classes in case (2), namely the classes represented by

xa =

(
1 0 0 1
0 2 a 0
0 0 2 0
0 0 0 1

)
, a ∈ F×

3 .

They lie in the same orbit for the conjugation action of the group of diagonal

matrices diag(ξ, η, λξ−1, λη−1), for ξ, η ∈ F×
9 , λ ∈ F×

3 on Sp4(q). Hence

Ox1 ≃ Ox2 . Let r := x1. With notation as in (1), let

r1 = σ ⊲ r =

(
2 0 0 1
0 1 1 0
0 0 1 0
0 0 0 2

)
, s = xα1(1) ⊲ r1 =

(
2 2 1 2
0 1 1 1
0 0 1 2
0 0 0 2

)
.

Again, (π(r)π(s))2 6= (π(s)π(r))2. Also, r, s ∈ BF and BF ⊲ r ∈ TFxα2(2)V

whereas BF ⊲ s ∈ TFxα2(1)V . Hence, O
〈π(r),π(s)〉
π(r) 6= O

〈π(r),π(s)〉
π(s) so this class

is of type D. �

Proposition 4.5. Assume Φ and q fall into one of the following cases:

(1) E8, F4, G2, q arbitrary;

(2) E6 and q 6≡ 1(3);

(3) D2m+1 and q is even.

Then OG
x is not kthulhu.

Proof. In these cases, we have that Z(GF ) = 1, see [21, Table 24.2]. Thus,

by Subsection 2.5, the condition x
q−1
s ∈ Z(GF ) reads xs ∈ TF . This is dealt

with in Lemma 4.3. �

4.2. The remaining cases. According to the list at the beginning of Sec-
tion 4, we are left with the following cases:

Setting 4.6. xq−1
s = z ∈ Z(GF ) − {1}; either (3.5) or (3.6) holds for v; and

Φ, q and xs satisfy:

(1) Cℓ, ℓ ≥ 2; x2s = z, so q ≡ 3(4);

(2) Bℓ, ℓ ≥ 3; x2s = z, so q ≡ 3(4);

(3) D2n, n ≥ 2; x2s = z, so q ≡ 3(4);

(4) E7; x
2
s = z, so q ≡ 3(4);

(5) D2n+1, n ≥ 2, q is odd;

(6) E6, q ≡ 1(3).

Assume that we are in either of the situations (1), . . . , (4). By Table 3, we

must have that q ≡ 3(4), since otherwise xq−1
s = 1. Analogously, q ≡ 1(3) if

Φ is of type E6.

In what follows, we provide several technical remarks and lemmata to
deal with these cases.
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Remark 4.7. If Φj
t is of type A1 with base ∆j = {αj1} and Ad(ẇ)Gj = Gj,

then, by replacing w by sαj1
w, we can always ensure that w acts trivially on

Φj
t . Observe that this replacement does not affect the action of w on other

subsets ∆l, for l ∈ Jv − {j}.

Lemma 4.8. Assume that (3.6) holds for v, that Ad(ẇ)−1(t) = tq = zt 6= t

with z ∈ Z(GF ), and that w acts trivially on Φi
t for all i ∈ Jv. If there exists

α ∈ ∆ such that:

(1) sαw = wsα;

(2) sα(β) 6∈ Φt for some β ∈ (Φi0
t )

+ and some i0 ∈ Jv with β 6= α0;

then OG
x is of type C.

Proof. Note that in this situation q 6= 2. As |Jv| > 1, we necessarily have

q = 3 and Φi
t is of type A1 for all i ∈ Jv.

We set for simplicity i0 = 1. Then v1 ∈ H1 = G1, G1 = G
Frq
1 , and since

w acts trivially on Φ1
t we may assume that v1 = xβ(ξ) for some ξ ∈ F×

q .

Let ∆1 ⊂ ∆ be the base of Φ1
t ; let Π̃ = ∆1 ∪ {α}; let P be the Fw-stable

standard parabolic subgroup of G associated with Π̃; V be its unipotent

radical and L be the Fw-stable standard Levi subgroup. Up to conjugation

in HFw , we have that v = xβ(ξ)v
′ for some v′ ∈ V. Let

r := tv = txβ(ξ)v
′ ∈ txβ(ξ)V.

Condition (1) and [21, Proposition 25.3] applied to Fw ensure that there

exists a representative ṡα ∈ NG(T) ∩GFw . We set

s := ṡα ⊲ r = sα(t)xsαβ(ζ)v
′′ ∈ sα(t)xsαβ(ζ)V

for some ζ ∈ k× and some v′′ ∈ V, since ṡα ∈ L. Condition (2) ensures that

α 6∈ Φt so sαγ ∈ Φ+ for every γ ∈ Φ+
t . Hence, 〈r, s〉 ⊂ TU. Thus:

O〈r,s〉
r ⊂ OTU

r ⊂ tU, O〈r,s〉
s ⊂ OTU

s ⊂ sα(t)U.

Condition (2) also gives sαΦt 6= Φt whence ṡα 6∈ NG(H). In particular,

ṡα 6∈ H, so sα(t) 6= t and therefore O
〈r,s〉
r ∩O

〈r,s〉
s = ∅. Since ṡα 6∈ NG(H), we

have sα(t) 6∈ Z(G)t. Thus, the restriction of the isogeny to O
〈r,s〉
r

∐
O

〈r,s〉
s

is injective and π
(
O

〈r,s〉
r

)
∩ π

(
O

〈r,s〉
s

)
= ∅. As α(π(t)) = α(t) 6= 1 and

β(π(t′)) = β(t′) = β(sα(t)) = (sαβ)(t) 6= 1, by (2.1) the inequalities in

Lemma 2.5 hold for y = π(r) and z = π(s). Hence, π
(
OGF

r

)
is of type C,

and consequently, OG
x is also of type C, by Remark 3.3.

�
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Remark 4.9. If (3.5) holds for OG
x , Ad(ẇ)−1(t) = tq = zt 6= t with z ∈

Z(GF ), and w acts trivially on Φ1
t , then q 6= 2. By the discussion at the

beginning of Subsection 3.2 we can always make sure that v = v1 = xβ(ξ)

for some β ∈ (Φ1
t )

+ and ξ ∈ F×
q .

Lemma 4.10. Assume Ad(ẇ)−1(t) = tq = zt 6= t with z ∈ Z(GF ), v =

v1 = xβ(ξ) ∈ G1 for some β ∈ (Φ1
t )

+ and ξ ∈ F×
q . If there exists α ∈ Φ+

such that sαw = wsα and sα(β) ∈ Φ+ − Φt, then OG
x is of type C.

Proof. Similar to that of Lemma 4.8. Since |Jv | = 1, the computations for

r = txβ(ξ) and s = ṡα ⊲r follow as before without introducing P and V. The

condition sα(β) ∈ Φ+ − Φt ensures that s ∈ TU. �

We are now ready to state the main result of this Subsection.

Proposition 4.11. Assume that we are in the Setting 4.6. Then OG
x is not

kthulhu.

We prove this proposition by analysing the different groups separately.

Lemma 4.12. Assume that we are in Setting 4.6 with Φ of type Cℓ, so that

G = Sp2ℓ(k), ℓ ≥ 2 and q ≡ 3(4). Then OG
x is not kthulhu.

Proof. Here T is the subgroup of diagonal matrices of the form

diag(x1, . . . , xℓ, x
−1
ℓ , . . . , x−1

1 ).(4.5)

The assumption on xs gives x2s = − id so

t = diag(ξ1, . . . , ξℓ, ξ
−1
ℓ , . . . , ξ−1

1 ) with ξ2i = −1 for i ∈ Iℓ.

Since permuting eigenvalues compatibly with (4.5) gives a new element in

OG
t and OG

t ∩ GF = OGF

xs
, we can reorder the eigenvalues and assume that

t = diag(ξ idℓ,−ξ idℓ) for ξ
2 = −1.

The matrices in H have a diagonal block form of shape diag(A, J tA−1J)

for A ∈ GLℓ(k), i.e., [H,H] ≃ SLℓ(k) is simple. Since v = v1 occurs in Table

1, this is possible only if ℓ = 2.

In this case t is conjugate to S =

(
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

)
.

By a direct computation of unipotent matrices in CG(S) we see that O
GF

x

is represented by a matrix of this form.

r := S

(
1 0 0 b
0 1 b 0
0 0 1 0
0 0 0 1

)
=

(
0 1 b 0
−1 0 0 −b
0 0 0 −1
0 0 1 0

)
, for some b ∈ F×

q .(4.6)

Assume first q 6= 3, 7. Let P be the standard F -stable parabolic subgroup

with standard Levi factor L associated with α1, and let P = π(PF ), L =
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π(LF ), with πL : P → L the corresponding projection. Then OG
x contains

the subrack OP
x , which in turn projects onto OL

πL(x)
. The latter is isomorphic

as rack to O
PGL2(q)
y , with y the class of

(
0 1
−1 0

)
. Since by [4, Theorem 1.1]

this class is not kthulhu, the same holds for OG
x .

Assume now that q = 3 or 7. Let u :=

(
0 1 b 0
1 1 b 0
0 0 0 1
0 0 1 −1

)
and s := u ⊲ r =

( 1 −1 −2b 0
2 −1 −2b 0
0 0 1 1
0 0 −2 −1

)
. A direct computation shows that u ∈ GF and (rs)2 6= (sr)2,

since (rs)2 :=

(
5 −3 −7b b
−3 2 14b 5b
0 0 5 3
0 0 3 2

)
and (sr)2 =

(
2 3 b 11b
3 5 4b 13b
0 0 2 −3
0 0 −3 5

)
. Moreover, this

inequality also holds in the projection to G as (rs)2(sr)−2 :=

(
1 0 2b b
0 1 2b 2b
0 0 1 0
0 0 0 1

)
if

q = 3 and (rs)2(sr)−2 :=

(
−1 0 −b −b
0 −1 4b −b
0 0 −1 0
0 0 0 −1

)
if q = 7. In addition, if q = 3 we

have

O〈r,s〉
r ⊆

{(
A B
0 J2A−tJ2

)
with A = ±

(
0 1
−1 0

)}
,

O〈r,s〉
s ⊆

{(
A B
0 J2A−tJ2

)
with A = ± ( 1 2

2 2 )
}
;

whereas if q = 7 we have

O〈r,s〉
r ⊆

{(
A B
0 J2A−tJ2

)
with A ∈

{
±
(

0 1
−1 0

)
,± ( 4 2

2 3 )
}}

,

O〈r,s〉
s ⊆

{(
A B
0 J2A−tJ2

)
with A ∈

{
±
(
1 −1
2 −1

)
,±
(
−1 −2
1 1

)}}
.

In both cases π(O
〈r,s〉
r ) 6= π(O

〈r,s〉
s ), whence OG

x is of type D. �

Lemma 4.13. Assume that we are in Setting 4.6 with Φ of type Bℓ, ℓ ≥ 3,

so that q ≡ 3(4). Then OG
x is not kthulhu.

Proof. Let π̃ : G → Gad = SO2ℓ+1(k) be the natural projection. We realize

SO2ℓ+1(k) as the subgroup of SL2ℓ+1(k) consisting of matrices preserving

the symmetric bilinear form with associated matrix J2ℓ+1 as in (4.4), and

π̃(T) to be the group of diagonal matrices of the form

diag(x1, . . . , xℓ, 1, x
−1
ℓ , . . . , x−1

1 ).(4.7)

Since π̃(t)2 = 1, its eigenvalues are ±1. Reordering eigenvalues (i.e., acting

via the Weyl group) we assume that π̃(t) = diag(− idk, id2ℓ−2k+1,− idk), i.e.,

t =

(
k∏

i=1

α∨
i ((−1)i)

)


ℓ−1∏

j=k+1

α∨
j ((−1)k)


α∨

ℓ (ξ),with ξ2 = (−1)k.
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The condition t2 ∈ Z(GF )−1 forces k to be odd. If k ≥ 3 the root system Φt

is the union of two orthogonal subsystems, with base ∆1 = {αi, i ∈ I0,k−1}

of type Dk and ∆2 = {αj , j ∈ Iℓ−k+1,ℓ} of type Bℓ−k, whereas if k = 1, Φt

has base ∆2 = {αj , j ∈ I2,ℓ} of type Bℓ−1. Let γ = α1 + · · · + αℓ = ε1. A

direct calculation shows that we can take ẇ = sγ . Indeed, sγ(α1) = −α0

and sγ(t) = α∨
ℓ (−1)t. So from Table 3, sγ(t) = zt = tq−1 as desired.

Observe that when k = 3 we have D3 = A3. Then (3.6) holds with Jv = {2}

and ℓ − k ∈ {1, 2}. Remark 4.9 applies with β = αℓ if ℓ = k + 1 and

β = αℓ−1 if ℓ = k + 2. Lemma 4.8 applies with α = αℓ−1, or α = αℓ−2,

respectively with the exception of the case ℓ = 3, k = 1. In this case,

t = α∨
1 (−1)α∨

2 (−1)α∨
3 (ξ), w(α1) = −α0, w(α2) = α2, w(α3) = α3, Φt is of

type B2 and tv = α∨
1 (−1)α∨

2 (−1)α∨
3 (ξ)xα2(ζ) for some ζ ∈ F×

q . Let us set

α1 = β1, α2 = β2 and β3 = −α0. This is a base for a root system of type

A3. Let Ũ = 〈Uβi
, i ∈ I3〉, and let K = 〈Ũ, ẇ0(Ũ)〉 be the corresponding Fw-

stable algebraic subgroup of G. Let P be the Fw-stable standard parabolic

subgroup of K associated with {β2}, let L be the corresponding standard

Levi subgroup and let V be the unipotent radical. Thus

tv = β∨
1 (ξ)β

∨
3 (ξ

−1)xβ2(ζ) ∈ tV.

By the discussion in Subsection 2.1 the element tv is conjugate in [H,H]Fw

to an element r of the form:

r = txα2+2α3(ζ
′) = β∨

1 (ξ)β
∨
3 (ξ

−1)xβ1+β2+β3(ζ
′) ∈ tV.

Let y = xβ1(η)xβ3(η
′) ∈ ŨFw , with ηη′ 6= 0. The existence of such an

element is guaranteed by [21, Proposition 23.8]. Let s := y ⊲ tv. Then

s ∈ β∨
1 (ξ)β

∨
3 (ξ

−1)xβ2(ζ)xβ1(−2η)xβ3(−2η′)Uβ1+β2Uβ2+β3Uβ1+β2+β3

lies in txβ2(ζ)V and its semisimple part equals y ⊲ t = txβ1(−2η)xβ3(−2η′).

Thus, 〈r, s〉 ⊂ 〈t, Ũ〉. Since t commutes with Uβ2 , we have the inclusions

O
〈r,s〉
r ⊆ tV and O

〈r,s〉
s ⊆ txβ2(ζ)V. As a consequence, O

〈r,s〉
r ∩ O

〈r,s〉
s =

∅. Moreover, t does not commute with Uβ1 , hence it does not commute

with y ⊲ t and so rs 6= sr by Remark 2.4. To finish the proof we estimate

|O
〈r,s〉
r |, |O

〈r,s〉
s |. A direct computation shows that

t ⊲ s ∈ β∨
1 (ξ)β

∨
3 (ξ

−1)xβ2(ζ)xβ1(2η)xβ3(2η
′)Uβ1+β2Uβ2+β3Uβ1+β2+β3 ,

(y ⊲ t) ⊲ (t ⊲ s) ∈ β∨
1 (ξ)β

∨
3 (ξ

−1)xβ2(ζ)xβ1(−6η)xβ3(−6η′)Uβ1+β2Uβ2+β3Uβ1+β2+β3 ,

(y ⊲ t) ⊲ r ∈ β∨
1 (ξ)β

∨
3 (ξ

−1)xβ1(−4η)xβ3(−4η′)Uβ1+β2+β3 ,

t ⊲ ((y ⊲ t) ⊲ r) ∈ β∨
1 (ξ)β

∨
3 (ξ

−1)xβ1(4η)xβ3(4η
′)Uβ1+β2+β3 .
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Therefore |π(O
〈r,s〉
r )| > 2, |π(O

〈r,s〉
s )| > 2, so π(OGF

r ) is of type C. By Remark

3.3 the class OG
x is also of type C. �

Lemma 4.14. Assume that we are in Setting 4.6 with Φ of type Dℓ, ℓ =

2n ≥ 4 so that q ≡ 3(4). Then OG
x is not kthulhu.

Proof. Recall that tq−1 = t2 = z ∈ Z(GF ) − 1. By looking at Table 3 we

see that z can be either z1 =
∏

i odd α∨
i (−1), or z2 = α∨

ℓ−1(−1)α∨
ℓ (−1) or

z3 = z1z2. Let π : G → SO2ℓ(k) be the isogeny with kernel 〈z2〉. We realize

SO2ℓ(k) as the group of matrices in SL2ℓ(k) preserving the form J2l from

(4.4). Then the group π(T) is given by diagonal elements of shape (4.5).

Assume first that z = z1. Then π(t)2 = − id2ℓ, so

π(t) = diag(ξ1, . . . , ξℓ,−ξℓ, . . . , −ξ1), with ξ2i = −1, for i ∈ Iℓ.

Up to reordering eigenvalues by acting with the Weyl group we see that π(t)

has the form:

π(t) = diag(ξ idℓ,−ξ idℓ) or diag(−ξ, ξ idℓ−1,−ξ idℓ−1, ξ), with ξ2 = −1.

In both cases CSO2ℓ(k)(π(t))
◦ = π(H) has semisimple part of type Aℓ. This

implies that [H, H] is simple so |Jv| = 1 but (3.5) cannot hold. The case

z = z3 is dealt with in the same way.

Assume now that z = z2. Then π(t)2 = id2ℓ, so

π(t) = diag(ξ1, . . . , ξℓ, ξℓ, . . . , ξ1), with ξi = ±1, for i ∈ Iℓ.

Up to reordering eigenvalues by acting with the Weyl group we see that π(t)

has the form:

π(t) = diag(− idb, id2ℓ−2b,− idb), with b ∈ Iℓ.(4.8)

Then π(H) = CSO2ℓ(k)(π(t))
◦ is semisimple with root system of type Db×

Dℓ−b, with the understanding that D1 is a torus, D2 is A1×A1 and D3 = A3.

If either (3.5) or (3.6) holds, then necessarily b = 2 and/or ℓ− b = 2. Since

these two cases are obtained from one another by multiplying π(t) by − id2ℓ

we focus on b = 2. Up to a central element, t = α∨
1 (−1). A direct calculation

shows that we can take w = sε1−εℓsε1+εℓ .

Let us first assume ℓ > 4. Here, [H,H] = G1G2G3 with ∆1 = {α1},

∆2 = {−α0}, ∆3 = {αi, i ∈ I3,ℓ}. Then H1 = G1G2, H2 = G3 and G1 =

HFw

1 ≃ SL2(q
2). Hence, v satisfies (3.5) and q = 3.

If, instead, ℓ = 4, then [H,H] = G1G2G3G4 with ∆1 = {α1}, ∆2 =

{−α0}, ∆3 = {α3} and ∆4 = {α4}. Here, H1 = G1G2, H2 = G3G4 and

Gi = HFw

i ≃ SL2(q
2) for i = 1, 2. So condition (3.5) holds and v has only
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a non-trivial component in G1 or G2 and q = 3. A diagram automorphism

interchanges the roles ofG1 and G2, hence it is enough to look at v = v1 ∈ G1

for ℓ ≥ 4 and q = 3.

We set α1 = β1, α2 = β2 and β3 = −α0. This is a base for a root system

of type A3. Let Ũ = 〈Uβi
, i ∈ I3〉 and B̃ = TŨ. Then Ũ and B̃ are Fw-stable

as well as Frq-stable. Up to conjugation in [H,H]Fw we may assume that

r := tv = β∨
1 (−1)xβ1(ξ)xβ3(ξ

′) ∈ β∨
1 (−1)Ũ for ξ, ξ′ ∈ F×

q2
. In such a case the

lemma follows, since Lemma 3.9 applies. �

Lemma 4.15. Assume that we are in Setting 4.6 with Φ of type E7 and

q ≡ 3(4). Then OG
x is not kthulhu.

Proof. Recall that xq−1
s = x2s = z ∈ Z(GF ) − 1. By looking at Table 3 we

see that t is necessarily of the form:

t = α∨
1 (ǫ1)α

∨
2 (ηǫ2)α

∨
3 (ǫ3)α

∨
4 (ǫ4)α

∨
5 (ηǫ5)α

∨
6 (ǫ6)α

∨
7 (ηǫ7)

for η a primitive fourth root of unity and ǫi ∈ {±1}. Since E7 is simply-laced,

the components of v can only be non-trivial unipotent classes in PSL2(q
ai).

Also, by the discussion at the end of Subsection 2.4, we may take w = w0,

so the action of Ad(ẇ) does not permute the simple factors Gi of H. Hence,

for every j ∈ Jv we have Φj
t = {±αij} and Hj = 〈U±αij

〉. Assume αk ∈ Φ1
t .

For every possible choice of k ∈ I0,7 we will provide a σ ∈ W satisfying the

hypotheses of Lemma 3.4. Note that Condition (1) of Lemma 3.4 is always

satisfied because w0 = −1 and θ = id.

The construction of σ relies on the fact that if αk ∈ Φ1
t , then all roots in

∆̃ that are adjacent to αk do not lie in Φt. These conditions pose a series

of constraints on some of the ǫj ’s ensuring that there exists βk ∈ ∆̃ such

that βk ⊥ αk and βk 6∈ Φt. The first property guarantees condition (2) in

Lemma 3.4 for σ = sβk
. The second property implies sβk

(t) 6= t. Condition

(3) from Lemma 3.4 follows from Remark 3.7 (2) if βk ∈ ∆, whereas if

βk = −α0, it follows because the equation sβk
(t) = tα∨

2 (ǫ1)α
∨
5 (ǫ1)α

∨
7 (ǫ1)

cannot be satisfied.

If k = 0, then we have ǫ1 = 1, ǫ3 = −1. Also, α3 ∈ Φt ⇔ ǫ4 = 1 ⇔

α2 6∈ Φt. We take either β0 = α2 or α3.

If k = 1, then we have ǫ1 = −1, ǫ3 = ǫ4 = 1 so α2 6∈ Φt and we take

β1 = α2.

If k = 2, then we have ǫ4 = −1 and ǫ2ǫ3ǫ5 = 1. Also, α5 ∈ Φt ⇔ ǫ6 = 1

⇔ α7 6∈ Φt. We take either β2 = α5 or α7.
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If k = 3, then ǫ1ǫ4 = 1, ǫ3 = −1 and ǫ2ǫ5 = −1. Then α0 ∈ Φt ⇔ ǫ4 = 1

⇔ α2 6∈ Φt. We take either β3 = α2 or α0.

If k = 4, then ǫ2ǫ3ǫ5 = −1, ǫ1 = −1, ǫ4 = ǫ6 = 1, so β4 = α7 6∈ Φt.

If k = 5, then ǫ2ǫ3ǫ5 = 1, ǫ4ǫ6 = −1, ǫ5ǫ7 = 1. Then α7 ∈ Φt ⇔ ǫ4 = 1 ⇔

α2 6∈ Φt. We take either β5 = α2 or α7.

If k = 6, then ǫ4 = ǫ6 = 1 and ǫ5ǫ7 = −1, so β6 = α2 6∈ Φt.

If k = 7, then ǫ6 = −1 and ǫ5ǫ7 = 1. Also, α5 ∈ Φt ⇔ ǫ4 = 1 ⇔ α2 6∈ Φt.

We take either β7 = α2 or α5. �

Lemma 4.16. Assume that we are in Setting 4.6 with Φ of type Dℓ, ℓ =

2n+ 1 ≥ 5 and q odd. Then OG
x is not kthulhu.

Proof. Recall that tq−1 = z ∈ Z(GF ) − 1. By looking at Table 3 we see

that z can be either z1 = (
∏

i≤ℓ−2 odd α∨
i (−1))α∨

ℓ−1(ζ)α
∨
ℓ (ζ

3), or z2 = z21 or

z3 = z31 and the latter case is treated as the case z = z1.

Let us assume z = z1. This can occur only if q ≡ 1(4). We proceed as

in the proof of Lemma 4.14, notation as therein. We have π(z1) = − id2ℓ,

so π(t)q−1 = − id2ℓ, and the eigenvalues of π(t) do not lie in Fq. Therefore,

no eigenvalues of π(t) are equal to ±1. By direct calculation this implies

that there are no components of type D in [H,H]. Conditions on v and q

imply that (3.5) holds and v = v1 must live in a subgroup of type A1. Such

factor occurs when exactly two eigenvalues are repeated. Since F (t) = zt is

conjugate to t, it follows that π(t) is conjugate to −π(t). Hence if ξ is an

eigenvalue π(t), then −ξ is again so, and ξ−1 6= −ξ, otherwise ξ = ±ζ ∈ Fq.

Up to reordering, we have

π(t) = diag(ξ id2,−ξ id2, d,−ξ−1 id2, ξ
−1 id2)

where d is a diagonal matrix in SO2ℓ−8(k) and ξ 6= ±1. Next we identify

w. We have ẇ−1 ⊲ (π(t)) = π(t)q = −π(t) for some w ∈ W , so ẇ acts on

the first 4 × 4-block as C =
(

0 id2
id2 0

)
. This shows that w interchanges the

simple factors G1, G2 of type A1 in [H,H] and therefore the corresponding

group G1 is isomorphic to SL2(q
2). Since q ≡ 1(4), condition (3.5) cannot

be verified, concluding the case z = z1.

Let us assume z = z2 = α∨
ℓ−1(−1)α∨

ℓ (−1) ∈ Ker(π). In this case, π(t)q =

π(t) so π(ẇ) ∈ CSO2ℓ
(π(t))− π(H) and all eigenvalues of π(t) lie in Fq. We

observe that 2k eigenvalues equal to ±1 give a component in CSO2ℓ(k)(π(t))

isomorphic to O2k(k), whereas k repeated eigenvalues different from ±1 give

a component of type GLk(k), embedded in SO2ℓ(k) as the group of block

diagonal matrices of the form diag(idc, A, id2c′ , Jk
tA−1Jk, idc), for c, c′ ≥ 0.
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Therefore, CSO2ℓ(k)(π(t)) is the subgroup of matrices of determinant 1 in

a group isomorphic to O2a(k) ×O2b(k) ×
∏m

j=1GLaj (k) with a, b, aj ≥ 0.

Since CSO2ℓ(k)(π(t)) is not connected, we necessarily have ab 6= 0, i.e., we

have 2a > 0 eigenvalues equal to −1 and 2b > 0 eigenvalues equal to 1.

Up to multiplication by z1 this gives

t =




ℓ−2∏

j=2

α∨
j (cj)


α∨

ℓ−1(c)α
∨
ℓ (−c) with cj , c ∈ k×,

and w = sε1−εℓsε1+εℓ . Thus, w acts trivially on the root system generated

by {αj , j ∈ I2,ℓ−2}. If all components of v are in the groups of type A1 in

[H,H], then each of them can be chosen to be of the form xαj
(ξ) for some

j ∈ I3,ℓ−3. In this case, either Lemma 4.8 or 4.10 applies with β = αj and

α = αj±1. Assume a component of v occurs in a factor G1 of type Da.

Then a = 2 and it corresponds either to {−α0, α1} or to {αℓ−1, αℓ}. Also,

G1 ≃ SL2(q
2), so this is possible only if q = 3 and v = v1. In this case we

apply Lemma 3.9 either to {−α0, α2, α1} or to {αℓ−1, αℓ−2, αℓ}. �

Lemma 4.17. Assume that we are in Setting 4.6 with Φ of type E6 and

q ≡ 1(3). Then OG
x is not kthulhu.

Proof. Since q ≡ 1(3), the element v satisfies necessarily (3.5). As Φ is

simply laced, OG1
v1 is not a unipotent conjugacy class in PSp2k(q

a). Thus,

OG1
v1 is either isomorphic to the rack labeled by (2) in PSL2(q

a) with qa not

a square if q is odd, or the rack labeled by (2, 1m−2) in PSUm(qa) and the

latter occurs only if q is even. Therefore, [H,H] must have a component Gi

of type Ak and the action of F a
w on G1 should be twisted if k > 1. Recall

from Section 3.1 that to each xs ∈ GF we can associate a base Π ⊂ ∆̃

of the root system Φt of the connected centraliser H and a Weyl group

element w such that w−1(t) = tq. The element w is determined up to

multiplication by elements in WΠ. Also, w ∈ NW (WΠ) because it stabilises

Φt. The pair (Π, [w]), where Π is a proper subset of ∆̃ (up to W -action)

and [w] = wWΠ ranges through the set of representatives of the conjugacy

classes in NW (WΠ)/WΠ is uniquely determined up to W -action.

In our situation, ẇ 6∈ H and ẇ3 ∈ H, since ẇ−3(t) = z3t and z3 = 1

by Table 3. Thus, w ∈ NW (WΠ) − WΠ and its class in NW (WΠ)/WΠ has

order 3. In addition, by Remark 3.7 (3) and Table 3 any reduced expression

of w must contain the reflections s1, s3, s5 and s6. The order of a class

[w] ∈ NW (WΠ)/WΠ can be calculated by using the package CHEVIE of

GAP3 [16, 22]. For those of order 3 we will make use of the list in [13] of all
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possible pairs (Π, [w]) up to conjugation inW and of the isomorphism classes

of the correspondingGFw

i . The reader should be aware that the numbering of

simple roots therein differs from ours. We look through the list considering

only the pairs (Π, w) for which Π is non-trivial, wWΠ = 3, the condition

from Remark 3.7 (3) is satisfied, and G1 corresponds either to SL2(q
a) or

SUm(qa). The class wWΠ is given by means of a representative w ∈ W . The

following roots are used to describe w as a product of reflections: numbering

of these non-simple roots is conformal to [13] to simplify double-checking.

β10 = α2 + α4; β11 = α4 + α5;

β19 = α5 + α6; β20 = α1 + α2 + 2α3 + 3α4 + 2α5 + α6;

β21 = α1 + α3; β22 = α3 + α4.

We remain with the possibilities for (Π, w) listed in Table 4. Here, we

know w and how it acts on each factor of [H, H] and we proceed case-by-case.

Table 4. Pairs (Π, wWΠ) discussed separately in type E6

Π wWΠ [H,H]Fw (up to isogeny)

A1 = {−α0} s1s3s5s6 SL2(q)

3A1 = {α4, α6,−α0} sβ11sβ19sβ20sβ10 SL2(q
3)

4A1 = {α1, α4, α6, −α0} sβ19sβ11sβ21sβ22 SL2(q)× SL2(q
3)

Let Π = {−α0} with w = s1s3s5s6 or Π = {α4, α6,−α0} with w =

sβ11sβ19sβ20sβ10 . Then Lemma 3.4 applies for σ = s1s3 or σ = s1.

Let Π = {α1, α4, α6, −α0}, with w = sβ19sβ11sβ21sβ22 . Here w(α0) = α0,

w(α1) = α6, w(α6) = α4 and w(α4) = α1, so v = v1 lies either in 〈U±α0〉 or in

〈U±αj
, j = 1, 4, 6〉. In the former case, Lemma 3.4 applies with σ = sβ11sβ21 .

In the latter, the condition −α0 ∈ Π implies that tv ∈ K := 〈U±αj
, j =

1, 3, 4, 5, 6〉 ≃ SL6(k) by [25, Corollary 5.4]. Also, w can be represented by

an element in NG(T) ∩ K, so KFw ≃ SL6(q), [26, 10.9]. The claim follows

from the main result in [2]. �

Proof of Proposition 4.11. By Lemmata 4.12 up to 4.17. �

Putting together Lemmata 3.2, 3.6 and Propositions 3.8, 4.5, and 4.11 we
have the main result of this Section.

Theorem 4.18. Let G be a Chevalley group and x = xsxu ∈ G with

xs, xu 6= 1. Then OG
x is not kthulhu, and consequently OG

x collapses. �
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5. Mixed classes in Steinberg groups

In this Section, θ 6= id. By Lemma 3.6 and Proposition 3.8 it remains to
consider the following cases:

Setting 5.1. xq+1
s = z ∈ Z(GF ); either (3.5) or (3.6) holds for v; Φ, q and xs

satisfy:

(1) Aℓ, ℓ ≥ 2;

(2) D2n+1, n ≥ 2;

(3) E6, q arbitrary;

(4) D2n, n ≥ 2, θ2 = id, x2s ∈ Z(GF ) and q is odd;

(5) D4, θ
3 = id, x2s = 1 and q is odd.

For the reader’s convenience the center Z(GF ) is recalled in Table 5. We
begin with the groups for which w0 = −1, i.e., cases (4) and (5).

Table 5. Center of GF
sc, Steinberg groups

type Z(GF
sc) conditions

2Dℓ 〈α∨
ℓ−1(−1)α∨

ℓ (−1)〉 q odd
2Aℓ 〈

∏ℓ
i=1 α

∨
i (ζ

i)〉 d = (q + 1, ℓ + 1), ζ a
primitive dth root of 1

2E6 〈α∨
1 (ω)α

∨
3 (ω

2)α∨
5 (ω)α

∨
6 (ω

2)〉 q ≡ 2(3), ω3 = 1
3D4 1

Lemma 5.2. Assume that we are in Setting 5.1, with Φ of type Dℓ = 2n,

θ2 = id and q odd. Then O is not kthulhu.

Proof. We proceed as in the proof of Lemma 4.14, from which we adopt

notation. Since q is odd, v has only components in type A1 and |Jv | > 1

only if q = 3. By Lemma 3.6 we need to consider the two possibilities

t2 = z2 or t2 = 1. We consider π(t) as in (4.8). It is always an involution,

its connected centralizer π(H) has root system of type Db×Dℓ−b and [H,H]

decomposes as in Lemma 4.14. Here however, ϑ acts on T as sεℓ and we

need to describe w.

We observe that if b, ℓ− b > 2, the unipotent part has no components in

Table 1, whereas if b = 1 or ℓ = b+ 1 the component of type D1 is a torus

and has no unipotent component. Hence b = 2 and/or ℓ = b + 2, so b is

always even. Up to W -action and multiplication by z2 we have

t =

b∏

j=1

α∨
j ((−1)j),
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so ϑ(t) = t and t2 = 1 necessarily. Therefore t ∈ TF and w = 1, so

GFw = GF . The following cases may occur:

• b = 2 and ℓ > 2+b. Then we have H1 = G1 = 〈U±α1〉, H2 = G2 = 〈U±α0〉,

H3 = G3 = 〈U±αj
, j ∈ I3,ℓ〉. Then up to W -action, either Jv = {1}, or else

Jv = {1, 2} and q = 3.

• b > 2 and ℓ = b+2. Then we have H1 = G1 = 〈U±αj , j∈Ib〉, G2 = 〈U±αℓ−1
〉,

G3 = 〈U±αℓ
〉 = ϑ(G2) so H2 = G2G3, and G2 ≃ SL2(q

2). Then Jv = {2}

and q = 3.

• b = 2 and ℓ = 4. Then we have H1 = G1 = 〈U±α1〉, H2 = G2 = 〈U±α0〉,

G3 = 〈U±αℓ−1
〉, G4 = 〈U±αℓ

〉 = ϑ(G3) and H3 = G3G4 with G3 ≃ SL2(q
2).

Then either Jv = {1}, or Jv = {3}, or Jv = {1, 2} with q = 3.

Summarizing, we have either b = 2 and v = xα1(ξ)x−α0(ζ) for ξ ∈ k×

and ζ ∈ k (with q = 3 if ζ 6= 0) or ℓ = b + 2 and v = xαℓ−1
(ξ)xαℓ

(η) (with

ξ, η ∈ k× and q = 3). We set: β1 = α1, β2 = α2, β3 = −α0 in the first case

and β1 = αℓ−1, β2 = αℓ−2, β3 = αℓ in the second case. The statement then

follows from Lemma 3.9. �

Lemma 5.3. Assume that we are in Setting 5.1 with Φ of type D4, θ
3 = id

and q odd. Then O is not kthulhu.

Proof. We proceed as in the proof of Lemma 5.2, from which we adopt

notation. We take ϑ to be a graph automorphism with associated θ given

by α1 7→ α3 7→ α4. Here again q is odd, t2 = 1 and v has components

only in type A1. Also, F (t) is conjugate to t. These conditions imply

that up to conjugation by an element in NG(T) we have either t = t1 =

α∨
1 (−1)α∨

3 (−1)α∨
4 (−1) ∈ GF , or t = t2 = α∨

1 (−1). We have F (t2) = ϑ(t2) =

α∨
3 (−1) = sα2sα1+α2+α3(t2). For both choices of t we have G1 = 〈U±α1〉,

G2 = 〈U±α3〉, G3 = 〈U±α4〉 and G4 = 〈U±α0〉. If t = t1, then w = 1, so

H1 = G1G2G3 and G1 is either SL2(q
3) or PSL2(q

3), and H2 = G4. If

t = t2, then w−1 = sα2sα1+α2+α3 so H1 = G1, H2 = G2G3G4 and G2 is

either SL2(q
3) or PSL2(q

3). Thus, |Jv| = 1 and v can be chosen of the form

xβ1(ξ1)xβ2(ξ2)xβ3(ξ3) with β1, β2, β3 ∈ {α0, α1, α3, α4}, ξ1 ∈ k×, ξ2, ξ3 ∈ k.

We deal with the case w = 1, the other is similar. We consider sα2 ∈ WF

and its representative ṡα2 in NGF (T). Let r = tv and s := ṡα2 ⊲ r = t′v′.

Since sα2(β1) /∈ Φt, it follows that CG(t
′) 6= H so t′ 6∈ Z(G)t. Therefore,

π
(
O

〈r,s〉
r

)
∩ π

(
O

〈r,s〉
s

)
= ∅. As α2(π(t)) = α2(t) 6= 1 and β1(π(t

′)) =

β1(t
′) = β1(sα2(t)) = (sα2β)(t) 6= 1, by (2.1) the inequalities in Lemma 2.5

hold for y = π(r) and z = π(s). Hence, π(OGF

r ) and OG
x are of type C. �
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In the remaining groups we always have θ = −w0, so

t = w(F (t)) = w(ϑtq) = ww0(t
−q) = z−1ww0(t).(5.1)

Therefore, ww0 ∈ NW (WΠ) and ww0 ∈ WΠ if and only if z = 1. If this
is the case, since σ = w0w

−1 ∈ WΠ, we may replace w by σw = w0, so
CW (wθ) = CW (− id) = W .

Remark 5.4. Assume that θ = −w0 and tq+1 = 1, w = w0.

(1) Suppose in addition that for some irreducible component ∆j of Π

there exists a simple root αj 6∈ Π such that αj is orthogonal to ∆j.

If j ∈ Jv, then σ = sαj
satisfies the hypothesis of Lemma 3.4 by

virtue of Remark 3.7 (2) and Table 3.

(2) If for any component ∆j of Π there exists a simple root αj 6∈ Π

such that αj is orthogonal to ∆j , then the corresponding class is not

kthulhu. Indeed, Lemma 3.4 applies by virtue of (1).

We consider now the Steinberg groups for Φ of type Aℓ. Here G =
SLℓ+1(k) and F is realised as the map (aij) 7→ Jt(aij)

−qJ on any matrix
of G, so GF = SUℓ+1(q) and G = PSUℓ+1(q).

Remark 5.5. We shall not consider PSU3(2) because it has no mixed classes,

since every semisimple element in SU3(2) is either central or regular.

Lemma 5.6. Let G = PSU3(q) with q > 2. Let λ ∈ Fq2 with λq+1 = 1,

λ3 6= 1 and let

x1 =
(

λ 0 λ
0 λ−2 0
0 0 λ

)
.

Then OG

π(x1)
is not kthulhu.

Proof. If q is odd, then a slight modification of the proofs of [5, Lemma 5.3]

shows that OG

π(x1)
is of type D for q > 3 and type C for q = 3. Let thus q

be even > 2. We show that in this case, OG

π(x1)
is of type D.

Under these assumptions UF is the group of matrices of the form

(
1 ξ η
0 1 ξq

0 0 1

)

for ξ, η ∈ Fq2 such that ηq + η = ξq+1. The inverse of such a matrix is(
1 ξ ηq

0 1 ξq

0 0 1

)
. These elements have order 4 if ξ 6= 0 and order 2 if ξ = 0, η 6= 0.

Since λq = λ−1 and λ3 6= 1, it follows that λ6 6= 1 so λ3q = λ−3 6= λ3

and thus λ3 6∈ Fq. Let a ∈ F×
q2

such that aq+1 6= 1 and η ∈ Fq2 such that
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η + ηq = 1. We set r := x1 and

y :=

(
a aq−1 ηa−q

0 aq−1 a−q

0 0 a−q

)
∈ SU3(q),

s := y ⊲ r =

(
λ (λ+λ−2) (λ+λ−2)+λa1+q

0 λ−2 (λ+λ−2)
0 0 λ

)
∈ OSU3(q)

r ,

u =

(
1 (1+λ−3) (1+λ−3)+a1+q

0 1 (λ3+1)
0 0 1

)
∈ UF ,

t :=
(

λ 0 0
0 λ−2 0
0 0 λ

)
∈ TF .

so s = tu and r = t(id+e13).

The (1, 2) entry of (rs)2 equals (λ + λ−2)λ3(1 + λ−6) whereas the (1, 2)

entry of (sr)2 equals (λ+ λ−2)(1 + λ−6), hence (rs)2 6= (sr)2.

These products have same diagonal part, so π(rs)2 6= π(sr)2. Let H =

〈r, s〉 = 〈t, (id+e1,3), tu〉 = 〈t, (id+e1,3), u〉. Observe that u2 and (id+e1,3) ∈

Z(H) so the elements in OH
r and OH

s have same diagonal part. Thus

OH
r 6= OH

s implies π(OH
r ) 6= π(OH

s ). We verify the former. We have:

H/Z(H) = 〈tZ(H), uZ(H)〉

= {ta1uta2u · · · tak−1utakZ(H), a1 ≥ 0, ak ≥ 0, ai ≥ 1, i ∈ I2,k−1}.

Since t ⊲ r = r we obtain

OH
r = OH/Z(H)

r

= {((ta1 ⊲ u)(ta1+a2 ⊲ u) · · · (ta1+···+ak ⊲ u)) ⊲ r, a1 ≥ 0, ai ≥ 1 for i ∈ I2,k}.

Observe that for mi ≥ 1

tmi ⊲ u =

(
1 λ3mi (1+λ−3) a1+q+(1+λ−3)

0 1 λ−3mi (1+λ3)
0 0 1

)
,

(tm1 ⊲ u)(tm2 ⊲ u) · · · (tmk ⊲ u) =

(
1 (

∑
i λ

3mi )(1+λ−3) f

0 1 (
∑

i λ
−3mi )(1+λ3)

0 0 1

)

for some f ∈ Fq2 such that f+f q =
(∑

i λ
3mi
)
(1+λ−3)

(∑
i λ

−3mi
)
(1+λ3)

and

(tm1 ⊲ u)(tm2 ⊲ u) · · · (tmk ⊲ u) ⊲ r

= t

(
1 ∗ fq+f+1+λ−3(1+λ3)(1+λ−3)(

∑
i λ

3mi )(
∑

i λ
−3mi )

0 1 ∗
0 0 1

)
.

Thus, if s ∈ OH
r , then comparing (1, 3)-entries we would have

(1 + λ−3) + a1+q = 1 + (1 + λ−3)

(
∑

i

λ3mi

)
(1 + λ−3)

(
∑

i

λ−3mi

)
(1 + λ3)
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for some nonnegative integers mi, or, equivalently

1 + a1+q = (1 + λ−3)

[(
∑

i

λ3mi

)
(1 + λ−3)

(
∑

i

λ−3mi

)
(1 + λ3) + 1

]
.

Our choice of a implies that the left hand side lies in F×
q , whereas the right

hand side is a product of (1 + λ−3) ∈ Fq2 \ Fq with an element in Fq. The

latter cannot lie in Fq, unless it is zero, so this equality cannot hold. �

Lemma 5.7. Let G = PSUℓ+1(q) for ℓ = 3, 4. Assume tq+1 = 1 and that

tv is conjugate in G to one of the following matrices, for λ1, λ2 ∈ F×
q2

with

λ1 6= λ2:

x2 =

(
λ1 0 0 λ′

1

0 λ2 λ′
2 0

0 0 λ2 0
0 0 0 λ1

)
, (λ′

1, λ
′
2) 6= (0, 0), and λ′

1λ
′
2 6= 0 only for q = 2, 3

x3 =




λ1 0 0 0 λ′
1

0 λ2 0 λ′
2 0

0 0 λ2 0 0
0 0 0 λ2 0
0 0 0 0 λ1


 , q = 2, (λ′

1, λ
′
2) 6= (0, 0).

Then OG
x is of type D.

Proof. Let x = x2, σ = diag(J2, J2) ∈ SU4(q), y =

(
1 1 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

)
∈ SU4(q)

and

r = σ ⊲ x =

(
λ2 0 0 λ′

2

0 λ1 λ′
1 0

0 0 λ1 0
0 0 0 λ2

)
, s = y ⊲ x =

(
λ1 λ2−λ1 λ′

2 λ′
1+λ′

2

0 λ2 λ′
2 λ′

2
0 0 λ2 λ2−λ1
0 0 0 λ1

)
.

By looking at the (1, 2) entry we see that (rs)2 6∈ k(sr)2. In addition,

O〈r,s〉
r ⊂

(
λ2 ∗ ∗ ∗
0 λ1 λ′

1 ∗
0 0 λ1 ∗
0 0 0 λ2

)
, O〈r,s〉

s ⊂

(
λ1 ∗ ∗ ∗
0 λ2 λ′

2 ∗
0 0 λ2 ∗
0 0 0 λ1

)
.

hence looking at the diagonal or at the (2, 3)-entry we see that π(O
〈r,s〉
r ) 6=

π(O
〈r,s〉
r ), so OG

x is of type D, with a possible exception when λ1 = −λ2 and

λ′
1 = −λ′

2 6= 0 and q = 3. Assume this is the case, so λ2
1+λ′

1
2 = 0 and (λ′

1)
4 =

λ4
1 = 1. For every choice of λ1 there are two possible choices of λ′

1 but the

corresponding elements are conjugate by diag(ζ, ζ−1, ζ3, ζ−3) where 〈ζ〉 =

F×
9 . In addition, the different choices of λ1 correspond to multiplication by

a central element. Therefore it remains to consider x2 =




ζ2 0 0 2
0 ζ6 1 0
0 0 ζ6 0
0 0 0 ζ2


. The

element y :=




0 ζ7 0 ζ7

ζ5 0 ζ 0
0 0 0 ζ
0 0 ζ3 0


 lies in OGF

x2
because it has the same Jordan form



36 N. ANDRUSKIEWITSCH, G. CARNOVALE, G. A. GARCÍA

as x2 and (x2y)
2(yx2)

−2 =

(
1 0 ζ5 0
0 1 0 ζ3

0 0 1 0
0 0 0 1

)
6∈ Z(SU4(q)). A computation with

GAP shows that O
SU4(q)
x2 6= O

SU4(q)
zy for any z ∈ Z(SU4(q)), so OG

x is of

type D.

Let now x = x3, σ′ = diag(J2, 1, J2) ∈ SU5(q), z =

(
1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −1
0 0 0 0 1

)
∈

SU5(q) and

r = σ′ ⊲ x =




λ2 0 0 0 λ′
2

0 λ1 0 λ′
1 0

0 0 λ2 0 0
0 0 0 λ1 0
0 0 0 0 λ2


 , s = z ⊲ x =




λ1 λ2−λ1 0 λ′
2 λ′

1+λ′
2

0 λ2 0 λ′
2 λ′

2
0 0 λ2 0 0
0 0 0 λ2 λ2−λ1
0 0 0 0 λ1


 .

As in the previous case we see that (rs)2 6∈ k(sr)2 and that

O〈r,s〉
r ⊂




λ2 ∗ 0 ∗ 0
0 λ1 0 λ′

1 ∗
0 0 λ2 0 0
0 0 0 λ1 ∗
0 0 0 0 λ2


 , O〈r,s〉

s ⊂




λ1 ∗ 0 ∗ ∗
0 λ2 0 λ′

2 ∗
0 0 λ2 0 0
0 0 0 λ2 ∗
0 0 0 0 λ1


 .

Hence looking at the diagonal we conclude that π(O
〈r,s〉
r ) 6= π(O

〈r,s〉
r ) so OG

x

is of type D. �

Lemma 5.8. Assume that we are in Setting 5.1 with Φ of type Aℓ, ℓ ≥ 2

and x
q+1
s = 1. Then OG

x is not kthulhu.

Proof. Observe that (5.1) gives w = w0 and CW (wθ) = W . Also, Fw pre-

serves each irreducible component of Φt mapping each root to its opposite,

hence, each Hi is simple. An eigenvalue of t of multiplicity k ≥ 2 gives a

component of type Ak−1 in Π. If t has at least 3 different eigenvalues, then∣∣∣∆̃−Π
∣∣∣ ≥ 3, so the statement follows from Remark 5.4.

Assume t has exactly two eigenvalues λ1, λ2 of multiplicity m1, m2. They

satisfy λq+1
i = 1. According to the parity of m1 and m2, and up to inter-

changing indices, t is conjugate in G to one of the following matrices:

t1 = diag(λ1 ida, λ2 idm2 , λ1 ida), if m1 = 2a > 0

t2 = diag(λ1 ida, λ2 idb, λ1, λ2 idb+1, λ1 ida), if m1 = 2a+ 1 ≥ m2 = 2b+ 1.

Then t1 ∈ SUℓ+1(q) so we take xs = t1 = t (and we replace for convenience

w = w0 by w = id) in this case, whereas t2 ∈ GFw for the choice w = sa+b+1.

Let xs = t1. Then [CG(t1), CG(t1)] is given by matrices of block form(A1 0 A2
0 B 0
A3 0 A4

)
with Aj of size a × a for j ∈ I4 and B of size m2 × m2 and

[CG(t1), CG(t1)]
F ≃ SUm1(q)×SUm2(q). We take xu = v ∈ id+ke1,m1+m2+

kea+1,a+b id ∈ SUm1+m2(q). All cases can be reduced to computations in
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orbits represented by elements with shape xj, for j ∈ 1, 2, 3 as in Lemmata

5.6 and 5.7, under the action of subgroups isomorphic to SUj(q) for j =

3, 4, 5. Such elements may have determinant different from 1 but the proof

of these Lemmata does not require this assumption. Hence all cases are

covered, in view of Remark 5.5.

We study now the class of t2v ∈ OGFw

t2v for w = sa+b+1. The non-trivial

factors in [CG(t2), CG(t2)] are of type A2a and A2b, so q is necessarily even.

We work in GFw where Fw = Ad(ṡa+b+1)F , ṡa+b+1 =

(
ida+b 0 0 0

0 0 1 0
0 1 0 0
0 0 0 ida+b

)
. We

may take v ∈ id+ke1,ℓ+1 + kea+1,ℓ+1−a where two nonzero elements outside

the diagonal can occur only for a = b = 1 and q = 2. It represents the class

because it has the right Jordan form, centralises t2 and, for suitable choice

of the scalars, it lies in GFw . We take

x = diag(λ1 ida, λ2 idb, λ1, λ2 idb+1, λ1 ida)(id+ξ1e1,ℓ+1 + ξ2ea+1,ℓ+1−a)

with ξ1 6= 0 and ξ2 = 0 if b = 0,

the case ξ2 6= 0 is treated similarly. Let

σ1 =

(
ida+b 0 0 0

0 0 1 0
0 1 0 0
0 0 0 ida+b

)
∈ GFw , σ2 =

( 0 0 1
0 idℓ−2 0
1 0 0

)
∈ GFw

r = σ1 ⊲ x

= diag(λ1 ida, λ2 idb+1, λ1, λ2 idb, λ1 ida)(id+ξ1e1,ℓ+1 + ξ2ea+1,ℓ+1−a),

s = σ2 ⊲ x

= diag(λ1 ida, λ2 idb, λ1, λ2 idb+1, λ1 ida)(id+ξ1eℓ+1,1 + ξ2ea+1,ℓ+1−a).

By looking at the (1, 1) and (1, ℓ + 1) entries we verify that π(rs)2 6=

π(sr)2 and by looking at the entries (j, j) for j ∈ Ia+b,a+b+2 we verify that

π(O
〈r,s〉
r ) 6= π(O

〈r,s〉
s ), hence OG

x is of type D. �

Lemma 5.9. Assume that we are in Setting 5.1 with Φ of type Aℓ, ℓ ≥ 2

and x
q+1
s = z ∈ Z(GF )− 1. Then OG

x is not kthulhu.

Proof. Here tq+1 = η id for some η ∈ k× such that ord η = b is a divisor

of d = (q + 1, ℓ + 1), see Table 5. Equation (5.1) shows that t and zt are

conjugate, hence the spectrum of t is the disjoint union of sets of the form

Sj = {λjη
l, l ∈ I0,b−1}, for j ∈ Ik, and the multiplicity is constant in Sj: we

denote it by mj. Hence t can be chosen to have form

t = diag(λ1 idm1 , λ1η idm1 , . . . , η
b−1λ1 idm1 , λ2 idm2 , . . . , λkη

b−1 idmk
).
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Then w(F (t)) = t for w = τw0, where τ is the permutation represented by

the block-diagonal monomial matrix in GLℓ+1(k)

τ = diag(τ1, . . . , τk), τj =




0 idmj
0 ... 0

0 0 idmj
... 0

...
...

...
...

...
0 0 0 0 idmj

idmj
0 ... ... 0


 .

Decomposition (3.3) consists of a factor Hj ≃
∏d

j=1 SLmj
(k), for each j ∈

Ik such that mj > 1. More precisely, ω = τw0θ cyclically permutes the

irreducible components of the root systems of Hj and maps a simple root in

one factor to the opposite of a simple root in the following factor. Hence,

Gj ≃ SLmj
(qd) when d is even or mj = 2 and Gj ≃ SUmj

(qd) when d is

odd and mj > 2.

Assume k > 1 and let j0 ∈ Jv. By construction, CW (wθ) = CW (τ), so

it contains the permutations corresponding to each factor τj, they preserve

every Hj, and

τj(t) = diag(idd(m1+···+mj−1), η idmj
, idd(mj+1+···+mk))t 6∈ Z(GF )t.

Thus, for any j 6= j0, the element τj satisfies the hypotheses of Lemma 3.4

and OG
x is not kthulhu.

Assume now k = 1, so |Jv | = 1 and write for simplicity λ1 = λ, m1 = m,

so ℓ+ 1 = dm. Then

1 = det(t) = λℓ+1η
d(d−1)m

2 .

Hence, if eitherm is even or d is odd, we have λℓ+1 = 1 so λ id ∈ Z(SUℓ+1(q))

and multiplying by λ−1 id we reduce to the case in which tq+1 = 1 and in-

voke Lemma 5.8. If, instead, m is odd and d is even, then G1 ≃ SLm(qd)

with m > 2 and qd > 2, so x cannot satisfy condition (3.5). �

Lemma 5.10. Assume that we are in Setting 5.1 with Φ of type Aℓ, ℓ ≥ 2.

Then OG
x is not kthulhu.

Proof. The case xq+1
s = 1 is covered by Lemma 5.8 whereas the case xq+1

s 6= 1

is covered by Lemma 5.9. �

Lemma 5.11. Assume that we are in Setting 5.1, with Φ of type Dℓ with

ℓ = 2n+ 1 ≥ 5. Then O is not kthulhu.

Proof. We adopt the notation of Lemma 4.14. The non-trivial element z ∈

Z(GF ) generates the kernel of the projection G → SO2ℓ(k), so for t′ ∈ T

we have t 6= zt′ if and only if π(t) 6= π(t′). In this situation [H, H] has root
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system of type Da ×Db ×
∏

j Akj , where D1 corresponds to a torus, D2 is

A1 × A1, D3 = A3. Recall that the components of type Akj correspond to

equal eigenvalues λ of π(t) ∈ SO2ℓ(k) distinct from ±1, whereas Da and Db

correspond to a sequence of equal eigenvalues λ = ±1. Thus, if q is even

there is at most one component of type D in [H,H].

Assume first that tq+1 = 1 and take w = w0 so CW (wθ) = W . Thus,

wθ acts as − id on Φ, so all Gi are Fw-stable and if Gj is of type Ak,

then Gj ≃ SUk+1(q) for k ≥ 1, where we set SU2(q) := SL2(q). By

hypothesis, Jv 6= ∅ and (3.5) or (3.6) impose restrictions on the subgroups

Hj with j ∈ Jv. For most possibilities for Hj we will prove the statement by

exhibiting a σ ∈ CW (wθ) satisfying the hypotheses of Lemma 3.4. In the

remaining case we will apply Lemma 3.9

If Hj ≃ SL2l(k) is of type A2l−1 with base {αc, . . . , αc+2l−2} = {εc −

εc+1, . . . , εc+2l−2−εc+2l−1}, then we take σ =
∏l−1

i=0 sεc+2i−εc+2i+1sεc+2i+εc+2i+1.

Condition σ(π(t)) 6= π(t) holds because σ interchanges the eigenvalue λ with

λ−1. If Hj ≃ SL2l+1(k) is of type A2l for some l, and has root system with

base {αc, . . . , αc+2l−1} = {εc − εc+1, . . . , εc+2l−1 − εc+2l}, then we take

σ =
(∏l−1

i=0 sεc+2i−εc+2i+1sεc+2i+εc+2i+1

)
sεc+2l−1−εc+2l

sεc+2l−1+εc+2l
.

If Hj is of type D3 ≃ A3 then the eigenvalue λ = ±1 has multiplicity 6

and q is necessarily even so λ = 1 and all remaining eigenvalues of π(t) are

different from their inverses. We take σ =
∏n−2

i=0 sε4+2i−ε4+2i+1sε4+2i+ε4+2i+1 ,

recalling that ℓ = 2n+ 1.

Assume finally that there are no factors as above, so Hj is a simple factor

contained in the component of type D2 ≃ A1 × A1. The base of the root

system of type D2 is either {α0, α1} or {αℓ−1, αℓ}. In the first case we take

σ = sε3−ε4sε3+ε4 , in the latter we take σ = sε1−ε2sε1+ε2 . Condition 3 in

Lemma 3.4 holds unless π(t) has only eigenvalues ±1, or, equivalently, Φt

has type D2 ×Dℓ−2. If this is the case, we replace w by w′ = w0wΠ, where

wΠ is the longest element in WΠ and we replace Fw by Fw′ . Then w′θ acts

trivially on the root system of type A3 containing D2, so Lemma 3.9 applies

with β1 = α1, β2 = α2, β3 = −α0. This concludes the case tq+1 = 1.

Assume now tq+1 = z ∈ Z(GF ) − 1. Then q is necessarily odd, see

Table 5. Also, (5.1) shows that ww0 6∈ WΠ whereas ww0 fixes π(t). Hence,

CSO2ℓ
(π(t)) ) π(H). Arguing as in the proof of Lemma 4.16 we deduce

that this can happen only if π(t) has both eigenvalues equal to 1 and −1.

Since π ⊂ ∆̃, we have π(t)jj = ǫ for ǫ2 = 1 and j ∈ I1,a ∪ I2ℓ−a+1,2ℓ and
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π(t)jj = −ǫ for j ∈ Iℓ−b+1,ℓ+b. Also,

CSO2ℓ
(π(t))/π(H) ≃ S(O2a(k)×O2b(k))/SO2a(k)× SO2b(k) ≃ Z/2Z

and by [20, 2.2] it is isomorphic to 〈WΠ, ww0〉/WΠ. Thus, ww0WΠ =

sε1+εℓsε1−εℓWΠ and therefore we may assume w = sε1+εℓsε1−εℓw0. Hence,

CW (ww0) = CW (sε1+εℓsε1−εℓ). Since q is odd, Gj is of type A1 for every

j ∈ Jv . Such a factor comes from an eigenvalue λ of π(t) of multiplicity 2

if λ 6= ±1 and of multiplicity 4 if λ = ±1. Let j ∈ Jv. If the corresponding

λ 6= ±1 and π(t)ll = π(t)l+1,l+1 = λ, then σ = sεl+εl+1
sεl−εl+1

satisfies the

hypotheses of Lemma 3.4. If, instead π(t)jj = ±1 for every j ∈ Iℓ, then (3.5)

or (3.6) holds only if either 1 or −1 has multiplicity 4 and the root system

of Gj is one of the irreducible components of the root system of type D2.

Acting possibly by τ = sε1−εℓsε2−εℓ−2
we may assume that the multiplicity 4

eigenvalue occurs in the entries indexed by 1, 2, 2ℓ, 2ℓ − 1. In this situation,

D2 has base {α0, α1}. As in the case tq+1 = 1 we replace w by w′ = wwΠ

and apply Lemma 3.9 to {−α0, α2, α1}. �

Finally, we deal with the groups 2E6(q). In order to use the list in [13], we
need to establish a dictionary between pairs (Π, [w]) coming from different
choices for the Steinberg endomorphism F .

Remark 5.12. For j = 1, 2, let Fj = ϑj Frq be Steinberg endomorphisms

of G such that F1 = Adσ̇ F2 for some σ ∈ NG(T) and let g0 ∈ G be such

that g−1
0 F2(g0) = σ̇. Then GF2 = g0G

F1g−1
0 and if for some z ∈ G we have

x ∈ GF1 ∩ OG
z , it follows that g0xg

−1
0 ∈ GF2 ∩ OG

z . Assume s1 ∈ GF1 is a

semisimple element and let t1 ∈ T, ẇ1 ∈ NG(T) and g1 ∈ G be such that

g−1
1 F1(g1) = ẇ1; s1 = g1t1g

−1
1 and Ad(ẇ1)F1(t1) = t1. Then s2 := g0s1g

−1
0 ,

t2 := t1, g2 := g0g1 and ẇ2 := ẇ1σ̇ satisfy g−1
2 F2(g2) = ẇ2; s2 = g2t2g

−1
2 and

Ad(ẇ2)F2(t2) = t2. Thus, if Π1 is a base for the root system of CG(t1), then

it is also a base for the root system of CG(t2) and comparing the actions of

wjθj for j ∈ I2 on Φ gives w1θ1 = w1σθ2 = w2θ2, hence the isomorphism

classes of the groups [H,H]Ad(ẇj)Fj for j ∈ I2 coincide.

Lemma 5.13. Assume that we are in Setting 5.1, with Φ of type E6. Then

O is not kthulhu.

Proof. We proceed as in the proof of Lemma 4.17, using the list in [13]

of pairs attached to a semisimple conjugacy class. The Steinberg endo-

morphism FFJ used therein differs from our choice of F and there exists

σ̇ ∈ w0T such that FFJ = Ad σ̇ F . By Remark 5.12 the pair (ΠFJ , [wFJ ])
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attached to a semisimple conjugacy class in GFFJ is related to the pair at-

tached to the corresponding semisimple conjugacy class in GF by the law

(ΠFJ , [wFJ ]) = (Π, [ww0]) = (Π, [wθ]). Also, the groups GFw

i can be ex-

tracted from the list in [13].

We have to deal with the case in which tq = zt−1 for some z ∈ Z(GF ). By

(5.1) the element wFJ = ww0 normalises H, whence WΠ. Also, (ww0)
3t = t,

so |ww0WΠ| ∈ {1, 3}. Observe that in all cases in which α0 ∈ Π, then t ∈∏
i 6=2 α

∨
i (k) so it lies in the subgroup K := 〈U±αj

, j = 1, 3, 4, 5, 6〉 ≃ SL6(k).

All mixed classes in KFw are not kthulhu by [2] and Lemma 5.10.

Assume first |ww0WΠ| = 3 so (5.1) forces z 6= 1. In particular, q ≡ 2(3) in

this case. All pairs as in Lemma 4.17 with wJF = ww0 6= 1 that have been

discarded because of the order, can be again discarded for the same reason,

as well as those that were discarded by using Remark 3.7 (3). As observed

in [13], the groups GFw

i for 2E6(q) are obtained from those in the list for

E6(q) by interchanging Chevalley and Steinberg’s types in each factor of

type A, D or E6. We are thus left with the cases in Table 6. There, βi for

i = 10, 11, 19, 20, 21, 22 are as in Lemma 4.17 and

β13 = α1 + α2 + α3 + α4; β15 = α2 + α4 + α5 + α6;

β24 = α1 + α2 + α3 + 2α4 + 2α5 + α6; β28 = α3 + α4 + α5 + α6.

Table 6. Pairs (Π, wFJWΠ) in type 2E6, for wFJ 6= 1 that

are dealt with separately

Π wFJWΠ [H,H]Fw (up to isogeny)

A1 = {−α0} s1s3s5s6 SL2(q)

A2 = {α2, −α0} s1s3s5s6, SU3(q)

3A1 = {α4, α6,−α0} sβ11
sβ19

sβ20
sβ10

SL2(q
3)

4A1 = {α1, α4, α6, −α0} sβ19
sβ11

sβ21
sβ22

SL2(q)× SL2(q
3)

3A2 = {α1, α3, α5, α6, α2,−α0} sβ13
sβ15

sβ28
sβ24

SU3(q
3)

If Π = {−α0} or {α2, −α0} or {α4, α6,−α0}, then Lemma 3.4 applies

with σ = s1s3 in the first two cases and σ = s1 in the third one.

Let Π = {α1, α4, α6,−α0}. If v ∈ 〈U±α0〉, then Lemma 3.4 applies with

σ = sβ11sβ21 . If, instead, v ∈ 〈U±αj
, j = 1, 4, 6〉, then tv ∈ K and it is mixed

therein.

We claim that the case Π = {α1, α3, α5, α6, α2,−α0} with tq+1 ∈ Z(GF )−

1 cannot occur. Indeed, here t = α∨
1 (ξ)α

∨
3 (ξ

2)α∨
5 (ζ)α

∨
6 (ζ

2) with ξ3 = ζ3 = 1,

ξ 6= ζ, so tq+1 = 1 because q ≡ 2(3).
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We deal now with the case |ww0WΠ| = 1. Then (ww0)
−1 ∈ WΠ so (5.1)

implies tq+1 = z = 1 and we take w = w0, so CW (wθ) = W . Since either

(3.5) or (3.6) holds, we discard all choices of Π for which no Gi is isogenous

to SUm(q), PSL3(2) or SL2(q). This leaves us with Table 7. In most

remaining cases we apply Remark 5.4 and we list the simple roots we use in

the third column of Table 7. We deal with the remaining cases separately.

Observe that since w = w0, the subgroup K is Fw-stable and wθ acts as −1

on its root system, so KFw ≃ SU6(q).

Table 7. Pairs (Π,WΠ) in type 2E6, for wFJ = 1

Π [H,H]Fw (up to isogeny) Reason to discard

A1 = {−α0} SL2(q) s1

2A1 = {α6,−α0} SL2(q)
2 s1

A2 = {α2,−α0} SU3(q) s1

3A1 = {α4, α6,−α0} SL2(q)
3 s1

A2 + A1 = {α2, α6,−α0} SU3(q) × SL2(q) s1

A3 = {α2, α4,−α0} SU4(q) s1

4A1 = {α1, α4, α6, −α0} SL2(q)
4 s3 or s5 or s2

A2 + 2A1 = {α1, α3, α6, −α0} SU3(q) × SL2(q)
2 s4 or s5 or s2

2A2 = {α2, α5, α6, −α0} SU3(q)
2 s1

A3 + A1 = {α4, α5, α6, −α0} SU4(q) × SL2(q) s1

A4 = {α2, α4, α5, −α0} SU5(q) s1

2A2 + A1 = {α1, α3, α5, α6, −α0} SU3(q)
2 × SL2(q) s2 or s4

A3 + 2A1 = {α1, α3, α4, α6, −α0} SU4(q) × SL2(q)
2 s2 or s5 or tv ∈ SU6(q)

A4 + A1 = {α1, α3, α4, α5, −α0} SU5(q) × SL2(q) s6 or tv ∈ SU6(q)

A5 = {α2, α4, α5, α6, −α0} SU6(q) s1

3A2 = {α1, α3, α5, α6, α2, −α0} SU3(q)
3 sβ13

sβ14
sβ15

or tv ∈ SU6(k)

A5 + A1 = {α1, α3, α4, α5, α6, −α0} SU6(q) × SL2(q) w0 ∈ WΠ and Lemma 3.9

Let Π = {α1, α3, α4, α6, −α0}. If v has a component in either 〈U±α0〉

or 〈U±α6〉, then Lemma 3.4 applies with either σ = s5 or σ = s2. Assume

|Jv| = 1 and v ∈ 〈U±αj
, j = 1, 3, 4〉. Since −α0 ∈ Π we have tv ∈ K and it

is mixed therein.

Let Π = {α1, α3, α4, α5 − α0}. If v has a component in 〈U±α0〉 then

Lemma 3.4 applies with σ = s6. If v ∈ 〈U±αj
, j = 1, 3, 4, 5〉, since −α0 ∈ Π

we have tv ∈ K and it is mixed therein.

Let Π = {α1, α2, α3, α5 α6, −α0}. Here t = α∨
1 (ξ)α

∨
3 (ξ

2)α∨
5 (ζ)α

∨
6 (ζ

2)

with ξ3 = ζ3 = 1, ξ 6= ζ. The Weyl group involution σ = sβ13sβ14sβ15 satis-

fies σ(α1) = α5, σ(α3) = α6 and σ(α0) = α2. Hence, if v has a component in

〈U±α0〉, then Lemma 3.4 applies. If, instead, v has no component in 〈U±α0〉,

then tv ∈ K and it is mixed therein.

Let Π = {α1, α3, α4, α5, α6, −α0}. A direct computation shows that,

t = α∨
1 (ζ)α

∨
3 (ζ

2)α∨
4 (−1)α∨

5 (ζ
4)α∨

6 (ζ
5) for ζ ∈ k such that ζ6 = 1, ζ3 = −1 6=
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1. Hence q is odd and (3.5) implies that v ∈ 〈U±α0〉. Also, the condition

tq = t−1 gives F (t) = ϑtq = ϑt−1 = t, so t ∈ GF and we may take xs = t

and replace w = w0 by w = 1. By Remark 4.9 we assume v = xα0(ξ) for

some ξ ∈ k×. Lemma 3.9 applies taking β1 = α0, β2 = α2 and β3 = α4. �

Putting together Lemma 3.6, Proposition 3.8 and Lemmata 5.2 up to
5.13, we prove the main Theorem of this Section:

Theorem 5.14. Let G be a Steinberg group and x = xsxu ∈ G with

xs, xu 6= 1. Then OG
x is not kthulhu, and consequently OG

x collapses. �

6. Nichols algebras over Chevalley and Steinberg groups

In order to prove Theorems 1.2 and 1.3, we have to consider now Nichols
algebras attached to Yetter-Drinfeld modules over some specific finite groups,
in other words, the cocycle q is not arbitrary, but determined by a repre-
sentation of the centraliser of a fixed element in the conjugacy class.

6.1. Unipotent orbits in Chevalley and Steinberg groups. LetG be a
Chevalley or Steinberg group isomorphic to neither PSL3(2) nor PSL2(3) ≃
A4, the latter being non-simple. Note that, as PSL3(2) ≃ PSL2(7), the only
unipotent conjugacy class in PSL3(2) which is kthulhu is isomorphic to a
semisimple class in PSL2(7).

We now deal with Nichols algebras associated with unipotent classes O in
G and representations of the centraliser of x ∈ O. In most of the cases we
will prove that they are infinite-dimensional by reducing to a subgroup of
G for which a similar statement is known. We begin with a case for which
this strategy cannot be implemented, see Remark 6.4 below.

Lemma 6.1. Let G = Sp4(3), G = PSp4(3) and π : G → G the natural

projection. Let O be the unipotent class of an element g0 ∈ G whose Jordan

form has blocks of size (2, 1, 1). Then, dimB(M(O, ρ)) = ∞ for every

ρ ∈ IrrCG(g0). The same statement holds replacing g0 by π(g0) and CG(g0)

by CG(π(g0)).

Proof. There are two such unipotent classes in G and they are represented

by g0 = id ηe1,4, with η2 = 1. We find a suitable abelian subrack of O and

apply the results in [17] on Nichols algebras of diagonal type.

For both choices of g0, we consider the abelian subgroup H of CG(g0)

consisting of matrices of block form g(X) :=
(

id2 X
0 id2

)
where X = ( a b

c a ) for

a, b, c ∈ F3. Then

O ∩H =
{
id+ηe1,4, id +ηe2,3, g (

η η
η η ) , g

(−η η
η −η

)}
= {gi = xi ⊲ g0, i ∈ I0,3}
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with:

x0 = 1, x1 = diag(J2, J2), u =

(
1 1
1
1 2
1

)
, x2 = ux1, x3 = u2x1.

Observe that

u ⊲ g0 = g0, x1 ⊲ g2 = g2, x1 ⊲ g3 = g3, x1 ⊲ g1 = g0, g0g1g2g3 = 1.

As H is abelian, the restriction of ρ to H decomposes as a direct sum of

1-dimensional representations; let Cv be one of these and let ρ(gi)v = ζiv

for every i ∈ I0,3. We necessarily have ζ3i = 1 and ζ0ζ1ζ2ζ3 = 1. Then

spanC{xi ⊗ v, i ∈ I0,3} is a braided vector subspace of M(O, ρ), where

c((xi ⊗ v)⊗ (xj ⊗ v)) = qij(xj ⊗ v)⊗ (xi ⊗ v), qijv = ρ(x−1
j xi ⊲ g0)v.

By direct computation we obtain

qij 0 1 2 3

0 ζ0 ζ1 ζ1 ζ1

1 ζ1 ζ0 ζ20ζ
2
1ζ

2
2 ζ2

2 ζ2 ζ2 ζ0 ζ20ζ
2
1ζ

2
2

3 ζ20ζ
2
1ζ

2
2 ζ20ζ

2
1ζ

2
2 ζ2 ζ0

so

q01q10 = ζ21 , q02q20 = ζ1ζ2, q03q30 = ζ20ζ
2
2 ,

q12q21 = ζ20ζ
2
1 , q13q31 = ζ20ζ

2
1 , q23q32 = ζ20ζ

2
1 .

Let W = spanC{xi ⊗ v, i ∈ I1,3}. If either ζ0 = 1 or dimB(W ) = ∞, then

dimB(M(O, ρ)) = ∞, so we assume that ζ0 is a primitive third root of 1 and

that dimB(W ) < ∞. Since the generalized Dynkin diagram of W does not

occur in [17, Table 2], it must be disconnected. This forces ζ1 = ζ20 , but then

the generalized Dynkin diagram of W ′ = spanC{x0 ⊗ v, x1⊗ v} is connected

and does not occur in [17, Table 1], so dimB(W ′) = ∞, and a fortiori

dimB(M(O, ρ)) = ∞. The statement for G follows similarly because the

restriction of π to O ∩H is injective. �

Proposition 6.2. Let n ≥ 2, let M be either Sp2n(3) or PSp2n(3), and let

O be the unipotent class of an element xu in M whose Jordan form has blocks

of size (2, 12n−2). Then, dimB(M(O, ρ)) = ∞ for every ρ ∈ IrrCM (xu).

Proof. If n = 2 this is Lemma 6.1. If n > 2 we use the embeddings of Sp4(3)

into Sp2n(3) and PSp2n(3) given by
(
A B
C D

)
7→
(

A B
id2n−4

C D

)
and [6, Lemma

3.2]. �

We are now in a position to prove our next theorem.
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Theorem 6.3. Let x be a unipotent element in a Chevalley or Steinberg

group G 6≃ PSL3(2), PSL2(3). Then dimB(Ox, ρ) = ∞ for all ρ ∈

IrrCG(x).

Proof. We may assume that x is non-trivial. By Theorem 2.6 it is enough to

prove the statement for the conjugacy classes in Table 1. If q = 3, then we

invoke Proposition 6.2. Let q 6= 3. These conjugacy classes are represented

by an element xβ(ξ) with ξ ∈ F×
q and β a positive root by Remark 2.7. Since

xβ(ξ) ∈ 〈UF
β ,U

F
−β〉 ≤ SL2(q) or ≤ PSL2(q), the statement follows from [6,

Lemma 3.2] together with: [14, Proposition 3.1] for q even; [15, Lemma 2.2]

for p > 3, and the proof of [14, Lemma 3.7] for q = 32h+1, h > 0. �

Remark 6.4. (a) We do not know whether dimB(M(O), ρ) = ∞ for Ou a

non-trivial unipotent conjugacy class in G = PSL2(3) and ρ an irreducible

representation of CG(u). Indeed, the proof of [15, Proposition 4.3] does not

cover the case of non-trivial unipotent conjugacy classes in PSL2(3) because

they are not real. These conjugacy classes correspond to the tetrahedral rack

associated with a class of 3-cycles in A4.

(b) There are examples of finite-dimensional Nichols algebras associated

with the rack Ou as in (a) and a cocycle that does not come from a repre-

sentation of CG(u), see [18, Proposition 36].

6.2. Proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. By [19], V should be simple, say V ≃ M(O, ρ). By
Theorem 1.1, we know that O is either semisimple or unipotent, but the
latter is discarded by Theorem 6.3. �

Proof of Theorem 1.3. Let V = M(O, ρ) ∈ CG
CGYD. Assume that dimB(V ) <

∞. By Theorem 1.2, O = Ox is semisimple, hence ordx is odd since q is
even. Since G is one of the groups in (1.2), − id belongs to the Weyl group
W . Thus O is real by §2.6. This contradicts [8], hence dimB(V ) = ∞. We
conclude by [6, Lemma 1.4]. �

Notice that [19] is not needed for the last proof.
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Birkhäuser, Boston (1998).

[25] T. A. Springer, R. Steinberg, Conjugacy Classes, Seminar on Algebraic Groups and

Related Finite Groups, pp.167–266, Lect. Notes Math. 131, Springer, (1970).

[26] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc.

80 (1968).

[27] , Lectures on Chevalley groups, Yale University Press, 1968.


	1. Introduction
	2. Notation and Preliminaries
	3. Mixed classes
	4. Mixed classes in Chevalley groups
	5. Mixed classes in Steinberg groups
	6. Nichols algebras over Chevalley and Steinberg groups
	References

