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Abstract 

Adhesion to host cells is the first step in the virulence cycle of any pathogen. In 

Gram-negative bacteria, adhesion is mediated, amongst other virulence factors 

such as the lipopolysaccharides, by specific outer-membrane proteins 

generally termed adhesins that belong to a wide variety of families and have 

different evolutionary origins. In Brucella, a widespread zoonotic pathogen of 

animal and human health concern, adhesion is central as it may determine the 

intracellular fate of the bacterium, an essential stage in its pathogenesis. In the 

present paper we further characterized a genomic locus that we have 

previously reported encodes an adhesin (BigA) with a bacterial 

immunoglobulin-like domain (BIg-like). We found that this region encodes a 

second adhesin, which we have named BigB; and PalA, a periplasmic protein 

necessary for the proper display in the outer membrane of BigA and BigB. 

Deletion of bigB or palA diminishes the adhesion of the bacterium and 

overexpression of BigB dramatically increases it. Incubation of cells with the 

recombinant BIg-like domain of BigB induced important cytoskeletal 

rearrangements and affected the focal adhesion sites indicating that the 

adhesin targets cell-cell or cell-matrix proteins. We additionally show that PalA 

has a periplasmic localization and is completely necessary for the proper 

display of BigA and BigB, probably avoiding their aggregation and facilitating 

their transport to the outer membrane. Our results indicate that this genomic 

island is entirely devoted to the adhesion of Brucella to host cells. 
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Introduction 

Adhesion to either specific tissues or target host cells is the first step in the 

virulence cycle of almost all pathogenic bacteria. This process is central, as it 

may determine specific replicative niches, tissue tropism as well as the outcome 

of the immune response, impacting on the efficiency of the infection. Bacterial 

adhesion is mediated by dedicated outer membrane molecules that target 

specific proteins or glycolipids on the surface of the host cells, promoting 

attachment and, eventually, invasion if the pathogen has an intracellular life 

cycle. Bacterial adhesins exhibit high selectivity for target molecules, 

recognizing molecular motifs with a high degree of specificity comparable to 

enzymes and immunoglobulins (Klemm & Schembri, 2000). There are many 

different families of adhesins that vary depending on the Gram nature of the 

bacteria, the host cell as well as the virulence cycle of the pathogen. They play 

pleiotropic roles, enhance competition with other bacteria and find their niche 

within the host, facilitating the establishment of pathogenesis and modulating 

the alterations of the cellular functions (Patel, Mathivanan, & Goyal, 2017). 

Adhesins are responsible for pathogen persistence causing, amongst other 

symptoms, tissue inflammation in the host. Gut mucosa, lungs and bladder are 

some examples of inflammation mediated by adhesin immune activation 

(Conover et al., 2016; Mil-Homens, Pinto, Matos, Arraiano, & Fialho, 2017; 

Moore, Boren, & Solnick, 2011; Palmela et al., 2018). The cytoskeleton is 

intrinsically involved in inflammation and its plasticity is an important component 
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of host cells. Cytoskeleton is exploited by pathogens by either triggering actin 

rearrangements that can cause cell invasion that lead to their own phagocytosis 

or by zippering, where invasion occurs first by a direct contact between the 

adhesin and its ligand which activates cytoskeletal components that culminate 

in the closure of the phagocytic cup and bacterial internalization (Cossart & 

Sansonetti, 2004; Patel et al., 2017; Pizarro-Cerda & Cossart, 2006).  

Many secretion mechanisms for different adhesins in a wide variety of bacteria 

have been described depending on their Gram classification. In Gram negative 

bacteria, one of the most studied mechanisms is the chaperone-usher assisted 

surface display of PapD and FimC in E. coli, consisting of an assembly platform 

or usher and a periplasmic chaperone, which complexes with the future adhesin 

avoiding proteolytic degradation and premature polymerization (Jones et al., 

1993). 

Brucellaceae are Gram-negative zoonotic intracellular pathogens of veterinary 

and human health importance that cause important economical losses and 

sanitary problems, particularly in endemic regions (Byndloss & Tsolis, 2016; 

Corbel, 1997). Although their virulence is completely dependent on the capacity 

of the bacteria to replicate intracellularly to reach their niche (Byndloss & Tsolis, 

2016; O'Callaghan et al., 1999; Sieira, Comerci, Sanchez, & Ugalde, 2000; R. 

A. Ugalde, 1999), adhesion to specific tissues is a central step in the 

pathogenesis of the bacterium that allow Brucella to invade professional and 

non-professional phagocytes (Detilleux, Deyoe, & Cheville, 1990; Pizarro-
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Cerda et al., 1998). Several adhesins that target different host cell proteins have 

been identified in Brucella (Castaneda-Roldan et al., 2006; Posadas, Ruiz-

Ranwez, Bonomi, Martin, & Zorreguieta, 2012; Ruiz-Ranwez, Posadas, Estein, 

et al., 2013; Ruiz-Ranwez, Posadas, Van der Henst, et al., 2013). 

 Our laboratory has identified a genomic region, named Bab1_2009-

Bab1_2012 gene cluster, unique to Brucella that is involved in the adhesion 

and invasion to host cells and important in the oral route of infection (Czibener 

& Ugalde, 2012). This region, with horizontally transmitted features, encodes 

four open reading frames present only in the genus Brucella and with no 

detectable homology with known proteins. Further analysis of this region 

determined that it encodes a powerful adhesin (BigA) with a bacterial 

immunoglobulin-like (Big-like) domain that targets the bacteria to the cell-cell 

junction membrane in polarized cells promoting the adhesion and invasion of 

epithelial cells through cytoskeleton modifications (Czibener et al., 2016).  

In the present study we provide new insight into the importance of the 

Bab1_2009-Bab1_2012 genomic cluster in adhesion, characterizing two new 

proteins that belong to this island. One of them is a novel adhesin, which has a 

BIg-like domain, similar to the one present in BigA. Moreover, our results 

demonstrate that another gene of this region, with no apparent homology or 

conserved domains has a major role in the correct localization of these 

adhesins in the outer membrane of Brucella. Our results indicate that the 
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Bab1_2009-Bab1_2012 gene cluster plays a central role in the adhesion of 

Brucella.  

 

  

This article is protected by copyright. All rights reserved.



  

Experimental Procedures 

Media and culture conditions 

Brucella strains were grown at 37°C in Tryptic Soy Broth (TSB). E. coli strains 

were grown at 37°C in Luria–Bertani broth. If necessary, media was 

supplemented with the appropriate antibiotics at the indicated final 

concentrations: Ampicillin, 100 µg/ml; Kanamycin, 50 µg/ml and Nalidixic Acid, 

5 µg/ml. 

 

Recombinant DNA techniques, mutant and plasmid constructions 

Construction of B. abortus 

 2308 ∆bab1_2012 mutant strain 

Regions flanking the bab1_2012 gene were amplified and ligated using the 

recombinant PCR technique (Czibener & Ugalde, 2012). The resulting fragment 

was digested with EcoRI and XbaI and ligated to the pK18mobSacB plasmid 

digested with the same enzymes. The primers used for PCR amplification were: 

CC46 (5′- CCGGAATTCCACTCGGCAGTGGGTCTGTT -3′) and CC47 (5′- 

TTTACCCTCTAATATAATTA -3′) to amplify a 500 bp upstream region and 

CC48 (5′- ATATTAGAGGGTAAAGTTTAAAAATGAAAAAGTTAC -3′) and 

CC49 (5′- GCTCTAGATATGCGCTTCGCACTTTTCG -3′) to amplify a 500 bp 

downstream region; CC46 and CC49 were used for the overlapping PCR.  

Construction of B. abortus 2308 ∆bab1_2011 mutant strain 
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Regions flanking the bab1_2011 gene were amplified and ligated using the 

recombinant PCR technique (Czibener & Ugalde, 2012). The resulting fragment 

was digested with EcoRI and BamHI and ligated to the pK18mobSacB plasmid 

digested with the same enzymes. The primers used for PCR amplification were: 

PL4 (5′- CCGGAATTCATCATTCAGGAGCAAAAATG-3′) and PL5 (5′- 

GATATTACGGCTTTGGGATC-3′) to amplify a 500 bp upstream region and 

PL6 (5′- CAAAGCCGTAATATCTGATTTGGAGATACTTACTTT-3′) and PL7 

(5′- CGCGGATCCTAATGGCGGTGTTATC -3′) to amplify a 500 bp 

downstream region; PL4 and PL7 were used for the overlapping PCR.  

In both cases, the resulting plasmids were introduced into B. abortus 2308 by 

biparental mating using the E. coli S17-λpir strain. Double recombination events 

(Kms Sacr) were selected, and the gene knockout was confirmed by genomic 

PCR. 

Construction of plasmid pBBR4-MCS4-BigB-3xFlag and pBBR4-MCS4-PalA-

3xFlag: 

For the construction of the vector expressing a C-terminal 3xFLAG-tagged 

version of gene Bab1_2012 (BigB) and Bab1_2011 (PalA) the plasmid pBBR1-

MCS4-3xFLAG (Dohmer et al., 2014) was used. DNA fragments containing 

these genes were separately amplified by PCR from B. abortus 2308 genomic 

DNA using primers BAB1_2012F (5′- 

CGGAATTCACTATCAATACGTATTCTAT-3′) and BAB1_2012R (5′- 

CGCCATGGCTATTACCCTTGTAGAAAGAA -3′) for the Bab1_2012 gene, and 
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PL8 (5′- GGAATTCTTCGGGAAATAGTCCAG-3′) and PL9 (5′- 

CATGCCATGGCAAAACAATTATCACGTGC-3′) for Bab1_2011. Both PCR 

products were digested with EcoRI and NcoI restriction enzymes and cloned in 

plasmid pBBR1-MCS4-3xFlag in the same sites generating an in-frame fusion 

to the 3xFLAG epitope. The resulting plasmids were named pBBR-Bab1_2012-

3xFlag and pBBR-Bab1_2011-3xFlag respectively and introduced in the B. 

abortus strains (wild type and mutant) by bi-parental mating for overexpressed 

and complemented strains for these genes. The expression of BigA-3xFLAG 

and PalA-3xFLAG was confirmed by Western blotting. 

Construction of pQE30 IgBigB-3xFLAG-HIS  

In order to generate the poly-histidine-tagged IgBigB/3xFlag recombinant 

protein a DNA fragment was first amplified from B. abortus genomic DNA using 

primers PL1 (5′ - GGGGTACCCCAAGCGTAAGCTTTCC -3′) and PL2 (5′- 

CGATCATGGCTATTACCCTTGTAGA -3′) the PCR product was digested with 

KpnI and NcoI and cloned in pBBR1-MCS4-3xFLAG (Dohmer, Valguarnera, 

Czibener, & Ugalde, 2014) in the same sites. The fragment was subsequently 

amplified using primers PL1 and PL3 (5′- 

CGATCATGGCTATTACCCTTGTAGA -3′) and the PCR fragment was 

digested with KpnI and PstI and subcloned in the pQE30 vector in the same 

sites.  

Construction of pBBR1-MSC4-BigAsfGFP and pBBR1-MSC4-BigB sfGFP: 
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With the purpose of generating superfolder GFP-tagged proteins the plasmids 

pBBR1-MCS4-sfGFP and pBBR2-MCS4-sfGFP (Dinh & Bernhardt, 2011; 

Valguarnera et al., 2018) were used. DNA fragments spanning genes 

Bab1_2009 (bigA) and Bab1_2012 (bigB) were separately amplified by PCR 

from B. abortus 2308 genomic DNA using primers CC64- (5’- 

CCCAAGCTTACTTTAGTAAAGACATACT-3′) and CC65 (5’- 

CGCGGATCCCCGGAGGAGATGGTGGC -3′) for BigA-sfGFP gene, and 

PL10- (5’-GGAATTCCTTCTAATAAATATAAGTATCTATAATCTAT-3′) and 

PL11 (5’-GACTAGTTATTACCCTTGTAGAAAGAACA-3’) for BigB-sfGFP 

gene. Both PCR products were digested with HindIII and BamHI for BigA-sfGFP 

and EcoRI and SpeI for BigB-sfGFP and cloned in pBBR1-MCS4-sfGFP and 

pBBR2-MCS4-sfGFP in the same sites generating an in-frame fusion with the 

sfGFP. The expression was confimed by Western blotting. The resulting 

plasmids were separately introduced in the B. abortus strains 2308 (wild type), 

2308/ΔpalA and 2308/PalA-3xFLAG by bi-parental mating. 

All constructs were confirmed by sequence analysis. 

 

Protein expression and purification 

Recombinant poly-histidine-tagged BIg-BigB and BIg-BigA were expressed in 

E. coli and purified using nickel-affinity chromatography under denaturing 

conditions in the presence of urea 6M. Briefly, E. coli was grown at 37°C at 250 

r.p.m., and the expression was induced with IPTG at OD600=0.6. 3 hrs post-
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induction cells were harvested and broken by sonication. The resulting lysate 

was centrifuged at 16000 g and the inclusion bodies (insoluble) washed two 

times and resuspended in Imac A buffer (500mM NaCl, 50mM Tris-HCl pH 7.6 

and 20mM imidazole) with 6M urea and applied to a HisTrapTM HP column 

(GE, Healthcare). The protein was eluted with the same buffer with 300mM of 

imidazole. The eluted fractions were pooled and dialyzed against re-folding 

buffer (50mM Tris- HCl pH 7.6, 1mM NaCl, 0.2mM DTT, 0.1mM EDTA, 10% 

glycerol, 500mM L-Arginine and 1mM PMSF) followed by a second dialysis 

against PBS. The product of this was concentrated by ultrafiltration and used 

as the source of recombinant protein. 

 

Antibody production and purification 

Anti-Bab1_2012 antiserum was performed inoculating mice (a first inoculation 

and two boosters at 17 and 32 days after the primo injection) with 100 μg in the 

first and 50 μg in the boosters of the recombinant protein in Freund’s adjuvant. 

Two weeks after the last booster, mice were evaluated for their response by 

Western blot and the positive animals were euthanized and the 

serum extracted. 

 

Intracellular replication assays 

Antibiotic protection assays were performed in the human cell lines HeLa 

(ATCC), the murine macrophage-like J774 A.1 (ATCC) and the dog cell line 
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MDCK (ATCC) as described in (Czibener et al., 2016; J. E. Ugalde, Czibener, 

Feldman, & Ugalde, 2000). Cells were seeded in 24-well plates in suitable 

culture medium at 105 cells ml-1 and incubated overnight at 37°C for HeLa and 

J774 A.1 cells, and the appropriate time until confluence for MDCK (once they 

have reached confluence they were left for an extra 48 hrs to differentiate apical 

and basolateral membranes). Brucella strains were grown in TSB with the 

appropriate antibiotics for 24 hrs and diluted in culture medium prior to infection. 

The suspension was added at the different multiplicity of infections and 

centrifuged at 1000 g for 10 min. After 1 hr of incubation at 37°C, cells were 

washed and fresh medium containing 100 μg ml-1 of streptomycin and 50 μg 

ml-1 of gentamicin was added. At 4, 24 and 48 hrs post-infection, cells were 

washed and lysed with 0.1% Triton-100X. The intracellular CFU were 

determined by direct plating on TSB agar plates. 

 

Immunofluorescence microscopy 

Cells were seeded on glass coverslips and infected or not depending on the 

experiment performed. For infections, at different times post-infection, cells 

were washed three times with PBS and fixed for 15 min in 4% 

paraformaldehyde and then processed for immunofluorescence labelling. For 

cells treated with recombinant BigB and/or recombinant BigA, different 

concentrations (depending on the experiment) of the purified protein in PBS 

were added to the monolayer, and at different times post-treatment cells were 
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processed for imaging. After either the infection or treatment with recombinant 

BigB coverslips were washed three times with PBS, incubated for 15 min with 

PBS added with 50mM NH4Cl in order to quench free aldehyde groups. 

Coverslips were then blocked, incubated with the primary antibodies in a PBS, 

5% bovine serum albumin, 10% horse serum and 0.1% saponin solution for 1 

h at room temperature, washed in PBS and then stained with phalloidin 

rhodamin and incubated with the secondary antibodies in PBS, 10% horse 

serum, 5% bovine serum albumin and 0.1% saponin solution under the same 

conditions. The coverslips were mounted onto glass slides using FluorSave 

Reagent (Calbiochem). Cells were observed in an EPI fluorescence 

microscope (Nikon- Eclipse T2000 or an Olympus IX81 attached with a confocal 

module) using a 60X oil immersion objective, with 1.40 NA and 1.42NA 

respectively. Projections were saved in OIFF format (Olympus original format) 

and imported to Image J (NIH, Bethesda, MD), where images were edited and 

merged using RGB format. 

The secondary antibodies used were goat anti-mouse or goat anti-rabbit Alexa 

Fluor 568 or 488 (Molecular Probes, Invitrogen Co.) at a 1:4000 dilution. For 

DNA staining, 40,6-diamidino-2- henylindole DAPI dye at 0.5 mg ml-1 (final 

concentration) was used. 

 

Adhesion and internalization assays 
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 To determine adhesion and invasion, infected cells were fixed for 15 min in 4% 

paraformaldehyde (pH 7.4) at room temperature at 4 h post-infection. 

Coverslips were washed three times with PBS, incubated for 10 min with PBS 

added with 50 mM NH4Cl and, incubated with the primary antibody rabbit anti-

Brucella polyclonal antibody (dilution 1:1500) in a PBS, 5% BSA solution. 

Afterwards permeabilization with saponin was performed and then cells were 

washed and incubated with the other primary antibody mouse anti-M84 (anti-

O-antigen) monoclonal antibody (dilution 1:1000) (Nielsen, Kelly, Gall, Nicoletti, 

& Kelly, 1995) in a PBS, 5% BSA, 0.1% saponin solution followed by incubation 

with the secondary antibodies (Alexa Fluor 568 or 488, Molecular Probes, 

Invitrogen Co) in a PBS, 5% BSA, 0.1% saponin solution. The coverslips were 

mounted as described before. Invasion was determined as the number of 

bacteria positive for both labels versus the ones positive for the anti-mouse 

labelling. Adhesion was determined counting the number of bacteria associated 

per 100 cells. 

 

Bacterial staining 

For staining of Bab1_2012 on total bacteria, a saturated culture was diluted in 

order to obtain 106 UFC ml-1 and the cells fixed in 4% paraformaldehyde for 20 

min, washed with PBS and incubated in suspension with a 1:25 dilution of the 

anti-Bab1_2012 policlonal antibody (refer to the preceding texts) for 8 h. After 

two washes with PBS the cells were incubated with a 1:2000 dilution of a 
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secondary anti-mouse conjugated to Alexa 568 for 1 h. After two washes with 

PBS bacteria were deposited on polylysine treated glasses and mounted for 

confocal observation. 

 

Cell transfection 

Transfection of HeLa cells with plasmids expressing DsRed-zyxin and 

mCherry-paxillin (Arregui, Balsamo, & Lilien, 1998; Hernandez, Sala, Balsamo, 

Lilien, & Arregui, 2006) was performed in 24-well tissue-culture plates using 

lipofectamine 2000 (Invitrogen Corp, Carlsbad, CA, USA) as recommended by 

the manufacturer. 

 

Analysis of protein expression and subcellular localization 

Whole bacteria 

Brucella whole cell extracts were resuspended in Laemmli sample buffer and 

heated to 100°C for 5 min. Samples were submitted to SDS-PAGE (10% or 

15% depending on the assay) and transferred to nitrocellulose membranes. 

The presence of 3xFLAG or sfGFP-tagged proteins was carried out by 

immunoblot analysis using mouse anti-Flag M2 monoclonal antibody (Sigma-

Aldrich dilution, 1:5000) or anti-GFP monoclonal antibody (1:2000), and IRDye 

secondary anti-mouse antibody (LI-COR, Inc.). 

Periplasmic and Cytoplasmic Localization Assay  

This article is protected by copyright. All rights reserved.



  

Fractionation assays were performed as described previously described 

(Dohmer et al., 2014). B. abortus strains were grown in TSB for 16–24 h at 37 

°C until an A600 of 1 was reached, and 2.5 x 1010 bacterial cells were centrifuged 

for 10 min at 3300 g. The pellets were washed with physiological solution, 

centrifuged for 10 min at 3300 x g, and resuspended in 1 ml of 0.2 M Tris-HCl 

(pH 7.6). One milliliter of 0.2M Tris-HCl (pH 7.6), 1M sucrose, and 0.25% 

Zwitterion 3-16 solution was added to the cell suspension and incubated for 10 

min at room temperature. The samples were centrifuged for 30 min at 8000 x 

g, and the pellets were separated from the supernatants and stored at -20 °C 

until used for western blot analysis.  

Preparation of total membrane fractions 

Total membrane fractions were prepared as previously mentioned (Del 

Giuduce et al, 2013). Briefly, cells were harvested at 8000 × g, resuspended in 

buffer A (15 mM Tris-HCl [pH 8], 0.45 mM sucrose, 8 mM EDTA [pH 8], 0.4 

mg/ml, lysozyme 5mg/ml) and incubated for 15 min at 4°C. Then, cells were 

centrifuged (8000 × g, 4°C, 15 min) and sonicated in buffer B (50 mM Tris-HCl 

[pH 7.6], 5 mM MgCl2, 2 mM phenylmethylsulfonyl fluoride [PMSF], 

deoxyribonuclease I [DNAse]; 4 watts 60 seconds pulse and 60 seconds rest 

for 30 min at 4°C). The sonicated cells were centrifuged, and supernatant was 

recovered. Supernatant was diluted 1:4 in buffer C (1 M Tris-HCl [pH 8.0], 1mM 

PMSF) and insoluble membrane fractions were recovered by ultracentrifugation 

(10 PSIG, 4°C, 90 min, (Airfuge-Beckman Coulter) and pellet was homogenized 
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in 50 mM Tris-HCl, pH 8.0.  Pellets and supernatants were stored until western 

blot analysis. 

Western blot analysis of sub localization of Brucella proteins 

The pellets and supernatants from total membrane fractions, periplasmic and 

cytoplasmic were processed for Western blotting using an anti-FLAG M2 

monoclonal antibody (1:10000), anti-GroEL (1:2000), anti-OMP-19 (1:2000), 

and anti-OMP2b (1:2000), provided by Dr. Axel Cloeckaert as primary 

antibodies (Cloeckaert, de Wergifosse, Dubray, & Limet, 1990; Cloeckaert et 

al., 1991), and IRDye secondary anti-mouse antibody (LI-COR, Inc.). All 

antibodies were diluted in TBS, 1% nonfat milk, 0.1% Tween 20 solution. 

Detection was performed using the Odyssey imaging system (LI-COR, Inc.). 

Microscopy analysis of Brucella 

Exponential-phase cultures of B. abortus BigB-sfGFP strains expressing the 

BigB gene tagged with super folder GFP fluorescent fusion protein was placed 

on a microscope slide that was layered with a pad of 1% agarose in phosphate 

buffered saline (PBS) as previously described (Hallez et al., 2007; Ruiz-

Ranwez, Posadas, Estein, et al., 2013). For image acquisition, samples were 

examined on an IX81 microscope with an Olympus FV1000 confocal module 

(60X PLAPO objective, numerical aperture [NA] of 1.42). For each observation 

under the microscope, at least three fields were randomly selected for analysis. 

Images were processed with the Image J program (NIH, Bethesda, MD). 
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Co-Immunoprecipitation of PalA-3xFLAG and BigA-sfGFP 

B. abortus strains expressing 2308 PalA-3xFLAG /BigA-sfGFP and the B. 

abortus control strain 2308 BigA-sfGFP were cultivated in TSB for 16–24 h at 

37 °C. Cells were harvested at 8000xg, resuspended in 50 ml of buffer A (20 

mM Tris-HCl pH 7.6; 0.5 M Sucrose; 10 mM EDTA; 400 μg/ml lysozyme) and 

incubated for 15 min at 4 °C. Then, cells were centrifuged (8000 x g, 15 min) 

and sonicated in 2 ml of buffer B (50 mM Tris-HCl pH 7.6, 150 mM NaCl, 5 mM 

MgCl2, 1 mM PMSF, DNase). The resulting lysate was centrifuged twice, and 

supernatants were recovered and mixed with IP buffer (150 mM NaCl, 1 mM 

EDTA, 0.25% Nonidet and 0.25% Triton X-100). For immunoprecipitations, 40 

ul of anti-FLAG M2 affinity gel (Sigma-Aldrich) pre-equilibrated with IP buffer 

was mixed with supernatants and incubated at 4 °C overnight on a rotating 

platform. The gel suspension was washed at 4°C, 5 times with TBS on a 

rotating platform, and bound proteins were eluted with 2x Laemmli sample 

buffer without reducing agent. The presence of 3xFLAG and sfGFP-tagged 

proteins was evaluated by western blot analysis using anti-FLAG rabbit 

polyclonal  antibody (1:5000), anti GFP rabbit polyclonal antibody (1:5000) and 

IRDye secondary anti-rabbit antibody (LI-COR, Inc.). All antibodies were diluted 

in TBS, 1% nonfat milk, 0.1% Tween solution. Detection was performed using 

the Odyssey imaging system (LI-COR, Inc.). 
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Results 

Bab1_2012 encodes a second adhesin of the bab1_2009-bab1_2012 gene 

cluster 

As indicated above, bigA (gene bab1_2009 in B. abortus 2308 (Chain et al., 

2005)) encodes an adhesin that targets the bacterium to the cell-cell interaction 

membrane and promotes adhesion and invasion of the host cell (Czibener et 

al., 2016). In order to determine if any other of the three genes encoded in this 

region are also adhesins we analyzed the putative proteins in search of motifs 

that could suggest this type of function. Interestingly, analysis of Bab1_2012 

showed a weak homology (using the 

https://toolkit.tuebingen.mpg.de/tools/hhpred) with bacterial immunoglobulin-

like domains present in several adhesins of different pathogens and in BigA 

(Czibener et al., 2016). Also, in silico analysis predicted three transmembrane 

segments (SMART- EMBL). To evaluate if Bab1_2012 is an adhesin a deletion 

mutant was constructed and intracellular replication assays in non-phagocytic 

cells were performed. As can be observed in Figure 1A, the ∆bab1_2012 

mutant showed a significant reduction in the intracellular number of bacteria at 

the early stages of the infection curve (4 hrs post-infection) in HeLa cells and 

this reduction was also observed in a polarized cell line as Madin-Darby Canine 

Kidney (MDCK) cells (Figure 1B). This phenotype was also observed in the 

macrophagic cell line J774 A.1 (Supplementary Figure 1). To determine if this 

phenotype was the result of a reduction in the adhesion, invasion or capacity to 
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survive intracellularly, adhesion and invasion assays in HeLa cells were 

performed comparing the wild type, mutant and complemented strains. Figure 

1, panels C and D shows that the ∆bab1_2012 mutant had a reduced capacity 

to adhere to host cells and, consequently, a reduced invasion in comparison to 

the wild type parental strain. Interestingly, and as we have observed with BigA 

(Czibener et al., 2016), the complemented strain overexpressing Bab1_2012 

from a multicopy plasmid, resulted in a strain with a dramatic increase in its 

adhesion capacity (Figure 1D).  

To determine the localization of Bab1_2012 in the cells we expressed a 3xFlag-

tagged version of the protein in B. abortus and determined its subcellular 

localization by fractionation experiments (see Experimental procedures). As 

can be observed in Figure 2A, Bab1_2012 fractioned with total membranes, 

indicating that it is either an inner or an outer membrane associated protein. 

Further periplasmic extraction experiments (Figure 2B) showed that the protein 

product of bab1_2012 is located in the periplasm or outer membrane, which, in 

combination with the result of its association with total membranes, confirms 

that Bab1_2012 is located in the outer membrane.  

To further confirm that Bab1_2012 is exposed in the outer membrane we 

developed a polyclonal antibody against the Ig-like domain of the protein and 

performed an immunofluorescence with non-permeabilized cells of the B. 

abortus expressing Bab1_2012 from a medium copy plasmid and the deletion 

mutant strains. As can be observed in Figure 2C, the protein was found on the 
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bacterial surface confirming that Bab1_2012 is an exposed outer membrane 

protein. 

Altogether these results indicate that Bab1_2012 codes for an adhesin that 

mediates attachment to host cells. Consequently we renamed this gene bigB 

for Bacterial Immunoglobulin Gene B. 

BigB induces cytoskeletal rearrangements of host cells 

We have previously reported that treatment of cells with the recombinant 

bacterial immunoglobulin-like domain of BigA induces profound cytoskeletal 

rearrangements that results, upon longer treatments, in the detachment of the 

cells from the plate (Czibener et al., 2016). As BigB has a BIg-like domain as 

well, we wanted to determine if this domain of BigB induces similar effects. For 

this purpose we cloned the region of the gene coding the Ig-like domain (amino 

acids 120 to 399 of the coding region), produced it in E. coli as a double poly-

histidine-3xFLAG tagged protein and purified it by affinity chromatography as 

indicated in Experimental procedures. HeLa cells were treated either with the 

recombinant BigB, with the recombinant BigA or a combination of both. As can 

be observed in Figure 3A, BigB produced rounding of the cells that detached 

from the plate, as the BigA-treated cells, but at higher concentrations and longer 

times of incubation. Additionally, when observed under the confocal 

microscope we noticed that the treated cells seemed to have a higher height 

than the control group. To determine this we measured the height of the cells 

performing a Z stack of cells incubated with BigA, BigB or both together, which 
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gave us an indirect quantitative measurement of the cytoskeleton modifications. 

Figure 3B shows that incubation with either BigA or BigB induced a doubling in 

the cell height indicating that the proteins induce a profound rearrangement of 

the cytoskeleton. Interestingly incubation with a combination of both proteins 

did not have an additive effect.    

To further confirm that the incubation of cells with BigB affects their adhesion 

we transfected HeLa cells with the focal adhesion markers zyxin-DSRed or 

paxillin-mRFP, treated them with the recombinant BigB, fixed the cells and 

stained with Phalloidin as indicated in Materials and Methods. As can be 

observed in Figure 3C, treatment of the transfected cells with BigB for 4 hrs 

induced significant changes in the focal adhesion sites as evidenced by the 

disappearing of both zyxin and paxillin markers at the borders of the cells 

treated with BigB. Consistent with this, the constrained form observed in the 

treated HeLa cells proved that the cytoskeleton structure was also affected by 

this adhesin. Taken together, these results provide proof that BigB alters focal 

adhesion sites triggering cytoskeletal rearrangements in non-phagocytic cells. 

 

Bab1_2011 is periplasmic protein involved in the adhesion of Brucella  

The Bab1_2009-Bab1_2012 genomic region encodes four open reading 

frames present only in the Brucella genus and with no detectable homology to 

other protein in databases (Czibener & Ugalde, 2012). Since we have shown 

that at least two of these proteins are adhesins (BigA and BigB) this prompted 
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us to evaluate the function of the other genes present in the region (bab1_2010 

and bab1_2011). For this we generated deletion mutants in both open reading 

frames and performed intracellular replication curves in HeLa cells with the 

resulting mutants. Deletion of bab1_2010 resulted in a strain with a reduced 

intracellular survival at early time points but we were not able to complement it 

(data not shown). Deletion of bab1_2011 resulted in a strain with a moderate 

but statistically significant reduction in the intracellular CFUs at 4 hrs post-

infection (Figure 4A) that was complemented with the gene in trans. To 

determine if this reduction was the consequence of a reduced adhesion or 

invasion we performed adhesion/invasion assays by immunofluorescence as 

indicated above. As can be observed in Figure 4B the B. abortus ∆bab1_2011 

strain showed a statistically significant reduction in the adhesion capacity 

compared to the wild type parental strain and, interestingly, complementation 

of the mutant resulted in a strain with an increased adhesion, as we have also 

observed for BigA and BigB. As expected, due to the reduced adhesion of the 

strain, invasion was also affected in the mutant strain (Figure 4C). These results 

indicate that Bab1_2011 is either an adhesin per se or affects the activity of 

other adhesins (such as BigA and BigB).  

Bab1_2011 encodes a protein of 129 amino acids conserved within the Brucella 

genus but with no detectable homology to other proteins and no canonical 

signal peptide. To gain further insight into the function of Bab1_2011 we 

constructed a B. abortus strain expressing a 3xFlag tagged version of the 
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protein from a replicative plasmid (see Experimental procedures) and 

performed subcellular fractionation assays to determine the subcellular 

localization of the protein. As can be observed in Figure 4 panels D and E, 

Bab1_2011 was not found associated with total membranes but partitioned in 

both the periplasmic plus outer membrane and the cytoplasmic fractions 

indicating that it is a periplasmic protein, therefore discarding Bab1_2011 to be 

an adhesin. 

 Altogether these results strongly suggest that Bab1_2011 is a protein that 

probably affects the adhesion of Brucella indirectly by regulating the function or 

the display of the other molecules of the Bab1_2009-Bab1_2012 genomic 

region. 

       

Bab1_2011 is necessary for the insertion of BigA and BigB in the outer 

membrane 

Our results indicate that Bab1_2011 is a periplasmic protein involved in the 

adhesion process and, since it is present in a locus that encodes two adhesins 

(BigA and BigB) we hypothesized that it could be involved in the translocation 

and/or insertion of these proteins in the outer membrane. To determine if this 

is the case we expressed 3xFlag-tagged versions of BigA and BigB in the wild 

type and ∆bab1_2011 strains and analyzed their subcellular localization by 

performing total membrane purifications. A first unexpected observation was 

that BigA, in the ∆bab1_2011 strain, migrated in an SDS-PAGE of total extracts 
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as a 70 kDa protein instead of 40 kDa as it was observed in the wild type strain 

(Czibener et al., 2016). (Figure 5A). This migration pattern was not altered even 

when higher concentrations of DTT, urea or protein alkylating agents were used 

strongly suggesting that BigA is probably covalently linked to itself or another 

protein but not through a disulfide bond. Moreover, as can be observed in 

Figure 5B, BigA was not found associated with total membranes as we have 

previously described in the wild type strain (Czibener et al., 2016). To determine 

if this phenomenon was also observed with BigB we performed the same 

extraction protocol with the ∆bab1_2011 (BigB-3xFlag) strain and determined 

its membrane association. As shown in Figure 5C, in the ∆bab1_2011 mutant 

BigB lost its membrane localization too although in this case the protein had a 

migration as expected according to its predicted molecular weight. Both 

extractions were performed in parallel with the corresponding wild type strain. 

Overall, these results indicate that Bab1_2011 has a critical role in regulating 

the localization in the outer membrane of the two adhesins present in the same 

locus. For this reason, we renamed Bab1_2011 as palA for periplasmic adhesin 

locator A. 

One possibility for the phenotype observed with the ∆palA mutant is that neither 

BigA nor BigB could be translocated to the periplasm. To determine if this is the 

case we performed periplasmic extractions with the B. abortus ∆palA strain 

expressing the Flag-tagged versions of the proteins and determined their 

localization by western-blot. Figure 5 panels D and E shows that both BigA and 
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BigB retain their periplasmic localization in the mutant indicating that their 

translocation to this compartment is not affected. To corroborate that neither 

BigA nor BigB have their translocation to the periplasm affected in the ∆palA 

mutant we constructed translational fusions to the superfolder-GFP (sGFP) of 

both proteins and compared their localization in the wild-type and mutant strains 

by confocal microscopy. As can be observed in Figure 6A-B the fusion BigA-

sfGFP showed a bipolar localization in both strains, demonstrating that 

although BigA in the ∆palA mutant is located in the periplasm, the bipolar 

localization is not affected in the mutant Also, as it was previously described in 

Czibener et al., 2016 BigA in the wild type strain is exposed in the membrane 

surface and its localization is polar. In the case of the fusion BigB-sfGFP the 

construct was unstable in the ∆palA strain and we were not able to obtain 

reproducible results. Altogether these results indicate that the absence of PalA 

impairs the insertion of both BigA and BigB in the outer membrane remaining 

in the periplasmic space and, in the case of BigA, covalently linked to another 

protein or aggregated. This impairment could be the consequence of an indirect 

cause or because PalA interacts, either directly or in a complex, with BigA and 

BigB, stabilizing them in the periplasm, avoiding aggregation, and facilitating 

their transport to the outer membrane. To determine if BigA directly interacts 

with PalA we performed co-immunoprecipitation assays with total extracts of B. 

abortus strains co-expressing PalA-3xFlag and BigA-sfGFP. As can be 

observed in Figure 6C, BigA-sfGFP co-immunoprecipitated with PalA 
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demonstrating that they interact either directly or indirectly in the bacterium.  In 

the case of BigB-sfGFP, we were not able to observe co-immunoprecipitation 

with PalA even though multiple attempts with different conditions of buffers and 

detergents were performed.     
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Discussion 

Adhesion to tissues and host cells is the initial, and in many cases a bottleneck 

step, in the virulence process of nearly all pathogens. The capacity to adhere 

and eventually invade target cells can determine tissue tropism, virulence cycle 

as well as immune response and, as a consequence, resolution of the infection. 

In bacteria, adhesion is mediated, amongst other proteins, by adhesins, a 

heterogeneous group of outer membrane molecules that target a wide 

spectrum of proteins, carbohydrates and lipids in the plasma membrane of host 

cells (Patel et al., 2017). Successful interaction of bacteria via these adhesins 

paves the way for host colonization and pathogenesis.  

While adhesion has been extensively studied in many bacteria, in Brucella, a 

zoonotic pathogen of animal and human health concern with an intracellular life 

cycle, not much has been conducted to understand how the bacterium adheres 

and invades. To date few adhesins in the Brucella genus have been identified: 

the SP41 and the autotransporters (BmaC, BtaE and BtaF) and almost none of 

their cellular targets have been identified (Castaneda-Roldan et al., 2006; 

Posadas et al., 2012; Ruiz-Ranwez, Posadas, Estein, et al., 2013; Ruiz-

Ranwez, Posadas, Van der Henst, et al., 2013).  

Our group has identified a genomic region (genes Bab1_2009 to Bab1_2012 in 

B. abortus 2308) with horizontally transmitted features and demonstrated that 

is involved in the adhesion to host cells (Czibener & Ugalde, 2012). This region 

encodes four open reading frames conserved in all Brucella species but none 
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of them have homology to known proteins. We have recently characterized one 

of these genes (bigA) and shown that it encodes an adhesin that targets the 

bacteria to the cell-cell junction membrane in confluent epithelia cell cultures 

(Czibener et al., 2016). BigA has an exposed bacterial immunoglobulin-like 

(BIg-like) domain present in many bacterial proteins whose function ranges 

from enzymes to pilli, fimbria and adhesins. It is proposed that these domains 

mainly mediate protein-protein interactions and that its wide distribution in 

nature is due to its energetically favorable folding (Bodelon, Palomino, & 

Fernandez, 2013). Several pilli and fimbria, that are central for the adhesion of 

the bacterium to different substrates, as well as the Intimin of 

enterohemorrhagic Escherichia coli or the Invasin A of Yersinia enterocolitica 

that mediate the invasion process of the pathogen have these BIg-like domains 

(Bodelon et al., 2013; Mikula, Kolodziejczyk, & Goldman, 2013).  

Analysis of the other three genes present in the Bab1_2009-Bab1_2012 

genomic island showed that Bab1_2012 (BigB) also has a putative BIg-like 

domain although the homology is weaker than the domain present in BigA. 

Adhesion and invasion assays with deletion or overexpressing strains as well 

subcellular fractionation experiments indicated that BigB is also an adhesin 

located in the outer membrane of B. abortus.  

Moreover, as with BigA (Czibener et al., 2016), treatment of HeLa cells with the 

recombinant purified BIg-like domain of BigB also resulted in significant 

changes in the cytoskeletal and focal adhesion structures strongly suggesting 
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that, as what we determined with BigA, BigB probably targets proteins in either 

cell-cell of cell-substrates interactions. These ligands are probably involved in 

cytoskeleton modifications that will subsequently trigger the entry of Brucella to 

host cells as it has been reported in other bacterial adhesins like CagL, an 

important adhesin of Helicobacter pylori involved in these types of 

rearrangements as well as inflammation (Backert, Tegtmeyer, & Fischer, 2015). 

The other two remaining open reading frames in the genomic island are 

bab1_2010 and bab1_2011 that code for putative proteins with no detectable 

homology or known domains. Deletion of bab1_2011 (palA) resulted in a strain 

with a reduced adhesion capacity even though the protein showed a 

periplasmic localization, suggesting that it is not an adhesin per se. Cellular 

fractionation assays of BigA and BigB in the ∆palA mutant, as well as co-

immunoprecipitation experiments, showed that PalA stabilizes both adhesins in 

the periplasm allowing translocation and the correct insertion in the outer 

membrane, probably avoiding their aggregation. It remains unclear how PalA 

mechanistically mediates this translocation/insertion. The simplest mechanism 

is that PalA could act as a chaperone, directly interacting with BigA and BigB, 

preventing the exposure of hydrophobic patches present in the transmembrane 

domains, thus avoiding aggregation during its translocation to the outer 

membrane. Previous studies in other Gram-negative bacteria demonstrated the 

presence of periplasmic chaperones like PapD and FimH, which are necessary 

for pili assembly (Soto & Hultgren, 1999). Alternatively, PalA could be part of a 
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periplasmic secretion system that mediates the translocation of both adhesins 

to its final localization in the outer membrane. In this hypothesis, absence of 

PalA will probably impair secretion and the adhesins would remain periplasmic, 

as we have observed.  

Despite the function of PalA, BigA and BigB have to be translocated to the outer 

membrane to be functional and to achieve this, a specific mechanism has to be 

necessarily involved. One of the most studied mechanisms for the export of 

adhesins are the autotransporters, like the E. coli intimin and the invasin (Inv) 

and YadA from Yersinia enterocolitica (Leibiger, Schweers, & Schutz, 2019). In 

these autotransporters translocation occurs by a two-step mechanism 

mediated by different domains present in the adhesins. First they are targeted 

to the periplasm by a canonical signal peptide and, once in this compartment, 

they use a passenger domain that interacts with the peptidoglycan to be finally 

inserted in the outer membrane through a beta barrel domain (Leibiger et al., 

2019; Leo, Oberhettinger, Schutz, & Linke, 2015). In these cases there are 

additional proteins that act as chaperones and/or insertion complexes that help 

to translocate these adhesins to the outer membrane (Lazar & Kolter, 1996; 

Leibiger et al., 2019; Sklar, Wu, Gronenberg, et al., 2007; Sklar, Wu, Kahne, & 

Silhavy, 2007). BigA and BigB do not seem to belong to these families of 

autotransporters as they don´t have the domain structure typical of these 

proteins. Even though we cannot discard that BigA and BigB use a similar 

This article is protected by copyright. All rights reserved.



  

mechanism to be transported to the outer membrane it is highly probable they 

are translocated in a yet unknown way.   

The outcome of the interaction between Brucella and its host cells relies on the 

first interaction of the bacterium with the plasmatic membrane of the target cell. 

In this report, we further characterized the Bab1_2009-Bab1_2012 genomic 

island, and found that, not only encodes two adhesins, but it also regulates, 

through PalA, the correct display of them in the outer membrane. Further work 

will be required to establish how PalA achieves this, how BigB interacts with the 

host cell as well as the identification of the receptors for both adhesins. 
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Figure legends 
 
Figure 1. Bab1_2012 is involved in the adhesion to non-phagocytic cells. 

A. Intracellular replication curve of B. abortus 2308 (wild type), B. abortus 

∆bab1_2012 and complemented (∆bab1_2012(Bab1_2012)) strains in HeLa 

cells (MOI 1:500). **** P<0.0001, two-way ANOVA, Tukey's multiple 

comparisons test. B. Intracellular survival of B. abortus 2308 (wild type), B. 

abortus ∆bab1_2012 and complemented (∆bab1_2012(Bab1_2012)) strains in 

MDCK cells at 4 hrs post-infection (MOI 1:2000). **** P<0.0001, one-way 

ANOVA, Bartlets test. C. Invasion assay with B. abortus 2308 (wild type), B. 

abortus ∆bab1_2012 and complemented (∆bab1_2012(Bab1_2012)) strains in 

HeLa cells at 4 hrs post-infection (MOI 1:1000). * P<0.01, two-way ANOVA, 

Tukey's multiple comparisons test. D. Adhesion assay with B. abortus 2308 

(wild type), B. abortus ∆bab1_2012 and complemented 

(∆bab1_2012(Bab1_2012)) strains in HeLa cells at 4 hrs post-infection (MOI 

1:1000). * P<0.01, unpaired T-test. 

All assays were performed at least three times.  

 

Figure 2. Bab1_2012 localizes in the outer membrane. A. Western blot 

analysis of total membranes or soluble fraction (supernatant) prepared with the 

B. abortus 2308 (pBBR-Bab1_2012-3xFlag) strain. B. Western-blot analysis of 

the subcellular localization of Bab1_2012-3xFlag fusion performed with the B. 

abortus 2308 (pBBR-Bab1_2012-3xFlag) strain. Perip. + OM, periplasm plus 
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outer membrane. Bab1_2012, FLAG staining; Omp19, outer membrane protein 

19; GroEL, cytoplasmic chaperonin. C. Immunofluorescence microscopy of 

non-permeabilized cells of B. abortus 2308 (pBBR-BigB-sfGFP) and B. abortus 

2308 ∆bab1_2012 with a polyclonal mouse anti Ig-Bab1_2012. 

 

Figure 3. BigB induces cytoskeletal rearrangements in treated HeLa cells. 

A. Images of HeLa cells treated with 100 μg of purified recombinant BigB 

bacterial-immunoglobulin like domain for 4 hrs fixed and stained with phalloidin 

(red). Non-treated; incubated with BSA. B. Cell height of HeLa cells treated with 

the recombinant bacterial-immunoglobulin like domains of BigA and BigB, 

individually and in combination. **** P<0.0001, two-way ANOVA Tukey's Test. 

Non-treated; incubated with BSA. Right image is to show how the Z-stack was 

measured. C. Confocal images (60x) of HeLa cells transfected with plasmids 

that express mRFP Paxillin or DS-red Zyxin (both in red) and treated over-night 

with 0.1 mg/ml of recombinant BigB bacterial-immunoglobulin like domain. 

Cells were stained with phalloidin (white). Mock: 0.1 mg/ml of heat-

denaturalized recombinant BigB. Scale bar: 10 µm. 

 

Figure 4. Bab1_2011 is a periplasmic protein involved in the adhesion of 

Brucella to non-professional phagocytes. A. Intracellular replication curve 

of B. abortus 2308 (wild type), B. abortus ∆bab1_2011 and complemented 

(∆bab1_2011(Bab1_2011)) strains in HeLa cells (MOI 1:500). *** P<0.001, two-
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way ANOVA, Tukey's multiple comparison test. B. Adhesion assay with B. 

abortus 2308 (wild type), B. abortus ∆bab1_2011 and complemented 

(∆bab1_2011(Bab1_2011)) strains in HeLa cells at 4 hrs post-infection (MOI 

1:1000). ** P<0.01 **** P<0.0001. C. Invasion assay with B. abortus 2308 (wild 

type), B. abortus ∆bab1_2011 and complemented (∆bab1_2011(Bab1_2011)) 

strains in HeLa cells at 4 hrs post-infection (MOI 1:1000). *** P<0.001. D. 

Western blot analysis of total membranes or soluble fraction (supernatant) 

prepared with the B. abortus 2308 (pBBR-Bab1_2011-3xFlag) strain. E. 

Western-blot analysis of the subcellular localization of Bab1_2011-3xFlag 

fusion performed with the B. abortus 2308 (pBBR-Bab1_2011-3xFlag) strain. 

Perip. + OM, periplasm plus outer membrane. Bab1_2011, FLAG staining; 

Omp19, outer membrane protein 19; GroEL, cytoplasmic chaperonin.     

 

Figure 5. Deletion of Bab1_2011 affects the localization of BigA and BigB 

in the outer membrane but does not affect their translocation to the 

periplasm. A. Western blot analysis with an anti-Flag antibody of total extracts 

of strains 2308 (BigA-3xFlag) and ∆bab1_2011 (BigA-3xFlag). B. Western blot 

analysis with an anti-Flag antibody of total membranes or soluble fraction 

(supernatant) prepared with the ∆bab1_2011 (BigA-3xFlag) strain. C. Western 

blot analysis with an anti-Flag antibody of total membranes or soluble fraction 

(supernatant) prepared with the ∆bab1_2011 (BigB-3xFlag) strain. D. Western-

blot analysis of the subcellular localization of BigA-3xFlag fusion performed with 
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the ∆bab1_2011 (BigA-3xFlag) strain (∆palA (BigA-3xFlag). E. Western-blot 

analysis of the subcellular localization of BigB-3xFlag fusion performed with the 

∆bab1_2011 (BigB-3xFlag) strain (∆palA (BigB-3xFlag). Omp19, outer 

membrane protein 19; Omp2b, outer membrane protein 2b; GroEL, cytoplasmic 

chaperonin. Perip. + OM, periplasm plus outer membrane.   

 

Figure 6. PalA and BigA interact directly or indirectly. A and B. 

Immunofluorescence and DIC images of the wild type and ∆palA mutant strains 

expressing a BigA-super-folder GFP fusion protein (BigA-sfGFP) showing how 

the fusion shows a bi-polar localization. C. Co-immunoprecipitation (Co-IP) 

analysis of protein extracts from the B. abortus 2308 strain co-expressing PalA-

3xFlag and BigA-sfGFP. As a negative control a B. abortus 2308 strain 

expressing only the BigA-sfGFP was used. Immunoprecipitation was performed 

with an anti-Flag monoclonal antibody coupled to sepharose and the 

immunoprecipitates analyzed by western blot with an anti-GFP antibody. Input 

were the crude extracts prior to the immunoprecipitation.  

 

Supplementary Figure 1. Intracellular replication curve of B. abortus 2308 

(wild type), B. abortus ∆bab1_2012 and complemented 

(∆bab1_2012(Bab1_2012)) strains in J774 A.1 cells (MOI 1:500). **** 

P<0.0001, ** P<0.01, two-way ANOVA, Tukey's multiple comparison test. 
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