
On an explicit representation of the  Lukasiewicz

sum as a quantum operation

H. Freytes1, F. Holik2,1 G.M. Bosyk2,1 G. Sergioli1

1. University of Cagliari, Viale Merello 92, 09123, Cagliari-Italy

2. Instituto de F́ısica La Plata, UNLP, CONICET, Facultad de Ciencias Exactas,

C.C. 67, 1900 La Plata, Argentina

Abstract
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Introduction

Since its inception, in the middle of sixties when L. A. Zadeh published his sem-
inal work “Fuzzy Sets” [30], the notions of fuzzy set and fuzzy logic (as technical
tools to represent and manipulate concepts with a certain degree of ambiguity)
have inspired great interest because of their potential applications. On this
basis, fuzzy logic has found many fruitful applications in soft computing [31],
neural networks [16, 32] and in the general context of classical information the-
ory. These fields have achieved important advances in the last decades becoming
active research areas and supporting many engineering applications [25].

On the other hand, from the developing of the quantum computation [23],
during the last decades other relevant research fields - such as quantum infor-
mation theory and quantum neural networks [26] - naturally emerged. These
studies are suggesting promising developments that, if successfully implemented,
could be the origin of a prominent technological evolution. This leads to inves-
tigate the possibility to extend the use of fuzzy logic to the context of quantum
information processing. This work provides a little advanced in this direction,
by introducing an explicit representation of a fuzzy connective - the  Lukasiewicz
sum - in the framework of quantum computation.
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The  Lukasiewicz sum is defined as the binary operation on the real interval
[0, 1] given by

x⊕ y = min{1, x+ y} (1)

and it is the natural interpretation for the disjunction in the infinite-valued
 Lukasiewicz calculus [5]. This calculus belongs to an important family of logical
systems named fuzzy logic of continuous t-norm [17].

Let us remark that the  Lukasiewicz logic plays an important role in different
mathematical contexts. As an example, it is well known the relation between
the infinite-valued  Lukasiewicz logic and the game theory applied to the theory
of classical communication with feedback; more specifically, the  Lukasiewicz
calculus is related to the Ulam’s game with lies [22]. This argument suggests
possible applications of the  Lukasiewcz logic in the context of quantum error
correction [20]. In theoretical physics, the infinite-valued  Lukasiewicz calculus
is also studied in virtue of its relation with the AF C∗-algebras [21] and the
effects theory that plays an important role in the study of the unsharp quantum
measurement [11, 12]. We also remark that some attempts to represent many
valued connectives in quantum computation with potential applications have
been already introduced in [27].

The aim of this paper is to implement the  Lukasiewicz sum as a quantum
gate, mathematically represented by a quantum operation. In order to reach
this goal we refer to the probabilistic character of the quantum computational
process. Indeed, quantum computational processing is probabilistic in its very
essence and this is the fact that suggests a natural relation with many valued
logical systems. On this basis, we provide a probabilistic representation of the
 Lukasiewicz sum in the framework of quantum computation with mixed states.

The paper is organized as follows. In Section 1 we briefly summarize some
basic notion of quantum computation. In Section 2 we outline all the math-
ematical ingredients we need to represent the  Lukasiewicz sum as a quantum
operation. Next, in Sections 3 and 4, by appealing to numerical methods, we
exhibit an explicit form of the quantum operation that probabilistically approx-
imates the  Lukasiewicz sum. In Section 5 we finally show different techniques
to improve this approximation by appealing to the theory of quantum cloning.

1 Basic notions

In classical computation information is encoded by a sequence of bits. A bit
is viewed as a kind of physical object which can assume one of two distinct
classical states, represented by the binary numbers 0 or 1. Bits are manipulated
via an ensemble of logical gates like NOT, OR, AND, etc, which are arranged
in circuits in order to obtain the desired results of a computation.

Standard quantum computing is based on quantum systems described by
finite dimensional Hilbert spaces, starting from the two-dimensional space C2. A
quantum bit or qubit is a pure state in the Hilbert space C2. From a logical point
of view we refer to an the orthonormal basis {|0〉, |1〉} of C2, where |0〉 = (1, 0)†

and |1〉 = (0, 1)†, which is generally called logical basis. This name refers to the
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fact that the logical truth is related to |1〉 and the falsity to |0〉. Thus, pure states
|ψ〉 in C2 are linear combinations of the basis vectors |ψ〉 = c0|0〉+ c1|1〉 where
c0 and c1 are complex numbers such that |c0|2 + |c1|2 = 1. Recalling the Born
rule, any qubit |ψ〉 = c0|0〉 + c1|1〉 may be regarded as a piece of information,
where the number |c0|2 corresponds to the probability-value of the information
described by the basic state |0〉; while |c1|2 corresponds to the probability-value
of the information described by the basic state |1〉. The two basis-elements |0〉
and |1〉 are usually taken as the encoding of the classical bit-values 0 and 1,
respectively. In this way, the qubit probability value we are interested on, is
p(|ψ〉) = |c1|2 that is related to the basis vector associated with truth.

In the following, we will use the tensor product space ⊗nC2 = C2 ⊗ C2 ⊗
. . .⊗C2 (n times), which is 2n-dimensional. A special basis, called the 2n-logical
basis, is chosen for ⊗nC2. More precisely, it consists on the 2n orthogonal states
|ι〉, 0 ≤ ι ≤ 2n, where ι is in binary representation and |ι〉 is a tensor product of
states |ι〉 = |ι1〉⊗ |ι2〉⊗ . . .⊗|ιn〉, whit ιj ∈ {0, 1}. A pure state |ψ〉 ∈ ⊗nC2 can

be written as a superposition of the basis vectors as follows |ψ〉 =
∑2n

ι=1 cι|ι〉,
with

∑2n

ι=1 |cι|2 = 1. Let L(H) be the space of linear operators in the complex
Hilbert space H. The evolution of a pure state in ⊗nC2is dictated by quantum
gates, that are mathematically represented by unitary operators acting on⊗nC2.

But in general, a quantum system is not in a pure state. This may be caused,
for example, by the noncomplete efficiency in the preparation procedure or by
the fact that systems cannot be completely isolated from the environment, un-
dergoing decoherence of their states. In view of these facts, several authors
[1, 4, 9, 15, 27] have paid attention to a more general model of quantum com-
putational processes, where pure states are replaced by mixed states. In what
follows we give a short description of this mathematical model.

A mixed state is an Hermitian operator ρ ∈ L(H) that is positive semidefinite
(ρ ≥ 0) and has unit trace (tr(ρ) = 1).

In this powerful model, the notion of quantum gate is mathematically gen-
eralized by the notion of quantum operation.

A quantum operation is a linear map E : L(H1) → L(H2) that is trace-
preserving and completely positive. Roughly speaking, complete positivity means
that if we embed H into a larger system, the standard lifting of E to the
larger system preserves positive definiteness, and thus states get mapped into
states. Formally, this means that for any Hilbert space K, the linear map
E ⊗ IK : L(H1 ⊗K) → L(H2 ⊗K) where IK is the identity in L(H), satisfies
that for any ρ ∈ L(H1 ⊗ K), if ρ > 0 then (E ⊗ IK)(ρ) > 0. Each quantum
operation E can be expressed as

E(ρ) =
∑
i

AiρA
†
i (2)

where Ai are linear operators satisfying
∑
iA
†
iAi = I. This is known as the

Kraus representation [19] of a quantum operation. Let us notice that every
unitary operator U on a Hilbert space ⊗mC2 gives rise to a quantum operation
OU such that OU (ρ) = UρU† for each ρ ∈ L(H).
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We may associate to each vector of the logical basis of C2 two projection
operators P0 = |0〉〈0| and P1 = |1〉〈1| that represent, in this more general
framework, the falsity-property and the truth-property, respectively. Let us

consider the operator P
(n)
1 = ⊗n−1I ⊗P1 on ⊗nC2. By applying the Born rule,

we obtain the (logical) probability that a density operator ρ = [ρi,j ] on ⊗nC2 is
true, as follows:

p(ρ) = Tr(P
(n)
1 ρ) =

2n−1∑
i=1

ρ2i,2i. (3)

Notice that the probability value p(ρ) depends only on the odd diagonal
elements of ρ. In the particular case in which ρ = |ψ〉〈ψ|, where |ψ〉 = c0|0〉 +
c1|1〉, we obtain that p(ρ) = |c1|2. Thus, this probability value associated to ρ
is the generalization of the probability value considered for qubits.

2  Lukasiewicz sum and quantum circuits

 Lukasiewicz sum exhibits intersting relations with the quantum structures [11,
12, ?, 22]. In particular, several logical and algebraic structures based on the
relationship between the  Lukasiewicwicz logic and quantum computational logic,
were studied in the literature [2, 9, 6, 13, 15]. One may be tempted to define
a probabilistic representation of the  Lukasiewicwicz sum “⊕” in the framework
of quantum computational logic as

p(O(ρ⊗ σ)) = p(ρ)⊕ p(σ) (4)

where O should be a quantum operation and ρ and σ are arbitrary density
operators on C2. But such a quantum operation O does not exist due to the
following no-go theorem (see also [13]):

Theorem 2.1 There is no quantum operation O such that p(O(ρ⊗σ)) = p(ρ)⊕
p(σ) holds for all ρ and σ.

Proof: Suppose that there exists a quantum operation O satisfying Eqn. 4.
Then, for arbitrary ρ and σ, by using the Kraus representation we have that

O(ρ⊗ σ) =
∑
i

Ai(ρ⊗ σ)A†i .

Writing ρ = [xj,k], σ = [yl,m] and Ai = [ari,si ] (with coordinates expressed in
the logical basis), by matrix product and Eq. (3), p(O(ρ⊗ σ)) can be seen as a
polynomial in the variables x2,2, y2,2 assuming the form:

p(O(ρ⊗ σ)) =
∑
α,β

fα,β(ari,si , xj,k, yl,m)xα2,2y
β
2,2 (5)

where α, β ∈ {0, 1}. But, since the  Lukasiewicz sum is not a polynomial, it is
not representable as a quantum operation in the sense of Eq.(4).
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Figure 1: Schematic representation of the action of the quantum operation E .

�
However, the expression given in Eq.(5) suggests us to look for a quantum

operation E such that the polynomial p(E(ρ⊗σ)) approximates the value p(ρ)⊕
p(σ). The action of E as a quantum operation is depicted in Fig.1.

In order to find the approximation, first notice that the probability value
p(E(ρ ⊗ σ)) does not only depend on p(ρ) and p(σ) but it also depends on the
anti-diagonal elements of ρ and σ among the coefficients fα,β(ari,si , ρj,k, σl,m).
To solve this problem we need to introduce a quantum operation that deletes the
anti-diagonal elements of a density operator on C2, preserving at the same time
its probability values. To do this, we first define the following Kraus operators

D1 =

[
1 0
0 0

]
and D2 =

[
0 0
0 1

]
(6)

and the quantum operation

Ant(ρ) = D1ρD
†
1 +D2ρD

†
2. (7)

In this way, the action of Ant is given by

ρ =

[
1− x r
r† x

]
7→ Ant(ρ) =

[
1− x 0

0 x

]
(8)

and solves the problem posed above.
It is important to remark that the polynomial degree of p(E(ρ⊗σ)) is equal

to 2 (in the sense that it has crossed terms of the form xy). One could attain a
better approximation of the right hand side of Eq.(4) by appealing to a higher
order polynomial. The general properties of convergence (for the limiting case)
of higher order approximations are discussed in [13]. Given that we are looking
for a simple example of an explicit representation of the quantum operation E ,
we stick here to low degree polynomials.

In general, in order to obtain a polynomial p(E(ρ, σ)) of arbitrary degree,
the power of the variables x2,2 and y2,2 has to be increased. This task can be
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achieved by involving tensor powers of both, ρ and σ. Indeed, for an arbitrary

density operator ρ =

[
1− x r
r† x

]
acting on C2, by induction on k, we can

prove that Diag(⊗nρ) = {(1− x)αxβ : α+ β = n}.

Taking into account the above discussion, and in order to obtain a good
approximation for the  Lukasiewicz sum, our stategy will be to consider a new
quantum operation of the form E(n,m)((⊗nρ) ⊗ (⊗mσ)) (instead of E(ρ ⊗ σ);
notice that E = E(1,1)). By using Eqn. 6, we can assume — without losing gen-
erality — that ρ and σ are diagonal. In this way, we look for an approximation
of the form p(E(n,m)((⊗nρ)⊗ (⊗mσ)) ≈ p(ρ)⊕ p(σ). In the following, we show
how to obtain E(n,m) for the particular case n = m = 2.

3 Polynomial approximation for the  Lukasiewicz
sum

In this Section we investigate a family of approximant polynomials for the
 Lukasiewicz sum obtained by using binomial series. The key idea is to re-
duce the problem to a one-variable approximation function. Let us consider the
function h : [0, 2]→ [0, 12 ] defined as

h(z) =

{
z
2 , if z ∈ [0, 1],

1− z
2 , if z ∈ (1, 2].

(9)

Next, define

g(z) =
z

2
+ h(z). (10)

Notice that if z = x + y (with x, y ∈ [0, 1]), then g(x + y) = x ⊕ y. We
will approximate h(z) by using the symmetric functions zi(2− z)i (notice that
h(z) is also a symmetric function with respect to the point z = 1). We look for
coefficients ci such that:

z

2
=

∞∑
i=1

ciz
i(2− z)i, z ∈ [0, 1]. (11)

Now, we are going to consider the partial sums

hn(z) =

n∑
i=1

ciz
i(2− z)i, z ∈ [0, 2] (12)

using the same coefficients as in Eq.(11). Notice that the function h(z) and the
polynomials zi(2 − z)i are symmetric in the interval [0, 2] with respect to the
point z = 1. If the coefficients ci in Eq. (11) are positive, then the series hn(z)
is monotone and increasing for each z ∈ [0, 2]. Thus, by Dini’s Theorem, it
follows that hn(z) uniformly converges to h(z). Indeed, the coefficients ci can
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be obtained by using the binomial series as follows. By appealing to the change
of variables w = z(2 − z) in [0, 1], we obtain that Eq.(11) can be written as
1−
√
1−w
2 =

∑
i ciw

i, where w ∈ [0, 1]. Let us notice that the binomial series
√

1− w =
∑∞
i=0(−1)i

(
1/2
i

)
wi - with

(
1/2
i

)
= (−1)i+1

22i(2i−1)
(
2i
i

)
- is uniformly conver-

gent for |w| ≤ 1. Thus c0 = 0 and ci = (−1)i+1

2

(
1/2
i

)
> 0 for i > 0. Hence, the

approximants Pn(x, y) = gn(x+ y) for the  Lukasiewicz x⊕ y assume the form:

Pn(x, y) =
x+ y

2
+

n∑
i=1

(−1)i+1

2

(
1/2

i

)
(x+ y)i

(
(1− x) + (1− y)

)i
. (13)

Taking into account the above family of polynomials, the rest of the paper
is devoted to provide a quantum operation able to represent the  Lkasiewicz sum
by only involving two qubits input state.

4  Lukasiewicz sum as 16-dimensional quantum
operation

In this section we provide an explicit form of the quantum operation that rep-
resents an approximation of the  Lukasiewicz sum when the input is given by a
two qubit state. As it will be shown in the second part of the section, when the
degree of the approximant is n, then the input of the corresponding quantum
operation needs to assume the form (⊗nρ) ⊗ (⊗nσ) (with ρ and σ qubits). As
it is well known, larger is n and more serious are the physical problems in order
to produce the states ⊗nρ and ⊗nσ. We attack this problem in the next section
but now we confine in the simplest case where n = 2.

By Eq.(13) the approximant polynomial assumes the following form

P2(x, y) =
5

12
(x+ y)(1− x) +

5

12
(x+ y)(1− y) +

1

2
(x+ y).

We want to estimate the error for this approximation. It is given by the following
two-variables constrained maximization problem:

E(P2) = max
(x,y)∈[0,1]2

|x⊕ y − P2(x, y)|.

Taking into account the geometry of the function x⊕ y, if we divide the square
[0, 1]2 in two regions

I =

{
0 ≤ x, y < 1,

x+ y ≤ 1.
II =

{
0 ≤ x, y ≤ 1,

x+ y ≥ 1

then the function x ⊕ y is differentiable in the interior of the regions I and II.
This allows us to apply the standard maximization method to obtain E(P2)
separately. By doing this we obtain E(P2) = 1

12 in correspondence to the point
(x, y) = (1

2 ,
1
2 ).
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Remarkable enough, let us notice that it is also possible to obtain a further
improvement of the above approximation. Using the same maximization argu-
ment, we can see that max(x,y)∈[0,1]2(x ⊕ y − P2(x, y)) = 1

12 for (x, y) = ( 1
2 ,

1
2 )

and max(x,y)∈[0,1]2(P2(x, y)− x⊕ y) = 1
15 for (x, y) = ( 3

16 ,
17
80 ). Thus, if we add

the number 1
2 ( 1

12 −
1
15 ) = 1

120 to P2 i.e.

P̃2(x, y) = P2 +
1

120
(14)

=
5

12
(x+ y)(1− x) +

5

12
(x+ y)(1− y) +

1

2
(x+ y) +

1

120

then, we can see that E(P̃2) = 3
40 < 1

12 in the points ( 3
16 ,

17
80 ) and ( 1

2 ,
1
2 ),

hence providing a further reduction of the error in the approximation.
On this basis, we now build a quantum operation  L2 in ⊗4C2 such that

p( L2(⊗2ρ,⊗2σ)) ≈ p(ρ)⊕ p(σ).

Let ρ and σ are density operators in C2 with vanishing off-diagonal entries. This
quantum operation will be based on the approximant P̃2 defined in Eq.(14).
First, by appealing to a standard two-variable maximization argument, we can
see that

max
(x,y)∈[0,1]2

P̃2(x, y) =
43

40
> 1

and this maximum value is attained in (x, y) = ( 63
80 ,

13
16 ). The above inequal-

ity implies that there is not a quantum operation E such that p(E(ρ ⊗ σ)) =
P̃2(p(ρ), p(σ)). Indeed, as an example, if p(ρ) = 63

80 and p(σ) = 13
16 , then

p(E(ρ ⊗ σ)) = 40
43 > 1. But this is not possible, because p(−) represents a

probability value.
Thus, in order to avoid this problem, we instead consider the normalized

polynomial 40
43 P̃2. In this way, the approximation of the  Lukasiewicz sum reads:

P L2
(x, y) =

40

43
(

5

12
(x+ y)(1− x) +

5

12
(x+ y)(1− y) +

1

2
(x+ y) +

1

120
) (15)

satisfying the normalization condition, i.e. 0 ≤ P L2
(x, y) ≤ 1 in [0, 1]2. Once

avoided the above problem, from now on we will focus our attention on the
polynomial given by Eq.(15) in order to build the quantum operation that ap-
proximately represents the  Lukasiewicz sum.

Let ρ =

[
1− x 0

0 x

]
and σ =

[
1− y 0

0 y

]
be two diagonal density op-

erators acting on C2 (hence, p(ρ) = x and p(σ) = y). Let us notice that the
matrix

(zi,j)1≤i,j≤16 = (ρ⊗ ρ)⊗ (σ ⊗ σ)

is the diagonal matrix whose diagonal coefficients — for the sake of the simplicity
denoted by zi — are given by:
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z1 = (1− x)2(1− y)2, z9 = (1− x)x(1− y)2,

z2 = (1− x)2(1− y)y, z10 = (1− x)x(1− y)y,

z3 = (1− x)2(1− y)y, z11 = (1− x)x(1− y)y,

z4 = (1− x)2y2, z12 = (1− x)xy2,

z5 = (1− x)x(1− y)2, z13 = x2(1− y)2,

z6 = (1− x)x(1− y)y, z14 = x2(1− y)y,

z7 = (1− x)x(1− y)y, z15 = x2(1− y)y,

z8 = (1− x)xy2, z16 = x2y2.

Therefore, a quantum operation  L2(−) =
∑
k Ak(−)A†k acting on ⊗4C2 such

that p( L2(ρ, σ)) = P L2
(p(ρ), p(σ)) = P L2

(x, y) needs to satisfy

P L2
(x, y) =

16∑
i=1

ai(A1, . . . , Ak)zi (16)

where ai(A1, . . . , Ak) are real numbers depending on the elements of the matrices
Ak for 1 ≤ k ≤ 16. Thus, by Eq.(16) the family of matrices (Ak)k of  L2(−) will
be defined.

For this reason we first need to rewrite P L2
(x, y) in the base (zi)1≤i≤16, as

shown in the following proposition.

Proposition 4.1 The polynomial P L2
(x, y) introduced in Eq.(15) can be rewrit-

ten as follows

P L2
(x, y) =

40

43
[

1

120
z1 +

27

20
z2 +

111

120
z4 +

27

120
z5 +

51

20
z6 +

141

60
z8

+
111

120
z13 +

141

60
z14 +

121

120
z16].

Proof: The key of idea is to write each term of the polynomial of the Eq.(15)
in terms of (zi)1≤i≤16. By a straightforward calculation we have that

5

12
(x+ y)(1− x) =

5

12
x(1− x) +

5

12
y(1− x)

=
5

12
(z5 + 2z6 + z8) +

5

12
(z4 + z2 + z8 + z6).

5

12
(x+ y)(1− y) =

5

12
x(1− y) +

5

12
y(1− y)

=
5

12
(z13 + z5 + z14 + z6) +

5

12
(z2 + 2z6 + z14).
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1

2
(x+ y) =

1

2
x+

1

2
y

=
1

2
(z13 + z5 + 2z14 + z16 + z5 + 2z6 + z8) +

+
1

2
(z4 + 2z8 + z16 + z3 + 2z6 + z14).

1

120
=

1

120

16∑
i=1

zi.

Then,

P L2
(x, y) =

40

43
[

1

120
z1 +

27

20
z2 +

111

120
z4 +

27

120
z5 +

51

20
z6 +

141

60
z8

+
111

120
z13 +

141

60
z14 +

121

120
z16].

�

Theorem 4.2 Let us consider the following family of 16× 16 matrices for 1 ≤
k ≤ 8:

[1](2k,j) having 1 in the (2k, j)-entry and 0 in any other entry,

[1](2k−1,j) having 1 in the (2k − 1, j)-entry and 0 in any other entry.

Let us define the following family of matrices, for 1 ≤ k ≤ 8

 L(2k,1) =
√

1
129 [1](2k,1)  L(2k−1,1) =

√
1
16 −

1
129 [1](2k−1,1)

 L(2k,2) =
√

54
43 [1](2k,2)  L(2k−1,2) =

√
1
16 −

54
43 [1](2k−1,1)

 L(2k,4) =
√

37
43 [1](2k,4)  L(2k−1,4) =

√
1
16 −

37
43 [1](2k−1,1)

 L(2k,5) = 3√
43

[1](2k,5)  L(2k−1,5) =
√

1
16 −

9
43 [1](2k−1,1)

 L(2k,6) =
√

102
43 [1](2k,6)  L(2k−1,6) =

√
1
16 −

102
43 [1](2k−1,1)

 L(2k,8) =
√

94
43 [1](2k,8)  L(2k−1,8) =

√
1
16 −

94
43 [1](2k−1,1)

 L(2k,13) =
√

37
43 [1](2k,13)  L(2k−1,13) =

√
1
16 −

37
43 [1](2k−1,1)

 L(2k,14) =
√

94
43 [1](2k,14)  L(2k−1,14) =

√
1
16 −

94
43 [1](2k−1,1)

 L(2k,16) = 11√
129

[1](2k,16)  L(2k−1,16) =
√

1
16 −

121
129 [1](2k−1,1)
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Then,  L2 is defined as the operator acting on ⊗4C2 given by

 L2(ϕ) =

8∑
k=1

[ L(2k,1)ϕ L†(2k,1) +  L(2k,2)ϕ L†(2k,2) +  L(2k,4)ϕ L†(2k,4) +

+  L(2k,5)ϕ L†(2k,5) +  L(2k,6)ϕ L†(2k,6) +  L(2k,8)ϕ L†(2k,8) +

+  L(2k,13)ϕ L†(2k,13) +  L(2k,14)ϕ L†(2k,14) +  L(2k,16)ϕ L†(2k,16) +

+  L(2k−1,1)ϕ L†(2k−1,1) +  L(2k−1,2)ϕ L†(2k−1,2) +  L(2k−1,4)ϕ L†(2k−1,4) +

+  L(2k−1,5)ϕ L†(2k−1,5) +  L(2k−1,6)ϕ L†(2k−1,6) +  L(2k−1,8)ϕ L†(2k−1,8) +

+  L(2k−1,13)ϕ L†(2k−1,13) +  L(2k−1,14)ϕ L†(2k−1,14) +  L(2k−1,16)ϕ L†(2k−1,16)]

is a quantum operation such that, for any diagonal density operators ρ and σ
acting on C2 is

p( L2((⊗2ρ)⊗ (⊗2σ))) = P L2
(p(ρ), p(σ)).

Proof: Let ρ and σ be two arbitrary diagonal density operators acting on C2

and let (zi)1≤i≤16 be the diagonal of the matrix ψ = (ρ ⊗ ρ) ⊗ (σ ⊗ σ). Let
us denote by ak the coefficient of zk in the polynomial P L2

(x, y). Notice that
k ∈ {1, 2, 4, 5, 6, 8, 13, 14, 16}. By a straightforward calculation we can see that

8∑
s=1

 L(2k,s)ψ L†(2k,s) =


0 0 0 0 . . .
0 akzk 0 0 . . .
0 0 0 0 . . .
0 0 0 akzk . . .
...

...
...

...
. . .


and

8∑
s=1

 L(2k−1,s)ψ L†(2k−1,s) =


( 1
16 − ak)zk 0 0 0 . . .

0 0 0 0 . . .
0 0 ( 1

16 − ak)zk 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 .

Thus,

 L2(ψ) =
∑
k

16∑
1=s

 L(2k,s)ψ L†(2k,s) +
∑
k

16∑
1=s

 L(2k−1,s)ψ L†(2k−1,s)

= (⊗3I)⊗
(

1−
∑
k akzk 0

0
∑
k akzk

)
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where k ∈ {1, 2, 4, 5, 6, 8, 13, 14, 16}.
Now, all we need is to verify that  L2 is a quantum operation, by checking

that it satisfies the Kraus representation introduced in Section 1.
Let us notice that the matrix  L†(2k,s)  L(2k,s) has the value ak just in the (k, k)-

th entry and 0 in any other entry. Therefore, the matrix
∑16
s=1  L†(2k,s)  L(2k,s) has

the value 16ak in the (k, k)-th entry and all the other entries are equal to 0.
Hence:

∑
k

16∑
s=1

 L†(2k,s)  L(2k,s) =


16a1 0 0 . . .

0 16a2 0 . . .
0 0 0 . . .

...
...

...
. . .

 .

In a similar way, the matrix  L†(2k−1,s)  L(2k−1,s) has the value 1
16 − ak just in the

(k, k)-th entry and 0 in any other entry. Therefore, the matrix
∑16
s=1  L†(2k−1,s)  L(2k−1,s)

has the value 1−16ak in the (k, k)-th entry, while all the other entries are equal
to 0. Hence:

∑
k

16∑
s=1

 L†(2k−1,s)  L(2k−1,s) =


1− 16a1 0 0 . . .

0 1− 16a2 0 . . .
0 0 1− 16a3 . . .
...

...
...

. . .

 .

Thus
∑
k

∑16
s=1  L†(2k,s)  L(2k,s) +

∑
k

∑16
s=1  L†(2k−1,s)  L(2k−1,s) = ⊗4I. Hence,  L2 is

a quantum operation.
Taking into account the matrix representation of  L2, we can conclude that

p( L2((⊗2ρ)⊗ (⊗2σ))) = P L2
(p(ρ), p(σ)),

as required.
�

Finally, let us notice that, in virtue of Eq.(8), the argument above can be
easily generalized to the case where the input states are not represented by
diagonal matrices.

5  Lukasiewicz sum and symmetric universal
quantum cloning machine for qubits

As mentioned at the beginning of the Section 4, when the degree of the approx-
imant polynomial n is large, that leads to physical problems in order to prepare
the input state ⊗nρ.

As is well known, the No Cloning Theorem [8, 29] forbids the existence of
a quantum operation capable of making perfect copies of an arbitrary input

12



state; on this basis there are objective physical limitations in order to prepare
the state ⊗nρ from an unknown state ρ. But, given a state ρ, it is possible
to obtain approximate copies whose “distance” (generally expressed in terms of
the quantum fidelity) should be maximal [3, 10, 14, 28]. The devices capable
of performing this approximate cloning operation are called Quantum Cloning
Machines (see [7, 24] for empirical implementations). Quantum information
theory includes different protocols to provide an approximate cloning of a state
ρ.

Here we consider the protocol presented in [18] and named Symmetric UQCM
(universal quantum cloning machine), that is characterized by the fact that the
approximate copies of the initial state are identical.

Formally, given a qubit state ω = |ψ〉〈ψ| (with |ψ〉 = c0|0〉+ c1|1〉 in C2) the
protocol in represented by the following transformation (see Eq.(50) in [18])

ω 7→ ωclon ⊗ ωclon

where

ωclon =
2

3
|ψ〉〈ψ|+ 1

6
I =

(
1− 1

6 −
2
3 |c1|

2 1
6 + 2

3c1c0
1
6 + 2

3 (c1c0)† 1
6 + 2

3 |c1|
2

)
. (17)

Let us now apply the cloning operation (17) to each of the input pure states
ρ = |α〉〈α| with |α〉 = a0|0〉+ a1|1〉 and σ = |β〉〈β| with |β〉 = b0|0〉+ b1|1〉. Let
x = |a1|2 and y = |b1|2. Thus, we obtain two approximate copies of ρ and σ (say
ρclonx and σclonx , respectively). Appling the quantum operation Ant (defined in
Eq.(8)) to ρclonx and σclonx we obtain

ρx = Ant(ρclonx ) =

(
1− 1

6 −
2
3x 0

0 1
6 + 2

3x

)

σy = Ant(σclony ) =

(
1− 1

6 −
2
3y 0

0 1
6 + 2

3y

)
then

p(ρx)⊕ p(σy) = min {p(ρx) + p(σy), 1}

= min

{
1

6
+

2

3
x+

1

6
+

2

3
y, 1

}
= min

{
1

3
+

2

3
(x+ y), 1

}
=

1

3
min

{
2

3
(x+ y), 1− 1

3

}
=

1

3
+

2

3
min{x+ y, 1}

=
1

3
+

2

3
(p(ρ)⊕ p(σ)) .
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In this way, we can show that the quantum operation described in Fig. 1 (that
we denote by E) satisfies

p(E(ρ⊗ σ)) =
2

3
P L2

(p(ρ), p(σ)) +
1

6
≈ 2

3
(p(ρ)⊕ p(σ)) +

1

6
. (18)

Finally, in order to obtain the best approximation of P̃2(x, y) provided in Eq.(14)
(that is equal to 3

40 ), we obtain

p(ρ)⊕ p(σ) ≈ 43

40

3

2
(p(E(ρ⊗ σ))− 1

6
).

In this way we obtain the probabilistic value of the  Lukasiewicz sum between ρ
and σ up to an affine transformation.

Figure 2: Quantum operation using a cloning machine.

6 Conclusions

In this paper we have studied the problem of representing the probabilistic
version of the  Lukasiewicz sum by using quantum operations. After showing that
it is not possible to find an exact representation for this probabilistic version,
we have provided an approximation of this in terms of quantum operations. We
have explicitly shown this construction for the case of two qubit states (using
two copies of each input state). Furthermore, in Section 5 we have reduced the
number of available initial states to only two and, by appealing to quantum
cloning machines, we have obtained the same degree of approximation of the
 Lukasiewicz sum between them (up to an affine transformation).

Our method can be extended to higher dimensional problems in a natural
way. This allows to increase the accuracy of the approximation due to the use of

14



higher degree polynomials. It is also important to remark that the method pre-
sented in this paper could be used, in principle, for representing other functions
in the quantum setting.

Our work shows the problems linked with the task of finding quantum ver-
sions of the operations associated to Fuzzy logic. As explained in the Intro-
duction, this line of research could shed some light into the problem of how to
develop soft computing techniques in the framework of quantum computation.
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