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Abstract

Verlinde has recently conjectured, via a Beckenstein-like thought ex-
periment, that gravitation, instead of being an elementary force, is
an emergent entropic one. This rather surprising conjecture was ac-
tually proved in [Physica A 505 (2018) 190], in a strictly classical
statistical mechanics’ environment. In this Communication, we work
in a quantum statistical context to consider the conjecture in the case
of bosons/fermions, in a Tsallis’ framework. We prove that Tsallis’
entropy is the operating potential energy in this quantum treatment,
something that does not happen in the case of Boltzmann-Gibbs’ en-
tropy. In the classical limit, we show that the emergent force has a
Newtonian dependence with the distance.

Keywords Gravitation, bosons, fermions, entropic force, emergent
force, Verlide’s conjecture.
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1 Introduction

In 2011, Verlinde [1] conjectured a link between gravity and an entropic
force. Such conjecture was proved correct recently citep1, in a phase-space,
statistical mechanics’ context.

Here we will confront two viewpoints

• Verlinde’s elegant thought experiment, based in black-hole related as-
sumptions, that leads to a Newtonian r−2 radial dependence for the
entropic force, with

• A quantum statistical mechanics treatment of a Fermi (Bose) gas that,
in its classical limit, leads to the same radial dependence.

Verlinde suggests in his thought experiment that gravitation should emerge as
a result of information about the positions of material particles, connecting
a gravity’s thermal treatment to ’t Hooft’s holographic principle. Accord-
ingly, gravitation is to be regarded as an emergent phenomenon. The idea
generated immense attention. See for instance [3, 4]. A very nice overview
regarding the statistical mechanics of gravitation is to be encountered in
Padmanabhan’s work [5], and references therein.

This conjecture originated works in cosmology, the dark energy hypothesis,
cosmological acceleration, cosmological inflation, and loop quantum gravity.
The associated literature is extensive [4]. A relevant input is due to Guseo
[6], who demonstrated that the local entropy function, related to a logistic
distribution, is a catenary and vice versa, an invariance interpreted through
Verlindes conjecture regarding gravity as an entropic force. [6] puts forward
a new interpretation of the local entropy in a system.

This paper does not deal with any of these issues, though. Considering that
we proved Verlinde’s conjecture in a classical context [2], we wish here to con-
tinue a discussion initiated in [7] with regards to the quantal bosons/fermions
scenario. In [7] we used Boltzmann-Gibbs (BG) entropy. Here we wish to
undertake a Tsallis-treatment. Why? Because distinctive advantages will
be accrued in this way. It turns out that Tsallis entropy is a potential for
the entropic force for q = 4/3 (see proof in [2] and also in the Appendix),
which is not the BG case. This makes Tsallis’ entropy the natural informa-
tion measure to link to gravitation. This should be natural enough, since it
is well known that BG is the natural entropy for systems with short-range
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interaction, while Tsallis’ is the one appropriate to long-range interactions
[8].

We base our considerations on Chapters 6 and 7 of [9], to which the reader is
referred for details. Only the microcanonical ensemble is used in this book,
and thus here. It is assumed that each fermion or boson possesses an average
energy E/N . Such average energy approximation produces results that, while
approximate, describe important features of the ideal Fermi (Bose) gas [9].
In fact, most of the book is devoted to this excellent approximation, that
allows one to appeal to the micro-canonical ensemble. This entails that the
entropy is the logarithm of the multiplicity Ω, according to the celebrated
Boltzmann-formula.

1.1 Our goal

The present effort intends to contribute to the current debate/discussion
regarding Verlinde’s proposal, based on a thought-experiment, for an alter-
native (entropic) interpretation of gravity. A theory of quantum gravitation
does not yet exist. What do we want to achieve here then? We can not
expect to obtain en emerging entropic force that will yield classical gravi-
tation in the quantum domain. What we wish to ascertain is whether the
classical limit of our quantum statistical mechanics’ Verlinde-treatment does
yield Newton’s gravitation in such limit. We will prove that such is the case.
Thus, we contrast Verlinde’s thought experiment with a rigorous statistical
mechanics’ argumentation. Such is the logic of the present effort.

2 Entropic force for bosons in the microcanon-

ical ensemble

2.1 Quantum entropic force

We start by reminding the reader of the q-logarithm notion, defined according
to [8] as

lnq x =
x1−q − 1

1− q
. (2.1)

Tsallis entropy is defined. for a given set of micro-states labeled by i, whose
probability is Pi, as [8]
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Sq = −
∑

i

P q
i lnq Pi, (2.2)

with q any real number. An important portion of the immense Tsallis’ lit-
erature [8] is devoted to ascertaining which is the appropriate value of q
in variegated scenarios. In our present environment we will see below that
q = 4/3.

We will use it to compute the multiplicity Ω for a Bose gas in the micro-
canonical ensemble following Boltzmann’s logarithmic prescription in a Tsallis-
environment. Following [9], in a system of free bosons for which the number
of accessible single-particle states is given by n, Ω can be thought of as the
number of ways of distributing N particles and n−1 ”partitions” separating
them [9]. It then reads [9]

Ω(E, V,N) =
(N + n− 1)!

N !(n− 1)!
=

Γ(N + n)

Γ(N + 1)Γ(n)
, (2.3)

where the energy E, the volume V , and the number of bosons N are the
extensive variables of the problem at hand. In terms of these variables one
has [9]

N

n
=

N

V

(

N

E

)
3
2
(

3h2

4πem

)
3
2

, (2.4)

an important relation that we will often employ below. m stands for the gas’
particles’ mass. e is Euler’s number, and h Planck’s constant. The classical
limit is attained for N/n ≪ 1 [9]. Remember also that the Γ function for
large values of z can be approximated by

Γ(z) ≈
√
2πzz−

1
2 e−z, (2.5)

which we can use for N >> 1, n >> 1 to obtain

Ω(E, V,N) ≈ (N + n)N+n

√
2πNNnn

, (2.6)

so that the micro-canonical Tsallis’ entropy becomes (kB is Boltzmann’s con-
stant)

Sq = NkB lnq Ω(E, V,N)
1
N (2.7)
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For q → 1 one has

S = NkB ln Ω(E, V,N)
1
N = kB ln Ω(E, V,N). (2.8)

Thus, for q → 1 Tsallis’s microcanonical entropy in terms of the multiplicity
becomes Boltzmann’s celebrated one.
Now, it was seen in [2] that the gravitational interaction can be extracted,
out of the infinite family of different Tsallis’ entropies associated to all possi-
ble q−values, only for q = 4

3
. For other q−values the gradient of Sq becomes

proportional to 1/rν with ν 6= 2 [2]. See Appendix for details. Thus, we are
heuristically forced to select q = 4/3. Note that, for each value of q, Tsallis
has introduced a different statistical mechanics. For example, for q = 1 we
obtain the orthodox statistical mechanics of Boltzmann-Gibbs. What Tsallis
did it is not to define just a new (single) realization of statistical mechan-
ics, but a new infinite set of different statistical mechanics’ realizations [8].
Accordingly,

S 4
3
= 3NkB(1− Ω−

1
3N ), (2.9)

and using again (2.4) we write

n = V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

. (2.10)

It is important to realize that here we find that

n ∝ V. (2.11)

It is seen possible at this point to cast Ω in the fashion

Ω =
eγ√
2πNN

, (2.12)

with

γ =

[

N + V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

ln

[

N + V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

−

[

V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

ln

[

V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

, (2.13)

or
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γ = (N + n) ln (N + n)− n lnn. (2.14)

The entropy’s gradient becomes then

~∇S 4
3
= kBΩ

−
1

3N ~∇γ (2.15)

Now, since V = 4

3
πr3 this entails

∂S 4
3

∂r
= kBΩ

−
1

3N
∂γ

∂r
, (2.16)

since S 4
3
depends just upon r. Thus,

∂S 4
3

∂r
= kB4πr

2Ω−
1

3N
∂γ

∂V
. (2.17)

Taking into account that

∂γ

∂V
=

(

E

N

)
3
2
(

4πem

3h2

)
3
2

{

ln

[

N + V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

−

ln

[

V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]}

, (2.18)

and remembering Verlinde’s definition for the entropic force [1] we find

~Fe = −λkBT ~∇S 4
3
, (2.19)

or the nice result

Fe = −λkBT
∂S 4

3

∂r
, (2.20)

that by appeal to (2.18) yields

Fe = −λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

{

ln

[

N + V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

−

ln

[

V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]}

, (2.21)
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or

Fe = −λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

{

ln

[

N +
4πr3

3

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

−

ln

[

4πr3

3

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]}

, (2.22)

that can also be cast as

Fe = −λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

ln

[

1 +
N

V

(

N

E

)
3
2
(

3h2

4πem

)
3
2

]

.

(2.23)
Note that Fe does not diverge at the origin but vanishes there. However,
this happens at distances to the origin of the order of one hundredth of the
Planck-length. No practical consequences can be detected, though. Minding
(2.4) we also have

Fe = −λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

ln [1 +N/n] . (2.24)

Notice also that the entropic force vanishes at zero temperature and diverges
when T → ∞. This putatively happened at the Big-Bang. There we have
r = 0 as well, so that the behavior of Fe is complicated. However, this does
not matter because at these limits quantum gravity, unknown today, reigns.

A word of caution is necessary here. Since a theory of quantum gravity does
not exist yet, we must not naively think that these equations for Fe can be
taken at face value. What is really of interest here is just the classical limit
of Fe, that we are going to discuss below.

2.2 Bose’s entropic force in the classical limit N/n ≪ 1

The idea is to judiciously employ (2.23) and (2.24) in this limit. From (2.4),

i.e., N
n
= N

V

(

N
E

)
3
2

(

3h2

4πem

)
3
2
, plus V = 4πr3/3, one sees that

N/n ≪ 1 → r >> 1. (2.25)

From (2.4) we also ascertain that we can replace the logarithm by its argu-
ment minus unity in (2.24), that then becomes
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Fe = −λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

[

N

V

(

N

E

)
3
2
(

3h2

4πem

)
3
2

]

(2.26)

and

Fe = −λ

β
4πr2Ω−

1
3N

N

V
. (2.27)

Now, according to (2.11) we have n ∝ V and (2.6) entails that in our limit
we have

Ω ∝ V N . (2.28)

. Thus,
Ω−

1
3N ∝ (1/V 1/3), (2.29)

. so that Fe becomes
Fe ∝ −r2, (2.30)

where the proportionality constant is assumed to include Newton’s gravi-
tation constant G. This proves (in statistical mechanics’ fashion), for free
bosons, Verlinde’s second conjecture: in the classical limit, the corresponding
entropic force decreases as 1/r2, like Newton’s gravitation [2]. This depen-
dence of Fe with r is all what Verlinde actually proved in [1], in a Beckenstein-
like thought-experiment. There he assumes the number of bits N contained
in an appropriate Beckenstein enfolding screen can be cast as N = Ac3/G~,
with A the screen’s area. Actually, this is, a priori, Verlinde’s definition of
G, that later will turn out to be gravitation’s constant. Summing up, neither
in Verlinde’s derivation nor in ours we see G emerging from first principles.
It is introduced in an ad hoc fashion, ”by hand”.

3 Entropic force for fermions

3.1 Quantum entropic force for fermions

Here we deal with N fermions and n micro-states that can be occupied by
just one fermion. We have a multiplicity Ω given by [9]

Ω =
n!

(n−N)!N !
=

Γ(n+ 1)

Γ(n−N + 1)Γ(N + 1)
. (3.1)
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For N >> 1 and n >> 1 one is allowed to write

Ω =
e√
2π

(n + 1)n+1

(n−N + 1)n−N+1(N + 1)N+1
, (3.2)

that can be recast as

Ω =
e√
2π

eγ, (3.3)

where γ is

γ = (n+1) ln(n+1)+ (N −n− 1) ln(n+1−N)− (N +1) ln(N +1). (3.4)

The derivative of γ with respect to V is

∂γ

∂V
=

(

E

N

)
3
2
(

4πem

3h2

)
3
2

{

ln

[

1 + V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

−

ln

[

1 + V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

−N

]}

. (3.5)

Retracing now here the boson-steps of the preceding Section we find

Fe = −λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

{

ln

[

1 + V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

−

ln

[

1 + V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

−N

]}

. (3.6)

Comparing (2.23) for bosons with (3.6) for fermions we see that they are not
identical This does not matter, though, since a theory of quantum gravity
is not available yet and we should not take the above cited equations at
face value. What matters are their classical limits and they do coincide, of
course.Finally, we can also cast (3.6) as

Fe = −λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

{

ln

[

1 +
4πr3

3

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

−
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ln

[

1 +
4πr3

3

(

E

N

)
3
2
(

4πem

3h2

)
3
2

−N

]}

. (3.7)

Notice that one has, according to the last equation,

1 +
4πr3

3

(

E

N

)
3
2
(

4πem

3h2

)
3
2

−N > 0, (3.8)

so that there is a lower bound for r since Eq. (3.8) entails

r >

[

3(N − 1)

4π

]
1
3
(

N

E

)
1
2
(

3h2

4πem

)
1
2

. (3.9)

Selecting m = uranium’s mass, N=500, v = 0.1c (c=speed of light) we ob-
tain: r = 2.410−21m. This might perhaps suggest a kind of space-quantization?.
Notice also that the entropic force vanishes at zero temperature. if we select
λ independent of T .

3.2 Entropic force in the classical limit N/n ≪ 1

First of all we realize that (2.25) holds in this situation too. We approximate
things now for the classical limit, starting with (3.7), in the fashion

Fe = −λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

{

ln

[

V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

]

−

ln

[

V

(

E

N

)
3
2
(

4πem

3h2

)
3
2

−N

]}

, (3.10)

or

Fe =
λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

ln

[

1− N

V

(

N

E

)
3
2
(

3h2

4πem

)
3
2

]

,

(3.11)
that also reads

Fe =
λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

ln [1−N/n]. (3.12)
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Expanding now the logarithm we arrive at

Fe =
λ

β
4πr2Ω−

1
3N

(

E

N

)
3
2
(

4πem

3h2

)
3
2

[

−N

V

(

N

E

)
3
2
(

3h2

4πem

)
3
2

]

, (3.13)

or, for the entropic force in the classical limit (CL)

Fe(CL) = −(N/V )
λ

β
4πr2Ω−

1
3N . (3.14)

It is of the essence now to ascertain the behavior of Ω in the classical limit.
Thus, we focus attention upon γ. For this, we go back to (2.14) at this point
and realize, that in the classical limit, it reduces to

γ ≈ N ln (n). (3.15)

Thus, according to (3.3),

Ω ∝ exp γ = nN . (3.16)

Further, we have

n ∝ V (3.17)

, so that
Ω ∝ V N . (3.18)

Accordingly

Ω−
1

3N ∝ V −
1
3 , (3.19)

which finally yields, for the entropic force in the classical limit

Fe ∝ − 1

r2
. (3.20)

We have encountered a similar expression for the emergent entropic force in
the classical limit similar to that obtained for bosons.
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4 Conclusions

Verlinde conjectured in 2011 that gravitation, instead of being an elementary
force, is an emergent entropic one. This rather surprising conjecture had 3280
downloads and 717 cites in ArXiv! In a phase-space classical context it was
actually proved true in [2].

Here we asked for its workings in a quantum scenario and it was proved
again, this time in the classical limit of the quantum treatment. The relevant
question is now: what kind of entropy yields gravitation as an entropic force?

We responded in this work that such an entropy is Tsallis’ one for q = 4/3
(an heuristically choice of q), both for fermions and for bosons.

Remark that, for fermions, we have found a lower bound for the distance to
the origin r.
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A Appendix

Tsallis’ q-entropy of the free particle

Tsallis’ q-partition function for a free particle of mass m in ν dimensions
reads [8]

Zν = Vν

∫
[

1 + (1− q)β
p2

2m

]
1

q−1

+

dνp, (A.1)

with the particle probability distribution ξ(p) being

ξ =
1

Zν

[

1 + (1− q)β
p2

2m

]
1

q−1

+

, (A.2)

where Vν is the volume of an hypersphere in ν dimensions and we assume
q > 1. (A.1) can be recast as

Zν =
2π

ν
2

Γ
(

ν
2

)Vν

∞
∫

0

[

1 + (1− q)β
p2

2m

]
1

q−1

+

pν−1dp. (A.3)

With the change of variables x2 = p2

2m
one has

Zν =
(2mπ)

ν
2

Γ
(

ν
2

) Vν

1
(q−1)β
∫

0

[1 + (1− q)βx]
1

q−1 x
ν
2
−1dx, (A.4)

that after integration becomes

Zν = Vν

[

(2mπ)

(q − 1)β

]
ν
2 Γ

(

q
q−1

)

Γ
(

q
q−1

+ ν
2

) . (A.5)

The mean energy is

< Uν >=
Vν

Zν

∫
[

1 + (1− q)β
p2

2m

]
1

q−1

+

p2

2m
dνp, (A.6)

or

< Uν >=
Vν

Zν

(2mπ)
ν
2

Γ
(

ν
2

)

1
(q−1)β
∫

0

[1 + (1− q)βx]
1

q−1 x
ν
2 dx, (A.7)
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so that after integration we find

< U >ν=
ν

2(q − 1)β

Γ
(

1

q−1
+ ν

2
+ 1

)

Γ
(

1

q−1
+ ν

2
+ 2

) , (A.8)

and finally

< U >ν=
ν

[2q + ν(q − 1)]β
. (A.9)

For the entropy one has [8]

Sν = lnq Zν + Z1−q
ν β < U >ν . (A.10)

The Tsallis entropic force

We specialize things now to ν = 3 and q = 4

3
. Why do we select this special

value q = 4

3
? There is a solid reason. This is because

Sν = lnq Zν + Z1−q
ν β < U >ν .

Since the entropic force is to be defined as proportional to the gradient of S,
there is a unique q-value for which the dependence on r of the entropic force
is ∼ r−2 when ν = 3. Thus we obtain, for q = 4/3,

Z =

(

6mπ

β

)
3
2 8π

Γ
(

11

2

)r3, (A.11)

< U >=
9

11β
. (A.12)

Following Verlinde [1] we define the entropic force as

~Fe = −λ(m,M)

β
~∇S, (A.13)

where λ is a numerical parameter depending on the masses involved, m and
a new one M that we place at the center of the sphere. Thus,

~Fe = −24

11

[

Γ
(

11

1

)

8π

]
1
3 (

kBT

6mπ

)
1
2 λ(m,M)

r2
~er, (A.14)
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where ~er is the radial unit vector. We see that Fe acquires an appearance
quite similar to that of Newton’s gravitation, as conjectured by Verlinde en
[1]. Note that entropic force vanishes at zero temperature, in agreement with
Thermodynamics’ third law.
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