
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ists20

Stress
The International Journal on the Biology of Stress

ISSN: 1025-3890 (Print) 1607-8888 (Online) Journal homepage: https://www.tandfonline.com/loi/ists20

Stress-mediated hyperactivity and anhedonia
resistant to diazepam and fluoxetine in Drosophila

Ana Belén Ramos-Hryb, Mauro Federico Ramirez, Cilene Lino-de-Oliveira &
Mario Rafael Pagani

To cite this article: Ana Belén Ramos-Hryb, Mauro Federico Ramirez, Cilene Lino-de-Oliveira &
Mario Rafael Pagani (2020): Stress-mediated hyperactivity and anhedonia resistant to diazepam
and fluoxetine in Drosophila, Stress

To link to this article:  https://doi.org/10.1080/10253890.2020.1759547

Accepted author version posted online: 22
Apr 2020.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ists20
https://www.tandfonline.com/loi/ists20
https://doi.org/10.1080/10253890.2020.1759547
https://www.tandfonline.com/action/authorSubmission?journalCode=ists20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ists20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10253890.2020.1759547
https://www.tandfonline.com/doi/mlt/10.1080/10253890.2020.1759547
http://crossmark.crossref.org/dialog/?doi=10.1080/10253890.2020.1759547&domain=pdf&date_stamp=2020-04-22
http://crossmark.crossref.org/dialog/?doi=10.1080/10253890.2020.1759547&domain=pdf&date_stamp=2020-04-22


 

 

Title: Stress-mediated hyperactivity and anhedonia resistant to diazepam and fluoxetine in 

Drosophila 

 

Running title: Short variable stress effects in flies 

 

Authors: Ramos-Hryb, Ana Belén
1,2&

, Ramirez, Mauro Federico
1
, Lino-de-Oliveira, Cilene

2,3
, 

Pagani, Mario Rafael
1*

 

 

Affiliations: 

1Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, 

Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina. 

2Postgraduation Program in Pharmacology, CCB, Federal University of Santa Catarina, 

Florianópolis, Brazil. 

3Department of Physiological Sciences, CCB, Federal University of Santa Catarina, Florianópolis, 

Brazil. 

&Current Address: Institute of Biology and Experimental Medicine (IBYME)-CONICET, Buenos 

Aires, Argentina.
 

*
Corresponding author: 

Dr. Mario Rafael Pagani, E-mail: pagani@fmed.uba.ar, calciumsignal@gmail.com 

 

 

Word Count: 6388 words 

  Acc
ep

te
d 

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/10253890.2020.1759547&domain=pdf


 

Abstract: 

Distresses may induce behavioral phenotypes constituting heuristic models for psychopharmacology 

studies. In several species, including Drosophila, antidepressants counteract stress-induced 

phenotypes allowing the use of these models to test new psychoactive drugs. Here, we developed a 

novel and time-efficient protocol to provoke stress-induced phenotypes in Drosophila for the study 

of psychopharmacological agents. In the first experiment, flies (n=12/groups) were exposed to a 

random-sequence of different types of stresses during nearly 24 h (including social isolation, fasting, 

heat, and electric shock), a protocol named short-term variable stress (SVS). Second, flies were 

exposed to a single stressful stimulus (social isolation, fasting, heat shock or electric shock, 

n=12/groups). Next, flies submitted to SVS protocol were treated with vehicle, diazepam or 

fluoxetine (n=12/groups). At the end of the stress protocols, behavioral phenotypes were evaluated in 

the open field (OF) and sucrose preference tests. In comparison to the unstressed group, flies 

exposed to SVS exhibited hyperactivity, as well as shorter times exploring the boundaries of the OF. 

In contrast to fasting stress, SVS reduced sucrose preference in flies. By analyzing the effects of 

individual stimuli on fly behavior, fasting and electric shock appear to be the predominant influences 

on the SVS-induced behaviors. Although fluoxetine or diazepam reduced the initial locomotor 

activity of flies, no treatment prevented the sequelae of SVS. Altogether, this study provides a time-

efficient model system for the study of stress-mediated hyperactivity and anhedonia-like state 

resistant to fluoxetine and diazepam. The applications of SVS in Drosophila to preclinical 

psychopharmacology require further studies. 

 

Keywords: preclinical test; chronic unpredictable stress; psychopharmacology; antidepressants; 

anxiolytics, Drosophila. 

 

Lay summary 

Exposition to unpredictable stress plays a significant role in psychiatric disorder’s onset. 

Behavioral traits of these disorders can be partially modeled in rodents aimed at developing 

psychopharmacological therapies. However, studies in rodents were questioned by ethical issues. 

Focused on 3Rs principles, we developed a preclinical model for stress and psychopharmacology 

research in Drosophila. Variable stress induced behavioral alterations, including hyperlocomotion 

and reduced preference for sucrose in flies. However, behavioral alterations were resistant to 

fluoxetine and diazepam. 
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Introduction 

Distress is an important factor altering animal behavior. Behavioral sequelae of stress are a 

function of intensity, length, frequency, and predictability of the stimuli (Shors and Servatius, 1997). 

Animals exposed to variable stresses exhibit learned helplessness or discontinuing attempts to avoid 

aversive stimuli (Katz et al., 1981; López-López et al., 2016; Mineur et al., 2006; Zhu et al., 2014), 

and anhedonic-like states or reduced interest for palatable stimuli (López-López et al., 2016; Mineur 

et al., 2006; Zhu et al., 2014). Anhedonia, despair, and helplessness are symptoms presented in 

patients with depression (American Psychiatric Association, 2013). Along with this behavioral 

phenotype, rodents show neurochemical alterations also detected in patients, including serotonin (5-

HT) dysfunctions (Amat et al., 2005; Vollmayr and Gass, 2013). 

Stress-mediated behavioral sequelae in rodents are often ameliorated by classical 

psychopharmacological agents, including fluoxetine and diazepam (Giacomini et al., 2016; Gupta et 

al., 2014). Reversion of these phenotypes can be used to predict the antidepressant activity of novel 

pharmacological agents (Porsolt et al., 1977; Willner, 2017). However, rodent testing received 

criticism and questioning in the field of ethics and animal welfare (Reardon, 2019). In fact, several 

initiatives are in place to increase the validity of behavioral tests, based on the ethical principles of 

animal experimentation such as refining, reducing and replacement (3Rs) (Graham and Prescott, 

2015). Focusing on these principles, this work aimed to design a novel animal model of stress-

mediated behavior alterations in Drosophila.  

Drosophila is a suitable organism for modeling human diseases due to their phylogenetic 

relationship with vertebrates and powerful genetic tools (Bellen et al., 2010). Moreover, monoamines 

are required to control fly behaviors (Hidalgo et al., 2017; Mohammad et al., 2016a; Neckameyer 

and Matsuo, 2008; Ries et al., 2017). The evolutionary conserved role of 5-HT in stress-dependent 

behaviors, reinforces the idea of using Drosophila in neurobiology research (Kasture et al., 2018; 

Ries et al., 2017). Few attempts to develop a model for depression in Drosophila have been made 

since Brown et al (1996) reported learned helplessness in flies (Brown et al., 1996). Noteworthy flies 

chronically exposed to vibrations reduced walking or climbing as compared to controls. This 

depressive-like state correlated with reduced 5-HT release at the mushroom body which was reverted 

by the serotonin precursor 5-hydroxy-L-tryptophan (Ries et al., 2017). In addition, Drosophila 

exposed for ten days to random sequences of variable stresses exhibited high immobility, 

aggressiveness, and anhedonia-like behavior, all reverted by fluoxetine (Araujo et al., 2018). Thus 

far, no study reported a short, random and variable protocol that induces stress phenotypes for rapid 
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screening of psychopharmacological agents. The aim of this study was to develop a novel and time-

efficient stress protocol for the study of psychopharmacological agents in Drosophila. 

 

Methods 

Animals 

Adult male and female wild-type Canton-S (RRID: BDSC_64349) Drosophila melanogaster 

(from 2 to 6 days after pupae eclosion) were used. Canton-S strands were obtained from 

Bloomington Drosophila Stock Center and maintained in 37 ml polystyrene vials containing 10 ml of 

standard corn medium (Pagani et al., 2009). Until the experiment, flies were maintained with a mean 

number of 50 flies per vial under controlled conditions at 25 °C, 55-65% humidity and 12:12 h dark-

light cycle (lights on at 8 a.m.). In this study, 12 flies were used per treatment and group and all of 

the animals were included in the analysis.  

Drugs 

Fluoxetine (Eli Lilly, Indianápolis, U.S.A.) and Diazepam (LaboratoriosFabra, Buenos Aires, 

Argentina) were diluted at the final concentrations of 10 and 5 mM, respectively. These 

concentrations were based on previous studies with flies showing that 10 mM fluoxetine treatment 

suppressed the altered behavior induced by a vibration-stress protocol (Ries et al., 2017), 5 mM of 

diazepam counteracted the anxiety-like state and hyperlocomotion (Mohammad et al., 2016a) and 10 

µM ketamine promoted neuritogenesis and synaptogenesis in Drosophila larvae (Ly et al., 2018). 

Flies were transferred to an empty vial containing a filter paper (3 x 3 cm) soaked with 120 µl of 

either vehicle (water), 10 mM fluoxetine, 5 mM diazepam or 10 µM ketamine and kept there for 6 

hours (during the entire period of fasting). We chose this time period because a previous study 

showed that 4 hours of fasting is sufficient to induce a food-seeking behavior in flies (Root et al., 

2011). Sucrose obtained from Anedra (AN00711812, Buenos Aires, Argentina) prepared at the final 

concentration of 2 M was used for the sucrose preference test. This concentration was based on a 

study that demonstrated that fasted flies exhibit a higher sucrose preference within the first 20-30 s of 

exposition to this solution (Thoma et al., 2016). In order to have the same time gap between drug 

treatments and the behavioral tests, we used a specific arrangement in the presentation of stimuli. 

Fasting was always applied as a second factor and it was followed either by heat (20 min) and 

electric shock (5 min) or electric (5 min) and heat shock stresses (20 min). Therefore, the time gap 

between drug treatments and the behavioral tests always corresponded to 25 min. All drugs were 

diluted in distilled water. 
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Stress protocols 

Setting up a short protocol of stress was the first step to establish a system for testing and 

examining the mechanisms of psychopharmacological drugs in flies. The selection of types of stress 

to be applied to the flies was performed after a series of pilot studies. The main criteria to select the 

type of stress were: 1- feasibility in the laboratory conditions; 2- avoidance of extremely aggressive 

stimuli; and 3-time-efficiency of the test performing. Hence the following stimuli were selected: 

social isolation (18 h), heat shock (20 min), fasting (6 h) and electric shock (5 min). The protocols of 

stress consisted of a single session (monotonic stress) or a combination of different types of stress 

randomly presented without a rest period in between. This last protocol was named short-term 

variable stress (SVS). In addition, monotonic stress groups were used to assess whether SVS-induced 

behaviors resulted from the combination of the stressful stimuli or, predominantly, by one or more 

stimuli.  

Stress stimuli 

For social isolation stress, adult flies were individually transferred into polystyrene 37 ml vials 

containing standard corn medium for 24 hours at 25 °C and 55-65 % of humidity (Pagani et al., 

2009). For heat shock stress, 4-5 flies were introduced into previously heated glass-tubes of 20 mm 

diameter and 50 mm length containing a filter paper to avoid water condensation inside the tube, and 

immersed into a water bath at 37 °C during 20 min. This treatment was based on pilot experiments 

showing that this condition was the minimal time of exposition able to alter the locomotory behavior 

of flies. For fasting stress, flies were individually transferred into an empty 37 ml vial containing a 

paper soaked with water for preventing dehydration. Fasting was performed for 6 hours. To induce 

electric shock stress, 4-5 flies were transferred into a tube with electric grids placed internally over 

the walls, where 60 volts were delivered for 5 min in 1.5 s bouts with 5 s of resting intervals (Tully et 

al., 1994). For each experiment, the control condition corresponded to a group of animals transferred 

to fresh food vials containing standard corn medium under controlled conditions (120 Lux, 25 °C, 

55-65 % except for electric shock where the humidity was controlled and set to 70 %) which is called 

as “control naïve group”. 

SVS protocol 

Groups of adult flies were exposed to a specific, randomly distributed combination of social 

isolation (18 h), heat shock (20 min), fasting (6 h) and electric shock (5 min) stress without resting 

intervals between stimuli (Figure 1). Exposition to SVS protocol was conducted in an artificially 

illuminated room (120 Lux) under constant environmental conditions (25 °C, 55-65 % except for 
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electric shock where the humidity was controlled and set to 70 %). The control naïve group remained 

in a 50 flies-population and it was transferred to fresh food 37 ml vials with standard corn medium 

under controlled conditions (25 °C, 55-65 %). Behavioral experiments were conducted between 

11:00 am to 7:00 pm. Flies were transferred into the behavioral arenas immediately after finishing 

the stress exposition. The time of the day, the sex of animal or the age of animals used did not affect 

locomotion (Figure S3-5). 

Behavioral tests 

In order to quantify the behavior performance of individual flies, a behavioral box was designed 

and constructed. The behavioral box consisted of a black box of 30 x 10 x 10 cm in height, width and 

depth of foamed polyvinyl chloride (3 mm of thickness). The box was divided into three sections 

(lower, medium, and upper compartments) by two shelves of white acrylic at a height of 10 and 20 

cm, respectively (Figure S1). The lower and upper compartments of the box contained a white light-

emitting diode light source that illuminated the lower and upper faces of the arena (240 lux on the 

top and 80 lux on the bottom) through a white acrylic diffuser. The medium compartment contained 

a semicircular indentation that allowed placing the experimental arena always in the same position. 

The upper compartment, with a 2 x 2 cm window, supported a high definition camera Logitech HD 

Pro Webcam C910. Thus, OF and sucrose preference tests were video recorded from above. 

OF Test 

Circular plastic Petri dishes of 58 mm in diameter and 10 mm in height were used for the OF 

test. The walls of the arena were covered with an alternate black and white pattern. The roof of the 

arena was a circular plastic lid of petri dish of 8.8 mm in diameter with a perforation of 1 cm in 

diameter next to its edges that allowed the entry of animals into the arena. Flies were transferred into 

the arena and tested for 10 min. Arenas were cleaned with 70 % alcohol and leave to dry between 

tests to minimize any pheromonal or waste products that might affect the behavior of the next tested 

flies. 

Sucrose preference test 

Fruit flies were tested for sucrose preference using a circular arena (with identical dimension and 

configuration with the OF arena). Each half of the arena was covered with a semicircular piece of 

filter paper that had been soaked with either 250 μl of water or 250 μl of a 2 M sucrose solution as 

previously described (Thoma et al., 2016). Then, flies were allowed to choose between the two sides 

for 1 min. Arenas were cleaned with water followed by 70 % alcohol and leave to dry between tests.  
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Behavioral recording and analysis 

Once the flies were transferred into the arena, the behavior was immediately video recorded with 

a high definition camera at 30 Hz using VirtualDub (v 1.10.4, Avery Lee). The videos were 

converted into 320x240 photograms with Prism Video Converter Software (v 3.04, NCH Software) 

and analyzed using ANY-Maze® Video Tracking System (Stoelting Co.). For the OF test the 

following variables were analyzed: habituation index, total distance traveled during the 10-min 

session divided by 1-min blocks, total mobility and immobility times (considering immobility if the 

animal does not change location and if 65 % of its body remains static for at least 3000 ms), freezing 

time (considering freezing if the animal remains at least 500 ms with a threshold between 30 and 40 

scores), freezing and immobility latencies, mean velocity and time expended in borders and/or center 

of the arena. Habituation index was calculated as follows: (distance traveled during the 1
st
 min - 

distance traveled during the 10
th

 min)/(distance traveled during the 1
st
 min + distance traveled during 

the 10
th

 min). The sucrose preference index was calculated as (time on sugar - time on water)/(time 

on sugar + time on water). The border versus center index was measured as (time on border)/(time on 

center).  

Statistical tests 

Statistical analysis was carried out using Graph pad Prism v. 7.04 (California Corporation) and 

StatSoft v. 7.0 (Tulsa, U.S.A.). Normal distribution and homogeneity of variances were checked 

using the Shapiro-Wilk test and Bartlett’s test, respectively. Comparison between two unpaired 

groups was conducted by one-sided student’s t-test or Mann Whitney (M-W) and, the analysis 

between two paired groups was performed with Wilcoxon Matched Pairs Test. Comparison between 

more than two groups was conducted by one-way analysis of variances (ANOVAs) followed by 

Newman Keuls’s (N-K) post-hoc. When data were not normally distributed, comparison between 

more than two groups was conducted by Kruskal Wallis (K-W) followed by Dunn post-hoc. 

Differences with a probability of 5 % or less were considered to be statistically significant. Sample 

size estimation for a statistical power of 80 % was conducted using G*Power. Outliers were 

identified using the Grubbs' test-based calculator where α = 0.05. The following criteria were set 

beforehand to exclude outliers: values derived from tracking errors in the Any-maze analysis, errors 

of data entry or values scientifically impossible (e.g. negative distance traveled). The number of 

outliers identified per group may be seen in Table S1.  
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Results 

SVS induces hyperlocomotion and centrophilic behavior in adult flies 

To establish an efficient model system in fruit flies that allow us to test traditional and novel 

psychopharmacological drugs, we began by setting up a short protocol of stress. We designed a 

protocol of acute and variable stress that combines several types of stress randomly without a rest 

period in between. This protocol consists of a single combination of the following stimuli: social 

isolation (18 h), heat shock (20 min), fasting (6 h) and electric shock (5 min) (Figure 1). We named 

this new protocol SVS, (see section: SVS protocol). 

To assess the stress-induced phenotypes of the short-term SVS protocol in the locomotor 

behavior, flies were evaluated in the OF test after exposure to stress. The temporal analysis in one-

minute time segments revealed no statistical difference between curves of exploration of control 

naïve and stressed groups (K-W test between control naïve and stressed groups of minute 1: H(1, 24)= 

1.92, p>0.05; minute 2: H(1, 24)= 0.96, p>0.05; minute 3: H(1, 24)= 0.85, p>0.05; minute 4: H(1, 24)= 

0.70, p>0.05; minute 5: H(1, 24)= 3.00, p>0.05; minute 6: H(1, 24)= 1.92, p>0.05; minute 7: H(1, 24)= 

2.25, p>0.05; minute 8: H(1, 24)= 1.84, p>0.05; minute 9: H(1, 24)= 0.48, p>0.05; minute 10: H(1, 24)= 

2.90, p>0.05; Figure 2A). Flies in control naïve (Wilcoxon matched pairs test, t=8.00, p<0.05) and 

stressed (Wilcoxon matched pairs test, t=10.00, p<0.05) groups showed higher exploratory activity 

in the beginning compared with the end of the test (Figure 2B). Although stressed flies exhibited a 

less steep reduction (56%) in the traveled distance parameter between the final and initial minutes 

when compared to control naïve flies (80%), no significant difference in the habituation index was 

seen (Table S2). Total distance traveled (one-tailed unpaired student’s t-test; t(22)=3.31, p<0.01, 

Figure 2C) and the mean velocity (one-tailed unpaired student’s t-test; t(22)=3.31, p<0.01, Figure 

2D) were higher in the animals exposed to the SVS protocol compared with the control naïve group. 

Accordingly, total immobility time of stressed flies was lower compared with control naïve flies 

(one-tailed unpaired student’s t-test; t(22)=2.31, p<0.05, Figure 2E). Stressed flies also showed a 

lower preference for the border of the OF compared with control naïve group (one-tailed unpaired 

M-W, U=29.50, p<0.01, Figure 2F). Whereas control naïve flies spent almost 81% of the testing 

time within the outermost zone of the arena, stressed flies spent only 39% of the testing time in this 

region. Finally, the SVS-protocol did not affect significantly the immobility latency and the total 

freezing time in flies (Table S2).  
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Behavioral phenotype of flies exposed to individual stressful stimuli 

Variable, mild stresses may produce more complex behavioral phenotypes than a single stressful 

stimulus (Katz et al., 1981; López-López et al., 2016; Mineur et al., 2003, 2006; Zhu et al., 2014). 

However, it is not clear which is the contribution of each individual stressful stimulus to the SVS-

mediated phenotypes reported above (Figure 2). To further characterize this protocol and understand 

the interaction between stimuli, we examined the effects of presenting each stressful stimulus 

separately. Exposure to twenty-four hours of isolation did not alter the habituation index, the total 

distance, the mean velocity, the total immobility time or the preference for the border or center of the 

arena in flies (Figure S2, Table S2). In contrast, all the other stressful stimuli presented individually 

produced a stress-depended behavioral phenotype (Figure 3). Compared to the non-stressed group, 

flies exposed to twenty minutes of heat shock covered less distance during the testing time (one-

tailed unpaired M-W; U=27, p<0.01, Figure 3A) and explored the OF with lower mean velocity 

(one-tailed unpaired M-W, U=31, p<0.01, Figure 3B). Heat shock also increased the total time of 

immobility during the OF test (one-tailed unpaired M-W; U=22, p<0.01, Figure 3C) without 

changing the preference of flies to the border of the apparatus (one-tailed unpaired M-W; U=65, 

p>0.05 Figure 3D to E). In contrast, exposure of flies to 6 hours of fasting increased the distance 

traveled (one-tailed unpaired student’s t-test; t(22)=4.06, p<0.001, Figure 3F), the mean velocity 

(one-tailed unpaired student’s t-test; t(22)=4.04, p<0.001, Figure 3G), reduced the immobility time 

(one-tailed unpaired student’s t-test; t(22)=2.58, p<0.01, Figure 3H) and increased the exploration of 

the center of arena (one-tailed unpaired student’s t-test; t(22)=3.84, p<0.001, Figure 3I to J) when 

compared with control naïve flies. Similarly, exposure to 5 min of electric shocks increased the total 

distance (one-tailed unpaired student’s t-test; t(22)=2.38, p<0.05, Figure 3K) and the mean velocity 

(one-tailed unpaired student’s t-test; t(22)=2.81, p<0.01, Figure 3L) of flies during the OF test. 

Different from fasting, electric shocks failed to affect immobility time (one-tailed unpaired student’s 

t-test; t(22)=0.31, p>0.05, Figure 3M) and border/center ratio (one-tailed unpaired student’s t-test; 

t(22)=0.28, p>0.05, Figure 3N and O). 

 

SVS attenuates the sucrose preference in adult flies 

To investigate the influence of the SVS protocol on anhedonic-like behaviors, immediately after 

the OF test, flies were exposed for 60 s to a sucrose preference test. It is well established that flies 

fed ad libitum shows no preference for sucrose respect to water in a behavioral test, whereas fasted 

flies do (Root et al., 2011). Thus, since the SVS protocol contained 6 h of fasting, we compared the 

sucrose preference of flies fed ad libitum, flies fasted for 6 h and stressed flies. As expected, 

Acc
ep

te
d 

M
an

us
cr

ipt



 

differences in the preference index between fed, fasted and stressed flies were statistically significant 

(One-way ANOVA, F(2,33)=23.87; p<0.0001). The forward post-hoc analysis revealed that fasted 

(One-way ANOVA with N-K, F(2,33)=23.87; p<0.0001) and stressed (One-way ANOVA with N-K, 

F(2,33)=23.87; p<0.05) flies exhibited a significantly higher preference for sucrose compared with 

animals fed ad libitum (Figure 4). However, the SVS protocol reduced the sucrose preference 

induced by fasting (One-way ANOVA with N-K, F(2,33)=23.87; p<0.001; Figure 4D). 

 

Acute treatment with diazepam or fluoxetine failed to counteract the hyperactivity and 

border/center preference induced by SVS in the OF 

In the last experiment, we examined whether diazepam or fluoxetine treatments counteract the 

behavioral phenotype of flies exposed to the SVS protocol. The temporal analysis of the locomotor 

behavior of flies from the minutes 2 to 10 revealed no statistical differences (K-W ANOVA test 

between flies treated with vehicle, diazepam or fluoxetine of minute 2: H(2, 36)= 3.39, p>0.05; minute 

3: H(2, 36)= 2.72, p>0.05; minute 4: H(2, 36)= 2.94, p>0.05; minute 5: H(2, 36)= 0.96, p>0.05; minute 6: 

H(2, 36)= 2.09, p>0.05; minute 7: H(2,36)= 2.64, p>0.05; minute 8: H(2, 36)= 1.17, p>0.05; minute 9: H(2, 

36)= 2.43, p>0.05; minute 10: H(2, 36)= 0.59, p>0.05; Figure 5A). However, diazepam or fluoxetine 

significantly reduced the total distance traveled during the first 60 s compared with vehicle (K-W 

ANOVA between flies treated with vehicle, diazepam or fluoxetine of minute 1: H(2, 36)= 6.38, 

p<0.05, Figure 5A). In addition, distance traveled in the last minute of the OF test was lower than 

the observed in the initial minute in flies treated with vehicle (Wilcoxon matched pairs test, t=7.00, 

p<0.05), diazepam (Wilcoxon matched pairs test, t=5.00, p<0.05) or fluoxetine (Wilcoxon matched 

pairs test, t=13.00, p<0.05). However, neither diazepam nor fluoxetine significantly altered the 

habituation index, immobility latency or the total freezing time (Table S2). In addition, total distance 

(K-W=1.66, p>0.05, Figure 5C), the mean velocity (K-W=2.66, p>0.05, Figure 5D) and total 

immobility time (One-way ANOVA, F(2,33)= 0.04; p>0.05, Figure 5E) were similar between groups. 

Finally, neither diazepam nor fluoxetine altered significantly the time expended in the periphery of 

the OF arena (K-W=0.17, p>0.05, Figure 5F).   Acc
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The treatment of flies with diazepam or fluoxetine failed to counteract the SVS-reduced 

preference for sucrose 

Finally, we asked whether treatment with diazepam or fluoxetine would reverse the low 

preference for sucrose in stressed animals. None of the pharmacological treatments reverted the 

reduced preference for sucrose induced by the SVS protocol (One-way ANOVA, F(2,33)= 0.21; 

p>0.05, Figure 6). However, as figure 6D shows, diazepam significantly changed the data 

distribution (p=0.03, Kolmogorov-Smirnov) as well as the median (U=34; p=0.02, Mann-Whitney) 

compared with vehicle. Additionally, we asked if fast-acting antidepressant drugs, such as ketamine 

(Kadriu et al., 2019, Ly et al., 2018) could reverse the locomotory alteration induced by the SVS 

protocol. However, we did not find significant differences in the total distance traveled, the velocity, 

the total immobility time, the border versus center zones permanence and sucrose preference index 

of male and female flies (Figure S6).  

 

Discussion 

Previous studies reported protocols that induce depressive and/or anxiety-like behavior in 

Drosophila (Araujo et al., 2018; Brown et al., 1996; Ries et al., 2017; Yang et al., 2013). All these 

studies required a long-time exposition and evaluated later responses of flies to stress. The protocol 

here presented includes different sources of stress, allows acquiring quick results for drug screening 

and it is easy to apply in laboratories. Moreover, the randomness order of stimuli applied between 

individuals as well as during the protocol is an important translational value that reflects the different 

types of stress present in human life and the individual variability of animal's responses to stress. 

Finally, the short duration of this protocol allows exploring mechanisms of the early response to 

stress.  

The SVS-induced hyperactivity diverges from the general inactivity reported previously in 

Drosophila (Araujo et al., 2018; Ries et al., 2017) suggesting that different mechanisms might be 

involved in this response. This interpretation is also supported by the fact that, in previous reports, 

the stress-depended phenotypes were ameliorated by increasing the serotonergic tone. In addition, 

behavioral responses of flies exposed to the variable component of the SVS protocol disagree from 

the reported in the no-idleness learning paradigm, where yoked flies reduced their locomotor activity 

instead of increasing it (Batsching et al., 2016; Yang et al., 2013). These differences in the 

behavioral response may be related to the type, duration, and level of each stress stimulus as well as 

the timing of locomotor evaluation in this study and, presumably the mechanisms involved in this 

and previous reports. Indeed, as in vertebrates, acute stress modifies the basal locomotor behavior of 
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adult flies and the dopaminergic system have been involved in these locomotor alterations (Argue 

and Neckameyer, 2013; Chadha and Cook, 2014). In agreement, some studies showed that short (1 

hour) (Katz et al., 1981) or long (between 3 to 8 weeks) (Faraji et al., 2014; Harris, 1997) exposition 

to stress induces enhanced locomotor and exploratory behavior in rats. These findings in rats support 

the interpretation that the stress-depended hyperactivity and anhedonic-like behavior reported here is 

a possible behavioral outcome, but not a specific response of invertebrates. 

Hyperlocomotion and agitation are key emotional characteristics of mania and, in some cases, of 

depressive disorders (Mineur et al., 2006; Young et al., 2011). In this regard, the hypothesis was that 

treatment with diazepam, a classical anxiolytic drug that prevents mania and anxiogenic-like 

behavior in rodents (Mohammad et al., 2016b), could be also able to revert the hyperlocomotion of 

flies (Mohammad et al., 2016a). However, in our assays diazepam only reduced the stress-

independent locomotor activity and therefore, this protocol failed to show a predictive value. The 

resistance to diazepam could be due to the short time of the treatment duration, considering the 

extensive duration of treatments required to revert the anxiogenic-like behavior in rodents 

(Mohammad et al., 2016b). Several studies have also reported that, according to the preclinical test 

used, some class of pharmacological agents such as benzodiazepines or serotonergic-related ones, 

may elicit a mild or even no response in animals (Belovicova et al., 2017; Bourin and Hascoët, 2003; 

Ennaceur and Chazot, 2016), which may be the case in this study. Besides, diazepam is a fast and 

long-lasting facilitator of the GABAergic system, which functions as a positive allosteric modulator 

of GABAA receptors via the benzodiazepine receptor (Griffin et al., 2013). The different 

pharmacological effects elicited by diazepam (anxiolytic, sedative, muscle relaxant, anticonvulsant 

and amnestic) may depend upon the sensitivity and binding in the benzodiazepine binding site of 

different types of benzodiazepine-sensitive GABAA receptors (containing α1, α2, α3 or α5 subunits) 

(Griffin et al., 2013). More importantly, different types of stressors in rodents may modulate 

different GABA receptor classes altering binding, sensitivity and response to benzodiazepines 

(Skilbeck et al., 2010) . Hence, it is also possible that the lack of response of flies to diazepam may 

be accounted by the differential modulation of GABA receptors upon SVS stress. 

Fluoxetine is one of the most potent and selective serotonin reuptake inhibitors antidepressants 

that, upon assessing of the serotonin transporter, inhibits serotonin uptake (Whentur et al., 2013). 

Specifically, it has strong affinity for 5-HT2A and 5-HT2C  receptor subtypes and quite absent 

activity at adrenergic, muscarinic, opiate, dopamine, GABA, and histamine receptors. This effect is 

followed by increases on serotonin concentration with decrease in the synthesis and release of 

serotonin in several brain regions of rodents (Whentur et al., 2013). Despite this effect occurs 

immediately, the amelioration of depressive symptoms of patients and rodent’s phenotype takes 
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more than 4 to 6 weeks (Whentur et al., 2013). In fact, we also observed a resistant-response to 

fluoxetine upon the SVS protocol, which could be also due to the insufficient time and/or dose 

required to promote antidepressive-like effects. This long-time period required for the efficacy of 

fluoxetine may involve several neural adaptations such as protein kinases modulation, production 

and release of neurotrophins, and modulation of plasma glutamate concentrations (Whentur et al., 

2013).  

The initial treatment resistance in vertebrate and invertebrates may be because initially, main 

neurochemical alterations are not monoaminergic or GABAergic. In this regard, rapid-acting 

antidepressant drugs, such as ketamine, primarily acts as antagonist of NMDA receptors (Kadriu et 

al., 2019). We tested the hypothesis that a fast-acting antidepressant could ameliorate the behavioral 

alteration induced by SVS (Kadriu et al., 2019) and we observed that, in our conditions, ketamine 

was not able to reverse these effects. 

One of the interesting findings in this study was the extended time of exploration in the center of 

the arena produced by the SVS protocol. It is well established that non-stressed flies exhibit a higher 

preference to explore the boundary of an OF (Besson and Martin, 2005; Götz and Biesinger, 1985; 

Lebreton and Martin, 2009; Soibam et al., 2012) and that this anxiogenic-like behavior can be 

reverted with diazepam (Mohammad et al., 2016a). However, the center directed locomotion induced 

by the SVS protocol was not reverted with diazepam. This behavior is also contrasting with the 

border directed locomotion of mammals exposed to stress (Harris, 1997), which has been long 

characterized as an anxiogenic trait (Treit and Fundytus, 1988; Walz et al., 2016). The behavioral 

pattern observed in this study may be explained, at least partially, by the increased velocity and 

distance traveled by stressed flies, however further studies are necessary to reveal the mechanism 

involved in this behavior. 

Another interesting behavioral observation is that, despite SVS protocol increased locomotion, 

the stresses flies showed a reduced activity at the end of the test compared with the initial activity. 

Therefore, indicating that SVS was not able to alter the habituation index in flies. 

In agreement with previous studies, this work shows that exposition of flies only to heat shock 

reduces the locomotor activity, but fasting and electric shock increases the motor behavior (Bell et 

al., 1985; Mohammad et al., 2016a; Ostrowski et al., 2018). However, this study contradicts previous 

reports which showed that isolation reduced the exploratory behavior of adult flies (Araujo et al., 

2018; Neckameyer and Nieto-Romero, 2015). Another intriguing result from this study is that the 

exposition of flies only to fasting inhibits thigmotaxis, which may be related to suppression by 

synaptic output from mushroom body neurons (Besson and Martin, 2005). Moreover, the inhibition 

of thigmotaxis induced by SVS may be explained by the fact that fasting increases exploratory and 
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food-seeking behavior (Bell et al., 1985; Chadha and Cook, 2014; Soibam et al., 2012) which, in 

turn, reduces boundary preferences in flies. Therefore, the analysis of individual stress stimulus 

revealed that fasting and electric shock could be promoting centrophilia and increased locomotion 

observed in the SVS. It remains to be determined whether a protocol combining only fasting and 

electric shock is also able to produce the same behavioral phenotype, allowing to obtain an even 

more time-efficient protocol. 

Reduced preference for palatable food, such as sucrose solutions, has been used as a preclinical 

test of anhedonia in flies (Araujo et al., 2018), a typical symptom of depression (American 

Psychiatric Association, 2013). Interestingly, the depressive-like state of stressed flies can be 

reverted by sucrose (Ries et al., 2017). In our study, the SVS protocol reduced the preference for 

sucrose if compared with fasted flies, suggesting that it precluded the food-seeking behavior induced 

by fasting. However, it is no clear from this assay if flies actually consumed sucrose. Further studies 

are required to elucidate whether the SVS-related responses in the preference test indicate an 

anhedonia-like phenotype induced by the variable stress stimuli or a methodological artifact.   

Finally, treatment with diazepam or fluoxetine of SVS-exposed flies only reduced the initial 

locomotor behavior in the OF without interfering with the later activity. This reduction may imply 

that both treatments were able to reduce the motivation of flies to explore a novel environment while 

remaining intact stress-induced behaviors.  

In conclusion, here we present a novel and time-efficient protocol of variable stress for adult 

flies. This novel protocol induces hyperlocomotion, centrophilic and anhedonic-like behavior. 

Overall, this report provides a quick protocol for preclinical test of psychopharmacological studies in 

the early response to stress, which is resistant to diazepam and fluoxetine. 
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