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ABSTRACT: The statistical thermodynamics of straight rigid
rods of length k on triangular lattices was developed on a
generalization in the spirit of the lattice-gas model and the
classical Guggenheim-DiMarzio approximation. In this
scheme, the Helmholtz free energy and its derivatives were
written in terms of the order parameter, δ, which characterizes
the nematic phase occurring in the system at intermediate
densities. Then, using the principle of minimum free energy
with δ as a parameter, the main adsorption properties were
calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the outcome
and limitations of the theoretical model.

1. INTRODUCTION

The adsorption of gases on solid surfaces is a topic of funda-
mental interest for various applications.1,2 From the theoretical
point of view, the process can be described in terms of the lattice-
gas model.3−8 A lattice gas is a system of Nmolecules bound not
more than one per site to a set of M equivalent, distinguishable,
and independent sites, and without interactions between bound
molecules. Many studies have been carried out on the adsorp-
tion behavior of small molecules in such systems. However,
the problem in which a 2D lattice contains isolated points
(vacancies) as well as k-mers (particles occupying k adjacent
sites) has not been solved in closed form and still represents a
major challenge in surface science.
A previous paper9 was devoted to the study of long straight

rigid rods adsorbed on square lattices. In ref 9, the Helmholtz free
energy of the system and its derivatives were written in terms of
the order parameter δ, which characterizes the nematic phase
occurring in the system at intermediate densities.10,11 Then,
using the principle of minimum free energy with δ as a parameter,
the main adsorption properties were calculated. Comparisons
with Monte Carlo (MC) simulations revealed that the new
thermodynamic description was significantly better than the
existing theoretical models developed to treat the polymer
adsorption problem.
In contrast to the statistic for the simple particles, where

the arrangement of the adsorption sites in space is im-
material, the structure of lattice space plays such a
fundamental role in determining the statistics of k-mers.
Then, it is of interest and of value to inquire how a specific
lattice structure influences the main thermodynamic proper-
ties of adsorbed polyatomics. In this sense, the aim of the
present work is to extend the study in ref 9 to triangular
lattices. The problem is not only of theoretical interest, but

also has practical importance. A complete summary about
adsorption on triangular lattices can be found in refs 12−15,
and references therein.
The rest of the paper is organized as follows. In Section 2,

the theoretical formalism is presented. Section 3 is devoted to
describing the Monte Carlo simulation scheme. The analysis of
the results and discussion are given in Section 4. Finally, the
conclusions are drawn in Section 5.

2. MODEL AND THEORY

In this paper, the adsorption of straight rigid rods (or k-mers)
on triangular lattices is considered. The adsorbate molecules
are assumed to be composed by k identical units in a linear
array with constant bond length equal to the lattice constant a.
The k-mers can only adsorb flat on the surface occupying k
lattice sites. The substrate is represented by a triangular lattice
of M = L × L adsorption sites, with periodic boundary
conditions. N particles are adsorbed on the substrate with 3
possible orientations along the principal axis of the array [see
Figure 1(a)]. The only interaction between different rods is
hardcore exclusion: no site can be occupied by more than one
k-mer unit. The surface coverage (or density) is defined as
θ = kN/M.
Let N1, N2, and N3 be the number of rods oriented along

directions 1, 2, and 3 on the surface, respectively. The total
number of k-mers is N = N1 + N2 + N3. According to DiMarzio’s
lattice theory,16 the number of ways Ω(N0,N1,N2,N3) to pack
the N molecules, such that Ni of them lie in the direction i and
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there are N0 =M − kΣi
3Ni empty sites on the surface, is given by

the following:
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Since different k-mers do not interact with each other,
all configurations of N k-mers on M sites are equally
probable; henceforth, the canonical partition function
Q(M,N1,N2,N3,T) equals the total number of configurations,
Ω(M,N1,N2,N3), times a Boltzmman factor including the
total interaction energy between k-mers and lattice sites,
kε0N,

β ε= Ω −

Q M N N N T

q T M N N N k N

( , , , , )

( ) ( , , , )exp( )N
1 2 3

1 2 3 o (2)

where q(T) is the partition function for a single adsorbed
molecule, β = 1 /kBT (being kB the Boltzmann constant andT the
temperature) and εo is the interaction energy between every unit
forming a k-mer and the substrate.
In the canonical ensemble, the Helmholtz free energy

F(M,N1,N2,N3,T) relates to Ω(M,N1,N2,N3) through the
following:

β
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Then, the remaining thermodynamic functions can be obtained
from the general differential form,17

μ= − − Π +dF SdT dM dN (4)

where S, Π and μ designate the entropy, spreading pressure
and chemical potential respectively which, by definition, are as
follows:
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2.1. Isotropic Distribution of Adsorbed k-mers. For the
case of an isotropic distribution of the k-mers, i.e.,N1 =N2 =N3 =
N/3, eq 1 reduces to the following:
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Applying the Stirling’s approximation to eq 6 and replacing in
eq 3, the Helmholtz free energy per site f = F/M can be written in
terms of the intensive variables θ and T,
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Then, the chemical potential and the entropy per site s = S/M result,
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where Ke(T) = q(T) exp (−βkεo) is the equilibrium constant.
2.2. Anisotropic Distribution of Adsorbed k-mers. To

introduce the effect of the orientational order in the Guggenheim-
DiMarzio (GD) theory, it is convenient to rewrite the configura-
tional factor in eq 1 in terms of the nematic order parameter δ⃗,18

δ⃗ =
∑ ⃗

∑ ⃗
=

=

N

N
i
m

i

i
m

i

1

1 (10)

δ ⃗ represents a general order parametermeasuring the orientation of
the k-mers on a lattice withm directions and the set of vectors {N⃗1,
N⃗2, ..., N⃗m} is characterized by the following properties:
(i) each vector is associated to one of the m possible orientations
(or directions) for a k-mer on the lattice; (ii) the N⃗i ’s lie in a two-
dimensional space (or are coplanar) and point radially outward
from a given point P which is defined as coordinate origin; (iii) the
angle between two consecutive vectors, N⃗i and N⃗i+1, is equal to
2π/m; and (iv) the magnitude of N⃗i is equal to the number of
k-mers aligned along the i-direction.Note that the N⃗i’s have the same
directions as the q vectors in.18 These directions are not coincident
with the allowed directions for the k-mers on the real lattice.
In the case of a triangular lattice, as studied here,m = 3, the angle

between N⃗i and N⃗i+1 is 2π/3 and eq 10 reduces to [see Figure 1(b)]:

δ⃗ =
⃗ + ⃗ + ⃗

+ +
=

⃗ + ⃗ + ⃗N N N
N N N

N N N
N

1 2 3

1 2 3

1 2 3

(11)

where |N⃗i| = Ni has been used for notational convenience.
δ ⃗ can be expressed in Cartesian form as δ ⃗ = δxx ̂+δyy,̂ where,
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Figure 1. (a) Straight rigid rods adsorbed on triangular lattices. Solid
circles (joined by thick lines) and empty circles represent tetramers
(k = 4) and empty sites, respectively. (b) Schematic representation of
the set of vectors N⃗1, N⃗2, and N⃗3 for a triangular lattice.
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Then,N1,N2, andN3 can be written as a function of δx, δy, and θ,
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Now, replacing eq 15 in the DiMarzio configurational factor eq 1

and using eq 3, the Helmholtz free energy per site can be written

as follows,
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Finally, from eq 5,

θ δ δ
δ
θ

θ δ

δ θ

∂δ
∂θ

∂δ
∂θ

θ δ

δ δ θ

∂δ
∂θ

∂δ
∂θ

θ δ δ

δ δ θ

∂δ
∂θ

θ δ
δ

θ

∂δ
∂θ

∂δ
∂θ

θ δ δ
δ δ

θ

∂δ
∂θ

∂δ
∂θ

θ δ δ
δ δ

θ

βμ = − +
∂
∂

+

× − − +

+ − + − − δ +

× − − − +

+ − − + − −

× − − − −

+ + +
+

+ + − − +
− +

+ − + − −
− −

− − θ −

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

k

k
k

k

k
k

k

k
k

k

k

k

k K T

( , , )
( 1)

3
1 2

ln 1
( 1)

3
(1 2 )

( 1)
3

1 3 3

ln 1
( 1)

3
(1 3 )

( 1)
3

1 3 3

ln 1
( 1)

3
(1 3 )

1
3

1 2 ln
(1 2 )

3

1
3

1 3 3 ln
(1 3 )

3

1
3

1 3 3 ln
(1 3 )

3

ln(1 ) ln ( )

x y
x

x

x

y x
x y

x y

y x
x y

x y

x
x

x

y x
x y

x y

y x
x y

x y

e (17)

and

θ δ δ
δ θ

δ θ

δ δ θ

δ δ θ

δ δ θ

δ δ θ

δ
θ

δ
θ

δ δ
θ

δ δ
θ

δ δ
θ

δ δ
θ

θ θ θ

= − − +

× − − +

+ − − − +

× − − − +

+ − − − −

× − − − −

−
+ +

−
− + − +

−
− − − −

− − − + +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

s

k
k

k

k
k

k
k

k
k

k
k

k
k

k k

k k

k k

k
q T T

d q T
dT

( , , )
1

( 1)
3

(1 2 )

ln 1
( 1)

3
(1 2 )

1
( 1)

3
(1 3 )

ln 1
( 1)

3
(1 3 )

1
( 1)

3
(1 3 )

ln 1
( 1)

3
(1 3 )

(1 2 )
3

ln
(1 2 )

3

(1 3 )

3
ln

(1 3 )

3

(1 3 )

3
ln

(1 3 )

3

(1 ) ln(1 ) ln ( )
ln ( )

x y
x

x

x y

x y

x y

x y

x x

x y x y

x y x y

B

(18)

It is easy to see that, as |δ ⃗| = 0, i.e., δx = 0 and δy = 0, the isotropic
case is recovered and, consequently, eqs 16 and 17 reduce to
eqs 7 and 8. In general, the calculation of the adsorption isotherm
and the configurational entropy of the adlayer requires the
knowledge of an analytical expression for the dependence of
the nematic order parameter on the coverage. For this purpose,
a free-energy-minimization approach can be applied.9 The
procedure is as follows:

(i) We choose δy = 0 and δx ≠ 0, this leaves N2 and N3 in an
isotropic state, see eq 15. We can do this without losing
any generality, since a pure nematic state is given by
molecules aligned in one direction only.19

(ii) By differentiating eq 16 (with δy = 0) with respect to δx
and setting the result equal to zero, the function δ(θ) is
obtained.

(iii) δ(θ) is introduced in eqs 17 and 18 and thus the adsorp-
tion isotherm and the configurational entropy of the
adlayer are obtained (without orientational restrictions).

The points (ii) and (iii) can be easily solved through a standard
computing procedure; in our case, we used Maple software.

3. MONTE CARLO SIMULATION
In order to test the theory, an efficient hyper-parallel tempering
Monte Carlo (HPTMC) simulation method20,21 has been used.
The HPTMCmethod consists in generating a compound system
of R noninteracting replicas of the system under study. The i-th
replica is associated with a chemical potential μi. To determine
the set of chemical potentials, {μi}, the lowest chemical potential,
μ1, is set in the isotropic phase where relaxation (correlation)
time is expected to be very short and there exists only one
minimum in the free energy space. However, the highest
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chemical potential, μR, is set in the nematic phase in whose
properties we are interested. Finally, the difference between two
consecutive chemical potentials, μi and μi+1 with μi < μi+1, is set as
Δμ = (μ1 − μR)/(R − 1) (equally spaced chemical potentials).
The parameters used in the present study were as follows: R = 25,
μ1 = −10 and μR = 10. With these values of the chemical
potential, the corresponding values of the surface coverage varied
from θ1(μ1) ≈ 2 × 10−4 to θR(μR) ≈ 0.99 for k = 2, and from
θ1(μ1) ≈ 2 × 10−3 to θR(μR) ≈ 0.96 for k = 10.
Under these conditions, the algorithm to carry out the

simulation process is built on the basis of two major subroutines:
replica-update and replica-exchange.
3.1. Replica-Update. The adsorption−desorption proce-

dure is as follows: (i) One out of R replicas is randomly selected.
(ii) A linear k-uple of nearest-neighbor sites, belonging to the
replica selected in (i), is chosen at random. Then, if the k sites
are empty, an attempt is made to deposit a rod with probability
W = min[1,exp(βμ)]; if the k sites are occupied by units
belonging to the same k-mer, an attempt is made to desorb this
k-mer with probability W = min[1,exp(βμ)]; and otherwise, the
attempt is rejected. In addition, the displacement (diffusional
relaxation) of adparticles to nearest-neighbor positions, by either
jumps along the k-mer axis or reptation by rotation around the
k-mer end, must be allowed in order to reach equilibrium in a
reasonable time.
3.2. Replica-Exchange. Exchange of two configurations Xi

and Xj, corresponding to the i-th and j-th replicas, respectively,
is tried and accepted with probability W = min[1,exp(−Δ)],
where Δ in a nonthermal grand canonical ensemble is given by
[−β(μj − μi) (Nj − Ni)], and Ni (Nj) represents the number of
particles of the i-th (j-th) replica.
The complete simulation procedure is the following: (a)

replica-update, (b) replica-exchange, and (c) repeat from step (a)
R × M times. This is the elementary step in the simulation
process or Monte Carlo step (MCs).
For each value of the chemical potential μi, the equilibrium

state can be well reproduced after discarding the first r0 MCs.
Then, a set of r samples in thermal equilibrium is generated. The
corresponding surface coverage θi(μi) is obtained through simple
averages over the r samples (r MCs).

∑θ μ θ=
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X t( )
1

[ ( )]i i
t

r

i
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In the last equation, Xi stands for the state of the i-th replica
(at chemical potential μi).
The configurational entropy S of the adsorbate cannot be

directly computed. To calculate entropy, various methods have
been developed.22 Among them, the thermodynamic integration
method is one of the most widely used and practically applicable.
The method in the grand canonical ensemble relies upon
integration of the chemical potential μ on coverage along a
reversible path between an arbitrary reference state and the
desired state of the system. This calculation also requires the
knowledge of the total energy U for each obtained coverage.
Thus, for a system made of N particles on M lattice sites,
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In the present case U(N,M,T) = 0 and the determination of the
reference state, S(N0,M,T), is trivial because S(N0,M,T) = 0 for
N0 = 0. Then, using intensive variables,
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k k T k
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4. RESULTS
In this section, the main characteristics of the thermodynamic
functions given in eqs 17 and 18 will be analyzed in comparison
with simulation results, and the main theoretical models
developed to treat the k-mers adsorption problem. Three theories
have been considered: the first is the well-known Flory−Huggins
(FH) approximation for straight rigid rods;23,24 the second is the
GD approach for an isotropic distribution of admolecules;16,25

and the third is the recently developed semiempirical (SE) model
for the adsorption of polyatomics.26,27

The equations of the GD adsorption isotherm and the GD
configurational entropy for an isotropic distribution of adsorbed
rods were given in eqs 8 and 9, respectively. The corresponding
expressions in the FH and SE theories are as follows:
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The computational simulations have been developed for
triangular L × L lattices with L/k = 20 and periodic boundary
conditions. With this size of the lattice, we verified that finite size
effects are negligible. As mentioned in ref 10, the relaxation time
increases very quickly as the k-mer size increases. Consequently,
MC simulations for large adsorbates are very time-consuming
and may produce artifacts related to nonaccurate equilibrium
states. In order to discard this possibility, equilibration times r0 of
the order O(107 MCs) were used in this study.
An extensive comparison among the new adsorption isotherm

[eq 17, solid line], the simulation data (symbols), and the
isotherm equations obtained from the analytical approaches
depicted as GD [eq 8, dashed line], FH [eq 22, dashed and
dotted line], and SE [eq 23, dotted line] is shown in Figure 2: (a)
k = 3, (b) k = 8, and (c) k = 10. In the case of eq 17, δ(θ) was
obtained by following the minimization procedure described at
the end of Section II. In addition, q(T) is set equal to one in the
theoretical equations (vibrational and rotational degrees of

freedom of the adsorbed molecules are not considered in the
simulations).
In part (a), the behavior of the different approaches can be

explained as follows. The new theory and GD agree very well
with the simulation results for coverage values of up to θ ≈ 0.8;
however, the disagreement between theoretical and simulation
data increases for larger θ values. The coincidence between the
new theory and GD results is due to the fact that, for small values
of k (k < 4), the function δ(θ) minimizing the free energy is
δ(θ) = 0 and, under this condition, eqs 17 and 8 become
identical. However, SE provides a good approximation with very
small differences between simulation and theoretical results in all
ranges of coverage.
Let us consider now the case of k = 8 [Figure 2(b)]. The

agreement between simulation and analytical data is very good
for small values of coverage. However, as the surface coverage is
increased, two different behaviors are observed. Although SE and
the new theory provide good results, the classical FH and GD

Figure 2. Adsorption isotherms for rigid k-mers on a triangular lattice: (a) k = 3, (b) k = 8, and (c) k = 10. Symbols represent the MC results, and lines
correspond to different theoretical approaches, as indicated in part (a). The corresponding order parameters, obtained from the minimization of the free
energy in eq 16, are shown in the insets. (d) Average percent error in the chemical potential, εμ, as a function of k for the different approximations studied
in this contribution.
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approximations fail to reproduce the simulation data. The
differences between GD and the theory in eq 17 are associated
with the behavior of the order parameter δ(θ), which is shown in
the inset of the figure. The functionality of δ with coverage is
indicative of the existence of nematic order for θ > 0.4. Even
though this result is not exact, the inclusion of δ(θ) in eq 17 leads
to an extremely good approximation of the adsorption isotherm.
Themarked jump observed in the curve of the order parameter

of a function of the coverage [see inset of Figure 2(b)] is
indicative of the existence of a first-order phase transition in
the adlayer. This behavior differs from that obtained for square
lattices,9 where the continuous variation of the order parameter
with density clearly indicates the presence of a second-order
phase transition in the adsorbed layer. This point is extensively
discussed in the recent paper.28

Figure 2(c) is devoted to the analysis of large adsorbates
(k = 10, in the case of the figure). The results are very clear:
(1) FH and GD predict a smaller θ than the simulation data
over the entire range of coverage; (2) SE agrees very well with the
simulation results for small and high values of the coverage;
however, the disagreement turns out to be significantly large in
a wide range of coverage (0.3 < θ < 0.9); and (3) in the case of the
new isotherm, the results are excellent and represent a significant
advance with respect to the existing development of k-mer
thermodynamics.

In order to compute the accuracy of each theory, the
differences between theoretical and simulation data can be very
easily rationalized by using the average percent error in the
chemical potential εμ, which is defined as follows:

∑ε
μ μ

μ
=

−
×μ

θ θ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟N

1
100%sim appr

sim (26)

where μsim (μappr) represents the value of the chemical potential
obtained by using theMC simulation (analytical approach). Each
pair of values (μsim,μappr) is obtained at fixed θ. The sum runs over
the N points of the simulation adsorption isotherm (in this case,
N = 25 for all k).
The dependence of εμ on the k-mer size is shown in Figure 2(d)

for the different theoretical approximations. Several conclusions
can be drawn from the figure:

• In the FH and GD cases, εμ increases monotonically
with increasing k and the disagreement between MC and
analytical data turns out to be very large (larger than 5%)
for k ≥ 5 and k ≥ 6, respectively.

• For the SE theory, there exists a range of k (2 ≤ k ≤ 7)
where εμ remains almost constant around 1.5% and SE
provides a very good fitting of the simulation data.
However, for k ≥ 8, the differences between simulation
and theoretical data increase with k. This deviation is

Figure 3. Same as Figure 2 for the configurational entropy of the adlayer.
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associated with the appearance of an I−N phase transition
in the adlayer for k > 7,11 which is not covered by the SE
theory.

• The agreement between the equation reported here
[eq 17] and the simulation data is excellent over the whole
coverage range. This result provides valuable insight into
how the adsorption process takes place. Namely, for
k ≥ 7 and intermediate densities, it is more favorable for
the rods to align spontaneously because the resulting loss
of orientational entropy is compensated for by the gain of
translational entropy.

• The comparison with previous results obtained for square
lattices9 reveals that, for a fixed value of k, (i) εμ increases
with the connectivity for FH and GD theories, and (ii) in
the case of SE approach and the new eq 17, εμ does not
change significantly as the lattice geometry is varied.

The differences between the approaches analyzed in this work
can be also appreciated by comparing the coverage dependence
of the configurational entropy per site, which is presented in
Figure 3 for the same cases studied in Figure 2. and triangular
lattices, respectively. The overall behavior of s(θ) can be
summarized as follows: for θ → 0 the entropy tends to zero.
For low coverage, s(θ) is an increasing function of θ, reaches
a maximum at θm, then decreases monotonically for θ > θm. The
position of θm shifts to higher coverage as the k-mer size is
increased. In the limit θ→ 1, the entropy tends to a finite value,
which is associated with the different ways to arrange the k-mers
at full coverage. This value depends on k.
As in Figure 2, GD and FH appear as good approximations

in the low-surface coverage region, but the disagreement turns
out to be significantly large for s(θm) and s(θ = 1). However, SE
shows a good agreement with MC simulations up to adsor-
bate sizes of k ≈ 8. Finally, in the case of eq 18, the agreement
is notable for all θ, reproducing the MC results for s(θm) and
s(θ = 1).
As in the case of the chemical potential, an average percent

error (εs) was calculated for the difference between simulation
and theoretical predictions. In this case,

∑ε =
−

×
θ θ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟N

S S

S
1

100%s
sim appr

sim (27)

where ssim (sappr) represents the value of the configurational
entropy per site obtained by using the MC simulation (analytical
approach). As in eq 26, each pair of values (ssim,sappr) is obtained
at fixed θ and N = 25.
The behavior of εs is similar to that observed in Figure 2(d).

However, two main differences can be marked: first, FH performs
better than GD for all values of k, and second, the differences
between SE and eq 26 are more notorious, with eq 26 being the
most accurate for all cases.
Finally, analysis of experimental results have been carried out

in order to test the applicability of the model proposed here. For
this purpose, experimental adsorption isotherms of n-hexane in
5A zeolites, previously compiled by Silva and Rodrigues,29 were
analyzed in terms of eq 17. Given that the experimental data were
reported in adsorbed amount (g/100 g adsorbed) as a function
of pressure, the theoretical isotherms were rewritten in terms of
the pressure p and the adsorbed amount Q as fitting quantities.
Thus, assuming that the adsorbed phase is in equilibrium with
a ideal gas phase, the pressure p can be written as p ∝ exp(βμ) .
In addition, θ = Q/Qmax, where Qmax represents the maximum

adsorbed amount. This choice allows us a direct comparison of
eq 17 with the results obtained in ref 29.
As is common in the literature,30,31 a “bead segment” chain

model of the molecules was adopted, in which each methyl
(bead) group occupies one adsorption site on the surface. Under
this consideration, k = 6 is set in the fitting data corresponding to
C6. In this scheme, a set of isotherms of n-hexane in 5A zeolites
for different temperatures were correlated by using only one
value of Qmax and a temperature dependent Ke(T) as adjustable
parameters. The results are presented in Figure 4 and the fitting

parameters are listed in Table 1. A very good agreement between
experimental and theoretical data is observed. In addition, the
value obtained for the saturation adsorbed amountQmax = 12.1 is
consistent with previous results reported in refs 30,32.
In summary, the analysis presented in Figures 2−4 demo-

nstrates that (i) explicitly considering the isotropic and nematic
states occurring in the adlayer at different densities is crucial
to understanding the adsorption process of rigid rods, and (ii)
eqs 16 and 17 provide a very good theoretical framework and
compact equations to consistently interpret thermodynamic
adsorption experiments of polyatomic species.

5. CONCLUSIONS
The adsorption process of straight rigid rods of length k on
triangular lattices has been studied via grand canonical Monte
Carlo simulations, theory and analysis of experimental data. The
proposed theoretical formalism, based on a generalization of
the GD statistics, is capable of including the effects of the I−N
phase transition occurring at intermediate densities on the thermo-
dynamic functions of the system.

Figure 4.Comparison between experimental and theoretical adsorption
isotherms (adsorbed amount Q vs pressure p) for C6H14 adsorbed in 5A
zeolite. Symbols represent experimental data from ref 32 and lines
correspond to results from eq 17. The parameters used in the fitting
procedure are listed in Table 1.

Table 1. Parameters Used in the Fitting of Figure 4

T (K) Qmax (g/100 gads) Ke (bar
−1)

473 12.1 0.109
523 12.1 0.402
573 12.1 1.597
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The results obtained (i) represent a significant qualitative advance
with respect to former developments on k-mer thermodynamics;
(ii) demonstrates that explicitly considering the isotropic and
nematic states occurring in the adlayer at different densities is crucial
to understanding the adsorption process of rigid rods; and (iii)
provide a very good theoretical framework and compact equations
to consistently interpret thermodynamic adsorption experiments of
polyatomic species.
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