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Abstract 

Unravelling the orogenic structure of the Sierra Grande de San Luis (Argentina) is essential 

to understand the geological evolution of the Famatinian orogen and the western margin of 

Gondwana. However, its structural organization is still poorly known and widely debated. In 

this contribution, a new interpretation of the complex geological structures in the southern 

sector of the Sierra Grande de San Luis is presented. This work is based on a litho-

constrained joint inversion of gravity and magnetic datasets combining lithological, structural 

and rock properties information. Results are consistent with a large-scale doubly-vergent 

structure caused by a compressional tectonic setting as a consequence of the collision 

between an allochthonous terrane (Cuyania/Precordillera) and the proto margin of Western 

Gondwana. A convex morphology of the indenter is proposed to be responsible for producing 

a significant clockwise rotation of the horizontal deviatoric stresses. This stress field caused a 

small sinistral component of movement and gave rise to the doubly-vergent transpressive 

mega-structure.  
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1 Introduction 

Considered as an excellent example of paleo-collisional environments, the Sierra 

Grande de San Luis (SGSL) has been a major topic of study because of its connections with 

the development of the western margin of Gondwana. On the basis of surface structural data, 

analysis of metamorphism and magmatism, and absolute age data, several tectonic evolution 

models were proposed for the southern area of the SGSL (e.g. Siegesmund et al., 2004; von 

Gosen and Prozzi, 2005; Steenken et al., 2008; Drobe et al., 2009, among others). The most 

accepted idea is that the internal basement structures were developed during the Famatinian 

orogeny (Ortiz Suárez et al., 1992; Sims et al., 1997; von Gosen, 1998a; Sato et al., 2003) 

product of the collision between the Laurentian-derived (Thomas and Astini, 1996) 

Cuyania/Precordillera terrane (Whitmeyer and Simpson, 2004; von Gosen and Prozzi, 2005) 

and the western margin of Gondwana (Rapela et al., 2001; Otamendi et al., 2009; Steenken et 

al., 2010) from the Middle-Late Ordovician (Thomas and Astini, 2003; Ramos, 2004). More 

importantly, there is no agreement regarding the orogenic architecture resulting from the 

Early Paleozoic deformational events. According to the different authors, the southern area of 

the SGSL would be the core of a regional-scale antiform (Sims et al., 1997, 1998; Whitmeyer 

and Simpson, 2004), a transpressional structure (von Gosen and Prozzi, 1998) associated with 

a conjugate shear system (von Gosen and Prozzi, 2005), a large-scale transpressional positive 

flower structure (Morosini et al., 2014), or a mega-shear zone (Delpino et al., 2016). 

A major limitation on all the current tectonic evolution interpretations is the lack of 

knowledge of the structures at depth since 3D geological models have not supported them. In 

this sense, gravity and magnetic provide information about the characteristics of the crust 

only by surface data processing (Oldenburg et al., 2007). The robustness of the model will 

depend on the data distribution, the inversion technique and the amount of information 

collected (density, magnetic susceptibility, structural data and other available constraints). In 

this work, we integrate geological and geophysical data into a 3D litho-constrained inversion 

model to understand better the orogenic architecture of the Famatinian orogen. The 

interpretation of these results provides useful insights into the geological structures of 

southern SGSL, the tectonic evolution of the Famatinian orogen and the construction of the 

western margin of Gondwana.  
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2 Geological setting 

Located in the southern sector of Sierras Pampeanas (Caminos, 1979), the Sierra 

Grande de San Luis has a general NE trend with an extension of approximately 160 km long 

and 80 km wide (Fig. 1). Three principal NNE trending metamorphic complexes, called 

Nogolí (NMC), Pringles (PMC), and Conlara (CMC) (Sims et al., 1997), dominate it. Two 

narrow low-grade metamorphic belts, named San Luis Formation (SLF) by Prozzi and Ramos 

(1988), separate these units. The tectonic nature of the contacts between the metamorphic 

units is indicated by the presence of many ductile shear zones that are parallel to subparallel 

to the main regional metamorphic NNE foliation (von Gosen and Prozzi, 2005). These shear 

zones produce the superposition of high-grade metamorphic rocks over medium and low-

grade metamorphic rocks, resulting in an inverted metamorphism structure (Ortiz Suárez and 

Casquet, 2005).  

The Nogolí Metamorphic Complex is composed of paragneisses, orthogneisses, 

migmatites, schists, orthoamphibolites, marble, calc-silicate rocks and banded iron layers 

(Ortiz Suárez, 1999; González et al., 2004). According to its deformation, two structural sets 

can be recognized within this complex: one is a relict NW foliation attributed to pre-

Famatinian events and the other is a penetrative NNE foliation, which was assigned to 

Famatinian events (Sato et al., 2003). Ages of 470 to 445 Ma (obtained by CHIME U/Th/Pb 

monazite and Sm/Nd mineral-wall rock isochron) in gneisses, 476 to 457 Ma (Ar/Ar and 

K/Ar in amphibole) in amphibolites (González et al., 2004) and 478 ± 4 Ma (SHRIMP U/Pb-

monazite) in metapsammopelites (Steenken et al., 2006), suggest an Ordovician 

metamorphism age (Famatinian) for this complex. The maximum sedimentation age of the 

protoliths has been defined at ~530 Ma by U/Pb in detrital zircon (Drobe et al., 2009).  

The Pringles Metamorphic Complex includes two units. One is a mid-grade 

metamorphic unit called Micaschist Group (MG) (von Gosen and Prozzi, 1998). The other 

one is a high-grade metamorphic unit which reaches granulite facies (Hauzenberger et al., 

2001; Delpino et al., 2001; Ortiz Suárez and Casquet, 2005; Delpino et al., 2016) named San 

José Complex (SJC) (Costa et al., 2001a). The Micaschist Group consists predominantly of 

muscovite-biotite schists alternating with meta-quartzites. Pegmatitic injections are locally 

important, especially around synorogenic granitoids (Ortiz Suárez et al., 1992). This unit is 

placed between the San José Complex and both belts of the San Luis Formation, whose 

sedimentary protoliths probably belongs to the same clastic sequence (Hauzenberger et al., 
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2001). In this area, the Micaschist Group represents intermediate crustal portions (Morosini et 

al., 2014). The high-grade unit is principally composed of migmatites and paragneisses, and 

to a lesser extent, of amphibolites, granulites, orthogneisses and calc-silicate rocks. The La 

Jovita-Las Águilas mafic-ultramafic Complex (Sato et al., 2003) is hosted in the San José 

Complex and is spatially related to an internal mylonitic zone called La Arenilla (Ortiz 

Suárez et al., 1992). The age of metamorphism of the Pringles Metamorphic Complex has 

been defined from 498 ± 10 Ma (SHRIMP U/Pb-zircon) in granulites, to 452 ± 19 Ma 

(stepwise leaching Pb/Pb-garnet) in gneisses (Steenken et al., 2006). Sims et al. (1998) 

defined a metamorphic climax between 460-450 Ma, through SHRIMP U/Pb-zircon and 

monazite method in gneisses. The maximum age of the sedimentary protoliths is ~530 Ma, 

with provenance from a Pampean source (Sims et al., 1998; Steeken et al., 2006).  

The Conlara Metamorphic Complex comprises high to mid-grade metamorphic rocks. 

It is mostly composed of gneisses, migmatites, banded schists, orthoamphibolites and to a 

lesser extent by marbles and calc-silicate rocks (Llambías and Malvicini, 1982; Delakowitz et 

al., 1991; López de Luchi et al., 2003). Three deformational phases (Ortiz Suárez, 1988) with 

two folding stages (von Gosen and Prozzi, 1998) were recognized for this unit. Siegesmund 

et al. (2010) determined an Ediacaran age of 564 ± 21 Ma (stepwise leaching Pb/Pb-garnet) 

while Whitmeyer and Simpson (2004) published Famatinian ages of 482 to 470 Ma (U/Pb-

monazite) for the metamorphism. The maximum depositional ages of the sedimentary 

protoliths have been defined at ~580 Ma (Drobe et al., 2009) and ~550 Ma (Rapela et al., 

2015). 

The San Luis Formation is composed of metapelites (phyllites and shales), 

metasandstones, metaconglomerates and acid metavolcanic rocks affected by greenschist 

facies (low-grade) metamorphism (Prozzi and Ramos, 1988; von Gosen, 1998b). Tight and 

asymmetrical folds with a slight vergence towards the east (von Gosen, 1998b; Ortiz Suarez, 

1999) characterize the structure. The sedimentary protolith of the San Luis Formation can 

interpreted as belonging to a turbiditic sequence (Zavala et al., 2000) of a foreland basin 

(Chernicoff and Ramos, 2003) formed predominantly by felsic recycled materials (López de 

Luchi et al., 2003). The metamorphism has occurred after the intrusion of metavolcanic rocks 

dated in 470 Ma (Casquet et al., 2014). The maximum sedimentation age has been 

determined at ~510 Ma, from a Pampean source by detrital zircon (Drobe et al., 2011). 
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Two groups of plutonic magmatism in the SGSL have been extensively studied in the 

last three decades (Ortiz Suárez et al., 1992; Llambías et al., 1998; Sims et al., 1998; Sato et 

al., 2003; López de Luchi et al., 2007; among others). The first group is a Cambro-

Ordovician orogenic magmatism, associated with the development of the Famatinian arc. The 

second group is a Devonian post-orogenic magmatism, which is associated with a stage of 

erosion and post-collisional ascent during the Achalian orogeny (Fig. 1b, Morosini et al., 

2017 and references therein). Cambro-Ordovician orogenic plutonic magmatism is composed 

of basic-ultrabasic (gabbros, hornblendites, pyroxenites and peridotites), intermediate 

(diorites and tonalites), and acidic rocks (granodiorites, granites, pegmatites and 

metavulcanites). Devonian post-orogenic magmatism is characterized by the development of 

large monzogranitic and monzonitic plutons (greater than 30 km2). These plutons associated 

to an episode of crustal growth by enriched mantle derived magma input and variable degrees 

of partial melting of a lower crustal source at the waning stages (López de Luchi et al., 2007, 

2017; and references therein). 
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Fig. 1: a) Map showing the location of the SGSL in the context of the Pampean orogen, Famatinian magmatic 

arc, and the Cuyania/Precordillera terrane. b) Geological map of the SGSL showing the distribution of 

metamorphic and magmatic units. The black dotted line box represents the location of the inversion model. 

Numbers correspond to the plutons: 1) La Escalerilla, 2) El Realito, 3) Bemberg, 4) El Salado, 5) Las 

Cienaguitas, 6) San Miguel, 7) Rodeo, 8) Gasparillo, 9) Tamboreo, 10) Las Verbenas-El Salto, 11) Los Alanices, 

12) El Peñón, 13) Río Claro, 14) Pantanos Negros, 15) Manantiales, 16) La Ciénaga, 17) La Represa, 18) La 

Florida, 19) La Tapera, 20) Río Quinto, 21) Cerros Largos, 22) Cruz de Caña, 23) Río de la Carpa, 24) Río 

Luján, 25) Paso del Rey, 26) El Tala, 27) El Molle, 28) Barroso, 29) Tilisarao, 30) El Telarillo, 31) La 

Población, 32) El Volcán, 33) El Morro, 34) La Totora, 35) Renca, 36) El Hornito, 37) Las Chacras-Potrerillo, 

38) Tinaja, 39) Socoscora, 40) Villa de la Quebrada, 41) La Bajada, 42) Quines, 43) Puesto Las Palmas, 44) Don 

Andino, 45) La Barranquita, 46) Quebrada Escondida (modified from Morosini et al., 2017). 
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During the continent-arc collision, deformation reached all crustal levels through 

different mechanisms: 1) Large scale fold and thrust belts in the upper Famatinian crust 

(Astini and Dávila, 2004; Cristofolini et al., 2014); 2) strike-slip movement along major shear 

zones in the front and margins of the Famatinian orogen (von Gosen and Prozzi, 1998, 2005; 

Höckenreiner et al., 2003); 3) large-scale west-verging shear zones located in the already 

crystalline Pampean basement (Sims et al., 1997; Martino, 2003; Cristofolini et al., 2017; 

Semenov and Weinberg, 2017); and 4) double-vergent ductile deformation belts (Larrovere et 

al., 2016) located at different sites within the collisional arc. The most important structural 

feature in the area is the San Luis Shear System (von Gosen and Prozzi, 2005). It has a 

general NNE trend and usually shows curved surfaces and associated structures (e.g. 

synthetic and secondary shear faults).  

The current exposure of the metamorphic units occurred from the Middle Permian, 

while the main cooling/exhumation phases took place during the Triassic/Early Jurassic with 

no significant exhumation after Cretaceous times (Bense et al., 2017). Neogene deformation 

occurred due to a reverse fault system (located on the western side of the SGSL) with N trend 

and variable dip to the east. Normal and strike-slip faults with different orientations 

associated with the main inverse system are also recognized (Costa et al., 2001a). In addition, 

a Miocene-Pliocene magmatic episode was linked to the Pampean flat-slab, where the 

eastward migration of the Andean magmatic arc occurred (Ramos et al., 2002). This 

migration occurred due to the flattening of the Nazca plate after the subduction of the Juan 

Fernandez aseismic ridge (Barazangi and Isacks, 1976; Gutscher et al., 2000; among others). 

The associated magmatism is characterized by the development of volcanic domes and 

eruptive lithofacies. This unit is arranged along a WNW stripe, with strong structural control 

of the pre-Andean crust and conjugated fracture systems (Sruoga et al., 2017). 

Geophysical studies in the Sierra Grande de San Luis are scarce. In an attempt to 

understand the mafic-ultramafic intrusions in southern SGSL, Kostadinoff et al. (1998) 

computed the first forward 2D models estimating a mafic-ultramafic intrusion of about 250 

km3. Zaffarana et al. (2011) demonstrated that most of the gravity anomaly centred in the 

SGSL could be explained by the lateral contrast between the high-grade metamorphic 

complex that hosts the mafic-ultramafic rocks and the surrounding less dense metamorphic 

units. In addition, they showed that it does not require appealing to near-surface mafic-

ultramafic bodies larger than the size observed in surface outcrops. However, these models 

were very limited as for the area covered and they did not take into account variations in 

density and magnetic susceptibility within the same geological units. The latest large-scale 
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geophysical studies correspond to Chernicoff and Ramos (2003) who not only analysed the 

aeromagnetic maps of the Sierra de San Luis and Comechingones but also defined “litho-

magnetic” units. These units are differentiated by having a uniform magnetic signal and are 

limited by the presence of faults and/or fractures.  

In this manuscript, new detailed data of the structures of southern SGSL are 

presented. This new information is an essential component in the development of more robust 

and modern geological models obtained by litho-constrained inversion of geological and 

geophysical datasets. These models show the continuation of the structures at depth and how 

is the distribution of rock properties (density and magnetic susceptibility) in the geological 

units. In this way, the units are described not only based on their litho-magnetic signature 

over the surface, but also as likelihood statistics in the entire study area in three dimensions.  

 

3 Methods and data  

 

3.1 Geological and structural data 

Geological and structural data are essential components of the litho-constrained 

models. In this sense, cartography was produced with the support of LANDSAT, ASTER and 

Google Earth satellite images, through a geodatabase in the Qgis software. The lithological 

units were recognized and hand samples were collected to be studied through routine 

petrographic analysis. Structural data (mylonitic foliations, stretching lineations, fold axes, 

kinematic criteria, etc.) were acquired along transversal profiles to the main shear zones, 

which generally limit the metamorphic units (Fig. 2). Collected data were plotted and 

processed statistically with Stereonet 2011-2015 (Allmendinger et al., 2013; Cardozo and 

Allmendinger, 2013). The structural data sets, along with some characteristics previously 

published by other authors are shown in Table 1. Photographs of the main structural features 

are presented in Figure 3. 
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Fig. 2: Structural results for the study area. A) Plot of the internal structures of the basement. The poles to plane 

represent mylonitic foliations (Pmy), and Lmy represent the mylonitic stretching lineations of the main shear zones 

in the southern area of the SGSL. B) Schematic structural profile of the Pringles Metamorphic Complex and the 

San Luis Formation according to the projected surface data. Numbers represent the main shear zones: 1) El 

Realito-Río de la Quebrada, 2) Pancanta-La Carolina, 3) La Escalerilla, 4) San Pedro-El Volcán, 5) La Arenilla, 

6) La Troya, 7) Ciénaga de Inti Huasi, 8) Río Guzmán, 9) Río Los Bayos - Funes, and others of the Nogolí 

Metamorphic Complex (undifferentiated). The shear zones are dominantly reverse and define a transpressional 

double-vergent structure with top-to-west on the west and top-to-east on the east, and have a minor sinistral 

strike-slip component. The mafic-ultramafic sequence lies in the core of the double-vergent structure. 
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Fig. 3: Examples of the main shear zones (SZ) exposed in the central area of the SGSL. a) δ-shape clasts in the 

southern part of the El Realito-Río de la Quebrada SZ (vertical view and reverse sense). b) Granite mylonite 

within a synthetic branch of the La Escalerilla SZ (horizontal view with a sinistral shear sense). c) Imbricated K-

feldspar porphyroclast with recrystallized "tails" and intracrystalline microfractures of the granite mylonite 

shown in b (thin section image under crossed polars). d) Pinch and swell structure of K-feldspar and quartz in 

aplo-pegmatitic mylonites of the San Pedro-El Volcán SZ (vertical view and reverse sense). e) Sigmoidal 

boudins of amphibolite rocks (up to 1 m thick) wrapped by mylonitic para-derived migmatites. High-angle 

reverse movement (east over west) in this site of the La Arenilla SZ is observed (vertical view and reverse 

sense). f) Asymmetric folds of felsic segregations in a gneiss (San José Complex - PMC) indicating a reverse 

movement component (west over east) in the La Troya SZ (vertical view and reverse sense). g) σ-type 

porphyroclast (Kfs) in a mylonitic gneiss corresponding to the La Troya SZ (thin section image under crossed 

polars). h) Asymmetric folds of felsic segregations in micaceous schists (Micaschist Group) indicating a reverse 

movement component (west over east) in the Inti Huasi SZ (vertical view and reverse sense). i) Phyllonites 

within the San Luis Formation in the Inti Huasi SZ. Asymmetrical folds that indicate oblique sinistral sense are 

shown (horizontal view with a sinistral shear sense). j) Phyllonites on the Río Guzmán SZ (view tilted to the 

north and reverse sense with sinistral strike-slip component). 
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3.2 Gravity data 

  In order to suppress the border effects and to have a regional context of the long 

wavelength anomalies, 886 gravity stations (260 correspond to the modelled area) were used 

to compute the Bouguer anomaly covering the entire SGSL area. The theoretical gravity was 

calculated using the International Gravity Formula 1967. Bouguer gravity anomalies 

(Blakely, 1995) were calculated considering an average rock density of 2.67 g/cm3 (Hinze, 

2003). Anomaly values were corrected for earth curvature (LaFehr, 1991a, b). Terrain effects 

were subtracted by a combination of the method described by Nagy (1966) and Kane (1962) 

using local and regional DEMs with 90 m and 300 m resolutions respectively and a terrain 

density of 2.67 g/cm3. The anomaly map was obtained utilizing kriging interpolation with a 

1500 m cell size (Christiansen et al., 2015).  

Assuming that the residual anomalies are caused only by shallow and intra-basement 

gravity sources a regional-residual separation was performed obtaining the Residual Bouguer 

Anomaly map (Fig. 4a). This method consists of cross-correlating grids of two successive 

upward continuation heights finding the maximum deflection of these cross correlation values 

(Zeng et al., 2007). The obtained upward continuation height was 25 km that corresponds to a 

maximum research depth of approximately 6 km (Jacobsen, 1987). Once the process is 

applied, the lateral density contrasts that tend to be associated with intrusions or changes in 

lithology in the upper crust can be interpreted. 

 

3.3 Magnetic data 

  The Total Magnetic Anomaly (TMA) grid belongs to Area 1 Servicio Geológico 

Minero Argentino (SEGEMAR). It was acquired at a nominal height of 120 m along E-W 

lines spaced every 500 m with N-S tie lines every 5000 m. A non-linear filter (Naudy and 

Dreyer, 1968) was used to remove data spikes (high amplitude and short wavelength noise) 

and then the resultant data were gridded to a cell size of 160 m utilizing a bi-directional 

gridding method. The residual TMA grid (Fig. 4b) was obtained applying a Gaussian filter 

with a cut-off wavelength of 24 km for a maximum depth of investigation of approximately 6 

km. This number was calculated assuming anomalies from concentrated sources (e.g. 

spherical) at a depth z to its centre and following the half-width rule. This formula establishes 

that the relationship between the depth of investigation and the cut-off wavelength (λ) is λ ≥ 

4×z.  
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3.4 Density and magnetic susceptibility data 

Rock samples were collected (Fig. 4a and 4c) to measure density values in the 

laboratory (272 samples, Table 2) based on the method of double weighing with paraffin 

(Smithson, 1971). The magnetic susceptibility of the different units (345 values, Table 3) 

were measured on site with a magnetic susceptibility meter averaging at least five 

measurements within a radius of 50 m in every location (Fig. 4b and 4d).  

Density and magnetic susceptibility data were used only as reference input for the 

petrophysical parameters of the units. The main discrepancies may be due to the fact that the 

number of samples is very limited and the metamorphic grade varies within the area in 

parallel with the physical properties of the rocks (Best, 2003). Furthermore, it has been shown 

that for any lithological group, there is a possible range of values of two to four orders of 

magnitude in the magnetic susceptibility (Clark, 1997). Additionally, the weathering of rocks 

diminishes the values of magnetic susceptibility due to the metastable nature of both 

magnetite and pyrrhotite at the surface of the Earth (Isles and Rankin, 2013). 
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Fig. 4: Geophysical datasets used in the inversion process. In (a) and (b) black dots represent gravity stations 

and black lines the limits of the main geological units. Dashed lines delineate the western limit of the La 

Escalerilla Pluton. a) Residual Bouguer Anomaly map with density samples superimposed (colour circles, scale 

in Fig. 4c), b) Residual TMA map with magnetic susceptibility samples superimposed (colour circles, scale in 

Fig. 4d), c) Density samples locations, d) Magnetic susceptibility measurements locations. 

 

3.5 3D litho-constrained joint inversion of gravity and magnetic data 

The geophysical inversion method carried out in this paper was implemented using 

GeoModeller software developed by Intrepid Geophysics and BRGM (Calcagno et al., 2008; 

Guillen et al., 2008). This method was designed for cases in which the geology is known in 

scattered places of the surface. Based on the theory of potential fields, this technique 

interpolates and extrapolates information taking into account the geological contacts, their 

orientation and the order of the formations in the stratigraphic column. The objective is to 

create a 3D model to describe the geometry and petrophysical parameters of the geological 
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units (McInerney et al., 2005). Then the model is discretized into voxels (rectangular prisms 

with properties given by the geological unit they represent) in order to make the 

computational calculations. Through forward modelling, the geological units of the model are 

adjusted and their geophysical responses are approximated to the original geophysical grids. 

Then its physical properties (density and magnetic susceptibility) are optimized using least 

squares analysis and the model is again adjusted. Finally, the litho-constrained stochastic 

inversion is carried out.  

This non-deterministic method of inversion modifies, with each iteration and within a 

range determined by the user, one cell of the voxel model, either in terms of geology-

geometry or rock property. The revised geophysical response is recomputed following the 

small change, and assessed against observed gravity and magnetic data. If the misfit is better 

than the last iteration, the model is kept. If the misfit is worse, the model is generally rejected. 

Given the nature of the inversion process (not deterministic) iteration do not cease when a 

specified low limit is reached. The process continues a number of times given by the user and 

models which converge up to an overlap zone of 3 different datasets (geology, magnetics and 

gravity) are kept (Fig. 5) and finally given through likelihood statistics (Gibson et al., 2013). 

As a final result we obtain the most probable geological model, and its distribution of 

densities and magnetic susceptibilities. The complete inversion process carried out for this 

publication can be seen in Appendix A. 

 

 

Fig. 5: Litho-constrained inversion process sketch. This method explores possible models varying the geology, 

density and magnetic susceptibility within a range determined by the user. The models that converge to the 

central area (3 independent datasets) are stored and delivered in the form of likelihood statistics (Modified from 

Gibson et al., 2013).  

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

16 
 

4 Results 

Results show a high correlation between the gravimetric anomalies and the density 

samples (Fig. 4a). In its majority, the samples with high densities are located in the high 

gravimetric zones, especially in the area of El Volcán, the southern sector of the Nogolí 

Metamorphic Complex and the northern sector of the Pringles Metamorphic Complex. For 

the magnetic anomalies, the correlation was not so satisfactory with respect to the samples but 

a high correlation can be observed with respect to the geology. It should be considered that 

the data spacing in this case is much smaller than in the gravimetric one. The magnetic 

maxima are mainly found in the Pringles Metamorphic Complex associated with the mafic-

ultramafic rocks and in the Ciénaga de Inti Huasi and Rio Guzman shear zones. High values 

of magnetic anomaly can also be observed in the Nogolí Metamorphic Complex and in the 

postorogenic plutons of Renca, La Totora and Las Chacras-Potrerillo (Fig. 6). 

 

 

Fig. 6: RTP magnetic anomaly map of the study area with the geological interpretation. Solid white lines 

represent the contour of the SGSL and some important geological features (mostly plutons). Dashed black lines 

represent inferred and observed faults. Dashed thick white lines represent shear zones: 1) El Realito-Río de la 

Quebrada, 2) Pancanta-La Carolina, 3) La Escalerilla, 4) San Pedro-El Volcán, 5) La Arenilla, 6) La Troya, 7) 

Ciénaga de Inti Huasi, 8) Río Guzmán, 9) Río Los Bayos - Funes, and others of the Nogolí Metamorphic 

Complex (undifferentiated). 
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The final 3D model with 10 control sections (in which the inferred geology calculated 

by the models can be observed up to a depth of 6 km), and the density and magnetic 

susceptibility cubes are presented in Figure 7. A remarkable feature is the variation of the 

magnetic susceptibility on the surface that coincides with the "axis" of the doubly-vergent 

transpressive mega-structure where the ultramafic rocks outcrop. In Appendix A, the 

evolution of the petrophysical values along with the initial and final models are described in 

more detail.  

Gravity inversion resulted in a general misfit (RMS misfit in the whole grid) of 0.3 

mGal (Fig. 8 a, b, c, d). Differences between the observed and the computed grid, especially 

in the Pringles Metamorphic Complex, could be related to mafic-ultramafic rocks that were 

not considered in the model. Other differences can also be associated to density variations in 

the postorogenic granitoids mostly in the El Molle/Barroso and El Volcán areas. Regarding 

the magnetic anomalies, the adjustment was good in most of the grid obtaining a general 

misfit of 19.2nT (Fig. 8 e, f, g, h). However, isolated misfit areas in the magnetic grid could 

correspond to unmapped mafic-ultramafic rocks, such as in the Nogolí Metamorphic 

Complex. These may also be caused by bodies of small size that were not taken into account 

due to the regional character of the model. After 20 million iterations, the misfit for both 

datasets became nearly horizontal (Fig. 8 d, h). Consequently, it is assumed that a greater 

number of iterations would not produce significant changes in the results. 
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Fig. 7: a) 3D view of the geological units with 10 control sections perpendicular to the main structures. b) 

Distribution of the geological units in the control sections. c) Final density cube. d) Final magnetic susceptibility 

cube e) High density values f) High magnetic susceptibility values 
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Fig. 8: Final results of the gravity (left) and residual magnetic (right) data inversion. a) Residual Bouguer 

anomaly. b) Bouguer anomaly produced by the 3D model. c) Misfit between the observed and the model-

computed Bouguer Anomaly. d) RMS misfit of the whole gravity grid. e) Residual TMA. f) TMA produced by 

the 3D model. g) Misfit between the residual TMA and the model-computed TMA. h) RMS misfit of the whole 

magnetic grid. 
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4.1 3D shape of the San Luis Shear System 

A simplified sketch of the San Luis Shear System is presented in Fig. 9. This model is 

based on the projected surface structural data and the results of the inversion model (Figs. A8 

to A12 in Appendix A). Results suggest that most of the analysed shear zones continue 

towards the depth with the same inclination as the angles measured on the surface. However, 

some of them (1, 7 and 8) become horizontal and then vertical in the central area. In the La 

Arenilla shear zone (5) foliations are vertical to sub-vertical, between 86º NW and 70º SE, 

with down-dip stretching lineations. Taking into account the whole set of shear zones it 

resembles a “positive flower structure”. Therefore, most of the shear zones could intercept at 

depth to form a single belt of ductile deformation, which can be similar to a suture zone or 

vertical extrusion channel (at a depth >6 km).  
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Fig. 9: 3D view of the San Luis Shear System with sections 4, 6, 8 and 10 showing the shape of the shear zones 

at depth. 1) El Realito - Río de la Quebrada. 2) Pancanta - La Carolina. 3) La Escalerilla. 4) San Pedro - El 

Volcán. 5) La Arenilla. 6) La Troya. 7) Ciénaga de Inti Huasi. 8) Río Guzmán. 9) Río Los Bayos - Funes. 

 

4.2 3D shape of the Nogolí Metamorphic Complex 

The eastern boundary of the Nogolí Metamorphic Complex (Fig. 10a) is located 

below the western belt of the San Luis Formation and the La Escalerilla granitic pluton. 
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According to the model, the contact with the Micaschist Group (Pringles Metamorphic 

Complex) occurs with high angles (around 70°), and occasionally in a sector with the Conlara 

Metamorphic Complex, where the Pringles Metamorphic Complex thins out. Within this 

complex, mafic-ultramafic, tonalitic and granitic rocks are present on the surface and the 

model suggests that they must also be present at depth (Fig. 10f and 10g). Several bodies 

located preferentially in the northern sector of the complex, where they can be observed on 

the surface (e.g. Pampa de las Invernadas), would represent the mafic-ultramafic rocks. The 

northern, southern and western limits of the Nogolí Metamorphic Complex are outside the 

modelled area and their 3D shapes are still unknown.  

 

4.3 3D shape of the Conlara Metamorphic Complex 

Two distinct zones were recognized within the Conlara Metamorphic Complex based 

on geological mapping. One is related to a high degree of metamorphism and is 

predominantly composed of migmatites that are located in a central strip. The other zone is 

located on both sides of the previous one and is related to a lower degree of metamorphism. It 

consists mainly of schists with a characteristic compositional banding. In the 3D model (Fig. 

10b) the migmatite zone (central) is represented by a tabular morphology with a slight 

inclination towards the east. Conversely, the San Luis Formation and the Micaschist Group 

represent the western limit of the schist zone, located in the western sector of the Conlara 

Metamorphic Complex. This border presents a slight inclination towards the west, which 

culminates vertically in the deep central sector of the San José Complex. Eventually a deep 

contact with the Nogolí Metamorphic Complex can be observed. The eastern limit of the 

Conlara Metamorphic Complex exceeds the limits of the model and its 3D shape is not 

completely known. However, there is consensus that it would be represented by the Guacha 

Corral mega-shear zone (Sims et al., 1998; Whitmeyer and Simpson, 2004; Semenov and 

Weinberg, 2017; among others). 

 

4.5 3D shape of the PMC 

The San José Complex (Fig. 10c) has a funnel-shaped cross-section that thins 

downwards with different thicknesses depending on the latitude (pinch and swell mega-

structure or mega-boudinage). Modelling suggests that the mafic-ultramafic rocks hosted in 
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the first 6 km of the San José Complex correspond to a 25% of its volume, and are scattered 

at different depths. The greater or lesser concentration in volume of these rocks is, according 

to the obtained model, directly related to the thickness of the San José Complex (Fig. 10g). 

The Micaschist Group forms two packages, one on either side of the San José complex, with 

opposite dips (Fig. 10d). The surfaces that limit it are curved and contoured. The boundaries 

between both Micaschist Group belts and both San Luis Formation belts present intrusions of 

granites and pegmatites; the largest being the La Escalerilla Pluton. This granite is located 

between the western strips of the Micaschist Group and the San Luis Formation, although 

these borders converge at depth below the pluton and towards the north. 

 

4.6 3D shape of the San Luis Formation 

The best fit for this unit is achieved when a reduced thickness (< 2 km) and a 

horizontal base are considered (Fig. 10e). The border with the Conlara Metamorphic Complex 

and the border with the Nogolí Metamorphic Complex are characterized by straight traces; 

nevertheless, the internal borders (limit with the Micaschist Group and the La Escalerilla 

Pluton) are curved. Both strips of this formation culminate to the north in a thin wedge-shape. 

Regarding the magnetic inversion, high values of magnetic susceptibility were found 

especially in the contact with the Conlara Metamorphic Complex (Río Guzmán Shear Zone).  

 

4.7 3D shapes of the plutonic plutons 

Although the model did not focus on the shape of the plutons, a particular feature of 

the model is that most of the Ordovician tonalitic and granitic bodies in the SGSL are longer 

in the N-S direction and are horizontally flattened, especially those that are currently exposed 

on the surface (Fig. 10f). To get a more precise shape of these bodies, it would be necessary 

to acquire more data in the areas of interest and model them individually. 

The most outstanding body of the orogenic magmatism in the area corresponds to La 

Escalerilla Pluton. According to the geophysical results, it has a flat base (in the central and 

southern parts) with a slight tilt to the east and a thickness close to 2 km. Due to the conical 

shape of the pluton towards that limit (pipe-shape in profile), magma ascent can be 

interpreted through a feeder root located in contact with the Micaschist Group. This root 
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disappears gradually to a depth of about 5 km. Below this pluton, the Nogolí Metamorphic 

Complex is in contact with the Pringles Metamorphic Complex without the intervention of 

the San Luis Formation.  

The vast majority of the postorogenic plutons are subcircular in plain view (Fig. 10f). 

In general, the subcircular shapes indicate that their feeder roots are situated in their central 

part. Furthermore, postorogenic bodies have thicknesses between 1 and 3 km, which suggest 

that they have a flat morphology. 

 

4.8 3D shape of Neogene plutons 

Because of their small volumes close to the surface, Neogene plutons (Fig. 10h) were 

difficult to properly model at the scale of the investigation carried out here. Mostly, these 

rocks have low density and a variable magnetic susceptibility. The 3D shape of the volcanic 

elements (domes, some lava flows and pyroclastic material) is observable on the surface 

because they protrude over the previously eroded relief of the basement. Their sizes are 

variable but do not reach large dimensions. 
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Fig. 10: 3D shape of the units present in the southern sector of the SGSL. a) Nogolí Metamorphic Complex. b) 

Conlara Metamorphic Complex. c) San José Complex (Pringles Metamorphic Complex). d) Micaschist Group 

(Pringles Metamorphic Complex). e) San Luis Formation. f) Famatinian orogenic and postorogenic plutons. g) 

Mafic-ultramafic rocks (most are in the Pringles Metamorphic Complex and some bodies in Nogolí 

Metamorphic Complex). h) Neogene volcanic rocks. 
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5 Discussion 

5.1 Orogenic architecture and initial stage 

The morphology of the geological units together with the interaction of the structural 

elements and tectonic stresses resulted in a large-scale double-vergent structure covering the 

Pringles Metamorphic Complex and the San Luis Formation. In this context, the San José 

Complex (granulite facies of the PMC) is the extruded core above the Micaschist Group 

(amphibolite facies of the PMC), and this, in turn, rides on the San Luis Formation 

(greenschist facies), while the Nogolí Metamorphic Complex and the Conlara Metamorphic 

Complex form the external substrate of the doubly-vergent transpressive belt. This is 

supported by the thermo-barometric data of the different units (Hauzenberger et al. 2001; 

Ortiz Suarez and Casquet, 2005; Morosini and Ortiz Suárez, 2011, 2013; Cruciani et al., 

2012; Morosini et al., 2014; Delpino et al., 2007, 2016; Verdecchia et al., 2018) which 

suggest an inverted disposition of the metamorphism by tectonics processes (Fig. 11a, Ortiz 

Suarez and Casquet, 2005, Morosini et al., 2014). Moreover, this interpretation is justified by 

the surface structural data, primarily the kinematic features of the San Luis Shear System 

(Figs. 2, 3 and Table 1), which indicates a sinistral transpression (von Gosen 1998a; Delpino 

et al., 2001; Morosini et al., 2014).  

There are notable differences between the interpretations that can be formulated if 

only surface structural data are taken into account, and those in which the outcome of the 

litho-constrained stochastic inversion model are considered. For example, although the Río 

Guzmán shear zone dips with high angles to the east (at the current exposure level), the 3D 

model does not show high dipping angles at greater depths. This necessarily implies a strong 

sub-horizontal structural decoupling (decollement or take-off surface) between the San Luis 

Formation and the Conlara Metamorphic Complex. A delayed (Devonian) tectonic activity 

could have truncated this decollement, thus generating a shear zone in blocks between these 

units, with high angle and western vergence (where San Luis Formation is the footwall). 

These interpretations indicate two periods of shearing between the San Luis Formation and 

the Conlara Metamorphic Complex (Fig 11b). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

27 
 

 

Fig. 11: a) P-T-t paths interpretation for the San Luis Formation (SLF), the Micaschist Group (MG) and the San 

José Complex (SJC). The colour boxes represent the initial stage of metamorphism (prograde trajectory), 

associated with a thermal input generated in an ensialic back-arc setting (picture above). The colour circles 

represent the P-T metamorphic conditions of the particles during the development of the doubly-vergent 

structure (image on the right). By the time the San Luis Formation reached its metamorphic climax (burying 

process), the Pringles Metamorphic Complex was on its retrograde (counterclockwise) path due to exhumation. 

The fields represented in the P-T diagram have been delimited according to the datasets of Hauzenberger et al. 

(2001); Ortiz Suarez and Casquet (2005); Morosini and Ortiz Suárez (2011, 2013); Cruciani et al. (2012); 

Morosini et al. (2014); Delpino et al. (2007, 2016); and Verdecchia et al. (2018), considering the error ellipses. 

b) Scheme of the detachment surfaces and deformation stages on the eastern boundary of the large-scale 

"doubly-vergent" structure. c) Schematic profiles of the mega-shear zones. Left (proposed as correct): model 

based on a pure shear strain regime (considering all individual shear zones as parts of a single system). Right 

(proposed as incorrect): model based on a simple shear strain regime.  
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The low dip angle of the Ciénagas de Inti Huasi and the older Río Guzmán shear 

zones, suggest that they acted as detachments that placed the eastern Micaschist Group plus 

the San Luis Formation over the Conlara Metamorphic Complex. In this case, movement on 

the hanging wall of the detachment had vergence to the east. In addition, the deeper Inti 

Huasi shear zone truncated the shallower Río Guzmán shear zone forming an imbricate sheet 

(see the western limit of the Conlara Metamorphic Complex in Fig. 10b and Fig 11b) and 

becoming vertical in the central zone and parallel to the La Troya, La Arenilla and San 

Pedro-El Volcán shear zones (Fig. 9). Likewise, but with opposite vergence, the El Realito-

Río de la Quebrada shear zone acted as a decollement for the western strip of the San Luis 

Formation over the Nogolí Metamorphic Complex. This take-off surface acted as a ramp for 

the emplacement of the La Escalerilla Pluton (see eastern limit of the Nogolí Metamorphic 

Complex in Fig. 9a). 

Our results indicate that the transpressive belt does not correspond to a mega-shear 

zone accommodating simple shear. The shear system is neither tabular nor parallel, and 

movement has opposite senses in the west and in the east (Fig. 2 and 11c). In the west, almost 

all shear zones have western vergence with reverse movement and small sinistral strike-slip 

component (von Gosen 1998a; Morosini et al., 2014). In the east, nearly all shear zones have 

reverse movement with a small sinistral strike-slip component, but unlike the western shear 

zones, the eastern ones have eastern vergence (Ortiz Suárez and Casquet, 2005). 

Results suggest an extrusion by vertical flow of the hot rocky material, where the 

hanging wall (or extrusion core) coincides with the San José Complex (migmatites of the 

Pringles Metamorphic Complex) and the footwalls are both flanks of San Luis Formation. 

This structure was produced from intermediate levels of the crust. In order to justify the 

enormous lithospheric shortening during the collision, below intermediate crustal levels 

(greater than the current 6 km depth), this structure should be rooted in a horizontal mega-

thrust (of lystric shape?) that involves the whole crust.   

 The reduced to the pole (RTP) anomaly map (Figs. 6 and 12a) shows that the great 

majority of the shear zones outcropping within the Pringles Metamorphic Complex and the 

San Luis Formation (transpressive belt) present high magnetic values. This could have been 

caused by folding or shearing of rocks at moderate to high temperature (plastic deformation). 

This conditions allow the concentration of magnetite and pyrrhotite into low-strain zones, 

resulting in an increased magnetic susceptibility with respect to the surrounding rocks (Isles 
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and Rankin, 2013). Furthermore, the thermal annealing of the grains after mechanical flow 

may increase grain-size and grain interconnectivity, further increasing the magnetic 

susceptibility. These interpretations are well documented in the Río Guzmán shear zone 

(Sims et al., 1998), whose positive aeromagnetic anomaly is particularly prominent. 

A particular feature of the large-scale doubly-vergent structure is that the shape of the 

internal domain (San José Complex) is not perfectly parallel in a latitudinal sense; instead it 

shows variable width. This could be related to the restraining bends or restraining stepovers 

of the secondary strike-slip shear zones at depth, which may have developed pop-up 

structures in more superficial levels (currently eroded). In that sense, the presence of a larger 

volume of mafic-ultramafic rocks in the Las Águilas zone (Fig. 12b) is consistent with thicker 

inner cores domains of pop-up structures. The shape of the anomaly and the structural style of 

the sector closely resemble the laboratory experiments developed by McClay and Bonora 

(2001). This analogy indicates that there could be an underlapping of shear zones with a 

restraining stepover of 30° (Fig. 12c). Moreover, this would have generated a window 

towards the lower crust levels and a connection to the mantle allowing the entry of mafic-

ultramafic material into the core of the pop-up structure.  

 

 

 

Fig. 12: a) RTP anomaly map with superposition of the San Luis Shear System. The numbers correspond to the 

main shear zones shown in Figures 2 and 9. 1) El Realito-Río de la Quebrada, 2) Pancanta-La Carolina, 3) La 

Escalerilla, 4) San Pedro-El Volcán, 5) La Arenilla, 6) La Troya, 7) Ciénaga de Inti Huasi, 8) Río Guzmán, 9) 

Río Los Bayos - Funes, and others of the Nogolí Metamorphic Complex (undifferentiated). b) Zoom of the RTP 

map in the Las Águilas sector. The strong positive magnetic anomaly represents the San José Complex with its 

mafic-ultramafic intrusions. c) Figure modified from McClay and Bonora (2001).  
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A previously structured substrate formed by the Nogolí and Conlara Metamorphic 

Complexes, and a transpressive belt formed by the Pringles Metamorphic Complex and the 

San Luis Formation (extruded during the Famatinian collision) is inferred. When the 

Famatinian back-arc was closed by tectonic inversion, the Nogolí and Conlara Metamorphic 

Complexes compressed the Pringles Metamorphic Complex and the San Luis Formation 

sequence. Then, when the system could no longer be compressed horizontally, the vertical 

extrusion of the Pringles Metamorphic Complex occurred, thus forming the transpressive San 

Luis Shear System (Fig. 13).  

Our interpretations indicate that the San Luis Formation does not correspond to a 

sedimentary sequence deposited in a foreland basin as interpreted by Chernicoff and Ramos 

(2003). On the contrary, the San Luis Formation was the upper part of a thick marginal basin 

that also contained the sedimentary protoliths of the Nogolí and Pringles Metamorphic 

Complexes, i.e. part of an extensive accretionary margin (e.g. Ducea et al., 2010; Cristofolini 

et al., 2012). In that sense, the results of this study are difficult to reconcile with a model of 

continent-to-continent collision for the Pampean orogeny (between 530 and 515 Ma). Rather 

they support a ridge subduction, or ridge-trench collision (Schwartz et al., 2008).  

According to the maximum sedimentation ages for the Nogolí and Pringles 

Metamorphic Complexes, and the San Luis Formation sedimentary protoliths (Sims et al., 

1998; Steenken et al., 2006; Drobe et al., 2009), the development of a marginal deep-water 

marine basin for the Cambrian (530 Ma) is interpreted (Fig. 13a). During the Famatinian 

orogeny, part of these sediments formed the substrate in which the island volcanic arc was 

developed (Nogolí Metamorphic Complex). Meanwhile, an ensialic back-arc environment 

was developed on the sedimentary protoliths of the Pringles Metamorphic Complex and the 

San Luis Formation (Fig. 13b). Finally, all of them were exhumed as metamorphic rocks 

during the closure of the back-arc basin and the collision of the Cuyania/Precordillera 

microcontinent (Fig. 13c). 

There are at least three reasons to support that the San Luis Shear System acted 

diachronically during the development of the transpressional belt: 1) there are different 

metamorphic degrees, regardless that they usually show evidence of reactivations, where a 

low-penetrative and low-temperature deformation is superimposed on a high-penetrative and 

high-temperature deformation (cooling exhumation), 2) the relative and absolute ages of some 
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of the shear zones show different temporal ranges (Table 1), and 3) the geophysical model 

suggests truncations between some of the shear zones at depth. 

 

 

Fig. 13: Sketch of the tectonic evolution of the SGSL based on a ensialic back-arc environment for the origin of 

the La Jovita - Las Águilas mafic-ultramafic complex (Brogioni, 2001). a) Initial stage in 510 Ma, based on the 

non-collisional model for the Pampean orogeny (subduction to the east of a seismically active oceanic ridge) 

according to Schwartz et al., (2008). During and after the ridge-trench interaction the sedimentary protoliths 

sequence of the Nogolí and Pringles Metamorphic Complexes + San Luis Formation (Pampean synorogenic 

sediments of a marginal basin) are deposited. Towards the east of this basin the sedimentary rocks of the Conlara 

Metamorphic Complex are located. The protoliths correspond to the upper part of a pre-Pampean sedimentary 
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sequence of passive margin, equivalent to the Puncoviscana Formation (northwest of Argentina). b) 

Development of the Famatinian back-arc (thermal input at ~480 Ma). The arc axis (island arc) is located 

immediately to the west of the Nogolí Metamorphic Complex, developed as consequence of the new subduction 

in the front of the Pampean marginal basin. The Nogolí Metamorphic Complex is early structured (first 

Famatinian deformation D1) in comparison with Pringles Metamorphic Complex and San Luis Formation. The 

back-arc basin could be interpreted as a subduction rollback inducing asthenospheric upwelling. c) Extrusion of 

the Pringles Metamorphic Complex. Third Famatinian deformation D3 phase (San Luis Shear System). 

Construction of the large-scale doubly-vergent structure due to the collision of Cuyania/Precordillera terrane 

(from ~465). Between (b) and (c) occurred the closing of the Famatinian back-arc, and development of the 

Famatinian deformation D2 phase (between ~ 480 and ~ 465 Ma). Extensive orogenic magmatism. d) 3D-shape 

of the crystalline pre-collisional substrate (footwall of the large-scale structure). The location of the mafic-

ultramafic rocks hosted in the Pringles Metamorphic Complex is also shown. f) 3D-shape of the doubly-vergent 

structure (hanging wall). 

5.2 Regional geotectonic interpretation during extrusion 

Taking into account the model results, two contrasting situations can be analysed 

regarding the mechanisms responsible for a transpressive extrusion in the SGSL. One 

possibility is to consider that the Cuyania/Precordillera terrane collided obliquely with the 

edge of Gondwana (Benedetto, 2004) favouring the development of a generalized 

transpression inward the continent. Another possibility is to assume that 

Cuyania/Precordillera acted as an indenter (micro-continent), with convex morphology, 

conditioning the style of deformation on the collided margin. In this model, the impact must 

have occurred with high convergence angle (e.g. Astini and Dávila, 2004; von Gosen and 

Prozzi, 2005). The best examples of the style of deformation are located along the entire 

Famatinian deformation belt (Fig. 14) from the north of the Sierra de Velasco to the Sierra 

Grande de San Luis. A compilation of ductile deformation zones is presented by Simpson et 

al. (2003), von Gosen and Prozzi (2005), Cristofolini et al. (2014), Larrovere et al. (2016) 

among others. 

We consider that the last option explains better the development of a transpressive belt 

in the SGSL. There are notable differences between the general directions of the ductile shear 

zones (including double-vergent mega-structures) at different latitudes of the Famatinian 

Orogen. In the Valle Fértil, Velasco, Famatina, Ambato and Ancasti ranges, the main mega-

structures have NNW strike. In the Chepes, Ulapes and Sierra de Pocho (Córdoba) ranges, the 

structures have almost N strike (with small deviations). In the SGSL the predominant strike is 

NNE (Fig. 14b). These characteristics suggest different shortening directions; WSW-ENE in 

the northern sector, W-E in the central area, and WNW-ESE in the southern part (SGSL). A 

reasonable explanation implies a radial field of horizontal deviatoric stresses for the 

Famatinian orogenic belt caused by a subcircular morphology in the eastern boundary of the 
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Cuyania/Precordillera terrane (Fig. 14b, c). A new arrangement in the directions of the 

horizontal deviatoric stresses occurred causing transpressional mega-structures in sites where 

the pre-collision metamorphic fabrics were oblique regarding the new shortening vectors. 

In this model, each site of the collided edge acted with different kinematics. Although 

the orogeny was solved primarily by vertically reverse shear zones, lateral movement (strike-

slip) associated with a partition of the deformation by large scale scape tectonics occurred in 

some sites of this orogen. Spagnuolo et al., (2011) investigated a counter-clockwise rotation 

for the Western Puna block (located immediately in the northern sector of the indentation). 

These authors interpreted that the rotation of this block occurred due to the tectonic escape 

related to the deformation generated by the collision of Cuyania/Precordillera. 

Our interpretation suggests that there was a clockwise rotation of the horizontal 

deviatoric stress vectors in the area of the SGSL. This action resulted in a convergent non-

coaxial general movement with a minor sinistral component during the progressive 

deformation of the shear zones. Consequence of this is the large-scale "doubly-vergent" 

structure observed in the model. Deformation in the transpressional belt in the SGSL started 

between the Lower Ordovician (given by the early intrusion of syn-orogenic plutons and the 

main regional metamorphism) with its peak in the Middle Ordovician (~465 Ma). At that time 

a widespread cease in the arc magmatism in the Sierras Pampeanas occurred (e.g. Cristofolini 

et al., 2014) evidencing the indenting stage of the Cuyania/Precordillera terrane on the edge 

of Gondwana. This stage ended in Devonian times, when late to post-orogenic plutons 

intruded. This is supported by the cooling ages calculated in the area (Steenken et al., 2008). 

The model for the intrusion of the Las Chacras-Potrerillos batholith proposed by Siegesmund 

et al. (2004) would extend the sinistral kinematics of the shear zones up to ~380 Ma. In this 

stage, an oblique shear NW and NE conjugated system (brittle-ductile deformation) allowed 

the channelling of the post-orogenic magmatism.  This action may have been favoured by the 

accretion of the Chilenia terrane during the Achalian cycle (Sims et al., 1998) on the 

previously collided Cuyania/Precordillera terrane. 

Finally, the most modern fracture system exposed the fossilized basement of the 

Sierra Grande de San Luis producing a slight tilt of the paleo-surface (calculated from a 

midline of the paleotopography on a digital elevation model) of ~4º towards the ESE (Costa 

el al., 2001b). We consider that this block inclination of the SGSL does not affect the model 

results, nor does it modify the interpretations made. In addition, it should be noted that the 
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entire fracture system, that acted after the Cuyania/Precordillera and Chilenia collisions on 

the Gondwana margin, was conditioned by the Famatinian (high temperature deformation) 

ductile shear system as well as many of the discrete shear zones of Achalian age (brittle-

ductile transition deformation). 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

35 
 

Fig. 14: Geotectonic interpretation. a) Location of the Cuyania/Precordillera terrain in the proto-margin of 

Western Gondwana. The western part of the orogenic Terra Australis is shown in yellow (modified from 

Cawood, 2005). The acronyms correspond to the different cratons that made up Gondwana: AM-Amazonia, 

ANT-Antartica, C–SF—Congo–Sao Francisco, IND—India, K—Kalahari, RP—Rio de la Plata, WA—West 

Africa. b) Radial distribution of the horizontal deviatoric stresses generated by a hypothetical sub-circular 

morphology of the Cuyania/Precordillera terrane. c) Red lines indicate the general directions of the ductile 

structures associated with the collision of Cuyania/Precordillera in different parts of the Famatinian orogen. 1) 

Sierra de San Luis, 2) Sierras de Córdoba, 3) Chepes and Ulapes ranges, 4) Sierra de Valle Fértil 5) Sierra de 

Famatina, 6) Sierra de Velasco, 7) Sierra de Ambato, 8) Sierra de Ancasti, 9) Umango and Maz ranges, 10) 

Sierra de Pie de Palo, 11) Precordillera. d) Sketch of the deformation stages in the collisional Famatinian edge 

due to an indenter with subcircular morphology. The red lines and points allow visualizing the rotation that 

structures have suffered during the collision in the SGSL. 1) Rectilinear subduction zone that develops a 

volcanic arc and extension in an ensialic back-arc (slab roll back); (2) the geotectonic regime goes from 

extensional to compressional in the back-arc, the sedimentary sequences fold and metamorphose (huge crustal 

shortening); 3) rotation of the collided margin due to indentation of Cuyania. In the SGSL the rotation was 

clockwise allowing the development of the shear system that produced the double-vergent transpressive belt 

(extrusion of the PMC); 4) towards the end of the indentation, a large-scale set of strike-slip ductile faults with 

NE direction were developed in the SGSL (dextral tectonic escape); 5) Finally, a conjugate NE-SW and NW-SE 

system of ductile faults was generated conditioning the emplacement style of the postorogenic plutons, probably 

related to the collision of the Chilenia terrane over the recently collided edge of Gondwana. 

 

6 Conclusions 

The 3-dimensional geological and geophysical inversion model presented in this study 

provides essential insights into the geometry of southern Sierra Grande de San Luis. Our 

results are compatible with a large-scale doubly-vergent structure covering predominantly the 

Pringles Metamorphic Complex and the San Luis Formation. This is supported by the 

morphology of the different lithological units, their metamorphic conditions, and the 

interaction of the structural elements. A vertical extrusion of metamorphic rocks occurred, 

where the hanging wall corresponded to the Pringles Metamorphic Complex and the footwall 

corresponded to the San Luis Formation. In this area, the Nogolí and Conlara Metamorphic 

Complexes formed the external basement blocks that compressed the mega structure. 

Evidence for this is the opposite sense of movement on both flanks of the large-scale 

structure and the high magnetic values in the shear zones, possibly caused by plastic 

deformation. Furthermore, the high magnetic values associated with the presence of 

ultramafic bodies indicate that there was a potential window towards lower levels of the crust 

and a connection to the mantle allowing the entry of mafic-ultramafic material into the core 

of the pop-up structure.  

The most likely mechanism responsible for the geometry of southern Sierra Grande de 

San Luis is the collision of Cuyania/Precordillera. This terrane acted as an indenter (micro-

continent) with a convex morphology, conditioning the style of deformation on the Western 

Gondwana margin in the analysed area. Currently, the results of this can be seen in the style 
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of ductile deformation zones along the entire Famatinian deformation belt from Northwest 

Argentina to the Sierra Grande de San Luis. In these areas, vertically reverse shear zones and 

lateral movement (strike-slip) determined different shortening directions. For the modelled 

zone, a clockwise rotation of the horizontal deviatoric stress vectors resulted in a convergent 

non-coaxial movement with a minor sinistral component during the progressive deformation 

of the shear zone s. Since inverse modelling of potential-field data is inherently non-unique, 

we want to emphasize the importance of seeking new evidence to help improve the proposed 

extrusion model and its tectonic history in order to understand thoroughly the regional 

geodynamic context.  
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  Table 1. Summary of the shear zones of the San Luis Shear System 

Shear 

Zone 

(numbers 

in Fig. 2) 

Extension 

length / width 
Rock 

Smy-foliation 

strike / dip 

Lmy-

lineation 

dip dir. / dip 

Sense of shear zone 
Deformation 

conditions 

Age of deformation 

and method 
Protolith Characteristics 

Realito – 

Río de La 
Quebrada 

(1) 

82 km / 

~500 m (for 

each branch) 

phyllonites, 

mylonites, 

protomylonites 

~N15° / ~88°W 
(northern part) 

~N25° / 

65°-80°NW 
(central part) 

~N20° / 

58°-70°SE 
(southern part) 

~270° / 80° 
(northern part 

 

~340° / 40° 
(central part) 

 

~120° / 45° 
(southern part) 

reverse-dextral 

(northern part) 

 
reverse-sinistral 

(central and southern 

part) 

 

~550°-450°C 

amphibolites to 
greenschist facies 

 

 

~472 Ma (a) 

U/Pb-zircon in syn-

kinematic 
tonalites 

(field evidences) 

 
~379 Ma  (h) K/Ar-

muscovite 

(in pegmatite) 

migmatites, schists, 

phyllites, tonalities, 
granodiorites, 

granites, pegmatites 

It ramifies in several smaller anastomosed strips and it is intercepted 

by lateral branches. It is an emplacement zone of tonalitic and 

granodioritic bodies. It has three parts with distinctive features from 
north to south. Separates the NMC from the SLF and the PMC. In the 

northern section, located in the east edge of the Realito pluton, von 

Gosen and Prozzi (2005) called this shear zone "Las Vizcacheras". 

Pancanta 
–  

La 

Carolina 
(2) 

38 km /  
~200 m 

(main branch) 

 
5 km /  

~100 m 

(secondary 
branch) 

phyllonites, 
mylonites 

~N25° / ~80NW 

(main branch) 

 
~N85° / ~77°N 

(secondary 

branch) 

~220° / ~30° 

(main branch) 

 
~280° / ~50° 

(secondary 

branch) 

reverse-dextral to 

dextral strike-slip 

(both branches) 

~350°-450°C 
greenschists facies 

(slaty cleavage 

microstructure are 
common) 

~468 Ma (b) 
U/Pb-zircon in the 

Bemberg syn-

kinematic tonalite 
  

~432 Ma  (c) K/Ar-

muscovite in a 
quartz-vein 

schists, phyllites, 
tonalities, gabbros 

It has two branches. It is related to scheelite-bearing veins that are 

located in the Pancanta Valley. The main branch is located within the 

SLF, while the secondary branch separates the SLF from the NMC. 

La 

Escalerill

a (3) 

63 km /  

~400 m 

(main branch) 

 

~7 km / ~30 m 

(synthetic 
branches) 

phyllonites, 

mylonites 

~N10º / ~65°E 

(average of main 
branch) 

 

~N345º / 
~80°SW or NE 

(synthetic 

branches) 

~155° / ~50° 
(main branch) 

 

~5° / ~155 
(synthetic 

branches) 

reverse-sinistral 

(main branch) 

 

sinistral strike-slip 

(synthetic branches) 

~500°C 
amphibolites facies 

 

greenschist facies 
(retrograde 

deformation) 

~477 Ma (d) 

U/Pb-zircon in the 

La Escalerilla syn-
kinematic granite. 

 

~414 Ma (e)  
Rb/Sr-WR and ~366 

Ma (b) Ar/Ar-

muscovite 
 (reactivations) 

schists, 

granites 

In the central part, it intersects several minor NNW trending synthetic 

branches with sinistral strike-slip movement. It separates the El 

Volcán and the La Escalerilla plutons from the western belt of the 
Micachists Group (PMC). 

San Pedro 

–  
El Volcán 

(4) 

93 km /  

~300 m 

 

mylonites 
~N10º / ~73°E 
 

~160° / ~60° 
(south stretch) 

 

~280° / 5° 
(north end) 

reverse-sinistral 
(south stretch) 

 

dextral strike-slip 
(north end) 

~500-450°C 
amphibolites facies 

~428 Ma (f) 

Pb/Pb-staurolite 

 
~375 Ma  (b) K/Ar-

muscovite 

 

migmatites, 

gneisses, schists, 
pegmatites, 

amphibolites 

It separates the western belt of the MG from the SJC. At the northern 
end a later ductile fault displaced and curved the meridian trace of 

this shear zone (with dextral strike-slip motion). It is consequence of 

the tectonic escape, and was named by von Gosen and Prozzi (2005) 
as "San Pedro Shear Zone" (stricto sensu). 

La 
Arenilla 

(5) 

105 km / 

400 m to  

3 km (depends 
on the branch) 

mylonites, 

ultramylonites 

~N12º / >70°E 

or >70°W 

(depends on the 
branch) 

290° or 110° / 
>70° (depends 

on the branch) 

reverse-sinistral 

(general movement), 
some ramifications 

have dextral strike-

slip movement 

>500°C 

upper amphibolites 
facies 

(initial conditions 

of deformation)  

~446 Ma (g) 
K/Ar-hornblende 

(in amphibolite 

mylonite) 
 

~402 Ma (h) K/Ar-

muscovite 
(in syn-kinematics 

pegmatites)  

migmatites, 

gneisses, 
mafic-ultramafic 

rocks, 

pegmatites 

It is an internal shear zone of the SJC, branched into several smaller 

arms. In the thinnest sector of the SJC, it shows as a single wide belt 
(~3 km), while to the north and south it branches into several belts of 

lower width. Within it mafic-ultramafic rocks are distributed in 

rosary-shape along the La Jovita-Las Águilas mafic-ultramafic belt. 
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La Troya 

(6) 

62 km /  

~400 m 
mylonites 

~N40° / 84°NW 

(northern part) 

 
~N0° / 55°W 

(southern part)  

~10° / 5° 

(northern part) 

 
~290° / 52° 

(southern part) 

sinistral strike-slip 

(northern part) 

 
reverse-sinistral 

(southern part) 

~500-450°C 

amphibolites facies 

~454 Ma (e)  

Rb/Sr-errorchron 

(in Paso del Rey 
syn-kinematics 

granite) 

migmatites, 
gneisses, schists, 

pegmatites, 

amphibolites 

It separates the SJC from the eastern belt of the MG. It shows 

variations in its direction and presents some splay synthetic 

propagation of smaller shear bands that extended to the MG. At the 
northern end this shear zone strongly deviates towards the NW 

following the curved morphology of the Las Chacras pluton. 

Inti Huasi 

(7) 

60 km /  

~400 m 

mylonites, 

phyllonites 

~N5° / 55°W 

(southern part) 

  
~N30° / 84°NW 

(northern part) 

~275° / 70° 

(southern part) 
 

~320° / 

70°NW 
(central part) 

reverse 

(southern part) 
 

reverse-sinistral 

(central and northern 
part) 

~450°C 

greenschists facies 
 

~470 Ma (b) 

U/Pb-zircon in 

Tamboreo syn-
kinematic 

tonalite 

phyllites, schists, 

pegmatites, 
tonalites 

The northern section presents curved shapes. In the Tamboreo Pluton 
this shear zone deforms its western edge and a central part through a 

minor branch. It separates the eastern belts of the MG and the eastern 

belts of the SLF. 

Río 

Guzmán 
(8) 

60 km /  

~800 m 

mylonites, 

phyllonites 

N15° / 80°SE 

(average) 

~170° / 65° 

(average) 
reverse-sinistral 

~450°C 

greenschists facies 

362-351 Ma (b) 
Ar/Ar-muscovite 

(Devonian 

reactivation?) 

phyllites, schists 
It is the boundary between the CMC and the eastern belt of the SLF. 

It is a very straight shear zone.  

Río de 

Los 

Bayos - 
Funes (9) 

50 km / 
~500 m (for 

each branch) 

protomylonites, 

mylonites, 

ultramylonites, 
phyllonites 

~N10° / 80°E or 
80W 

(subvertical) 

~180° / 44° 

(southern part) 
 

345° / 53° 

(northern part) 

reverse-sinistral 

(predominance in 

high temperature 
deformation) 

amphibolites facies 

(initial conditions) 
to greenschists 

facies (retrograde 

deformation) 

~464 Ma (h) 

K/Ar-hornblende 
(in ultramafic rock) 

 

~364 Ma (h) 
K/Ar-biotite 

(in mylonite) 

 
~358 Ma (h) 

K/Ar-muscovite 

(in granite myl.) 

migmatites, 

gneisses, schists, 
pegmatites, 

granites, mafic-

ultramafic rocks 

It is the most important shear zone within the NMC, but it is 

associated with other 24 smaller shear zones through different type of 
intersections. The relationship of the NMC shear zones with the 

orogenic and late to post-orogenic granitoids indicates repeated 

reactivations from the Ordovician-Silurian time, associated with a 
compressive stage, to the Devonian-Carboniferous time, where shears 

are extensional with dextral oblique sense, associated to the orogenic 

collapse (González et al., 2004). 

(a) Sato et al. (2004); (b) Sims et al. (1997, 1998); (c) Ramos and Ortiz Suárez (2005); (d) Morosini et al. (2017); (e) Llambías et al. (1998); (f) Steenken et al. (2006); (g) Ortiz Suárez (1999); (h) Steenken et al. (2008). 
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Table 2 Description of the density samples 

Sation Latitude Longitude Lithology 

Mean Dens. 

[g/cm3] Samples SD Min Max 

56 -32.98427 -66.214626 Gabbro 2.83 4 NIA NIA NIA 

58 -32.983439 -66.218882 Gabbro 2.90 4 NIA NIA NIA 

265c -33.063684 -66.250675 Gabbro 3.04 4 NIA NIA NIA 

317-tinaj -33.016164 -66.214542 Tonalite 2.87 4 NIA NIA NIA 

P024 -32.7168804 -66.1612034 Migmatite 2.81 5 0.006 2.80 2.82 

P026 -32.7503973 -66.1492927 Granite 2.55 5 0.017 2.52 2.57 

P026b -32.7503973 -66.1492927 MUM rock 2.92 5 0.022 2.88 2.94 

P029 -32.8186479 -66.0958969 Phyllite 2.63 5 0.056 2.56 2.71 

P030 -32.8466459 -66.1059298 Granite 2.56 5 0.025 2.53 2.59 

P031 -32.8785111 -66.1138933 Phyllite 2.62 5 0.016 2.59 2.63 

P032 -32.8975076 -66.1113894 Tonalite 2.72 5 0.035 2.68 2.77 

P033 -32.9144998 -66.0847866 Migmatite 2.50 5 0.049 2.43 2.55 

P034 -32.9374582 -66.0826323 Schists 2.76 5 0.026 2.72 2.79 

P036 -32.9422759 -66.0656168 Amphibolite 3.03 5 0.048 2.99 3.11 

P037 -32.9243464 -66.0549991 Gneiss 2.65 5 0.027 2.61 2.67 

P038 -32.9314256 -66.0391098 Schist 2.55 5 0.032 2.50 2.58 

P040 -32.9370291 -65.9852606 Schist 2.53 5 0.038 2.49 2.58 

P041 -32.9287901 -65.9431733 Schist 2.56 5 0.051 2.46 2.59 

P042 -32.9406186 -65.9243397 Phyllite 2.53 5 0.011 2.50 2.53 

P044 -32.9544982 -65.8688154 Schist 2.63 5 0.014 2.60 2.64 

P045 -32.9787116 -65.8461324 Schist 2.58 5 0.026 2.55 2.61 

P046 -32.9971754 -65.8121961 Migmatite 2.59 4 0.045 2.53 2.63 

P047 -33.0137863 -65.7746522 Schist 2.56 5 0.174 2.25 2.67 

P048 -33.0222583 -65.7354013 Schist 2.65 5 0.031 2.62 2.68 

P049 -33.0280309 -65.6956849 Schist 2.64 4 0.016 2.61 2.64 

P050 -33.0460478 -65.6635053 Schist 2.63 5 0.022 2.59 2.64 

P055 -32.9790937 -65.6254182 Schist 2.54 5 0.027 2.51 2.58 

P056 -32.9451133 -65.6368699 Schist 2.60 4 0.040 2.55 2.64 

P057V -32.9410242 -65.6745917 Latite 2.46 5 0.024 2.42 2.48 

P058 -32.9276129 -65.7107832 Schist 2.65 5 0.019 2.61 2.66 

P059 -32.8949868 -65.721922 Schist 2.67 4 0.008 2.66 2.68 

P060 -32.8664301 -65.7450295 Migmatite 2.59 5 0.028 2.54 2.62 

P062 -32.8143468 -65.8251987 Schist 2.68 2 0.024 2.65 2.69 

P063 -32.8304266 -65.8585006 Phyllite  2.53 5 0.014 2.51 2.54 

P064 -32.8420485 -65.8918955 Latite 2.51 5 0.020 2.47 2.53 

P066 -32.8097742 -65.9900011 Gneiss 2.57 5 0.033 2.53 2.60 

P067 -32.7896643 -66.055045 Quartzite 2.49 5 0.053 2.41 2.54 

P068 -32.7937369 -66.0694888 Latite 2.31 5 0.051 2.26 2.39 

PN18 -33.1437222 -65.8932778 Schist 2.71 5 NIA NIA NIA 

PN23 -33.1193056 -65.9184444 Schist 2.56 5 NIA NIA NIA 

         

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

47 
 

Sation Latitude Longitude Lithology Mean 

Dens.[g/cm3] 

Samples SD Min Max 

PN23b -33.1193056 -65.9184444 Pegmatite 2.65 6 NIA NIA NIA 

PN33 -33.0955556 -65.9927778 Granite 2.44 5 NIA NIA NIA 

PN35 -33.1026944 -66.0118889 Schist 2.53 5 NIA NIA NIA 

PN44 -33.0580556 -66.0755556 Mylonite 2.97 5 NIA NIA NIA 

PN47 -33.0624722 -66.0909722 Amphibolite 2.95 5 NIA NIA NIA 

PN55 -33.0381111 -66.1528611 Schist 2.38 5 NIA NIA NIA 

PN57 -33.0381111 -66.1723611 Granite 2.57 5 NIA NIA NIA 

PN60 -33.0164444 -66.1927222 Granite 2.67 5 NIA NIA NIA 

PN61 -33.0115278 -66.2039167 Granite 2.40 5 NIA NIA NIA 

PN63 -32.9924722 -66.2052778 Tonalite 2.44 5 NIA NIA NIA 

PN68 -32.9720556 -66.251000 Gneiss 2.51 5 NIA NIA NIA 

PN72 -32.9396111 -66.2661111 Granite 2.77 4 NIA NIA NIA 

PS18 -33.2748056 -66.159500 Schist 2.77 4 NIA NIA NIA 

PS21a -33.2398056 -66.179750 Pegmatite 2.39 5 NIA NIA NIA 

PS21b -33.2398056 -66.179750 Granite 2.49 5 NIA NIA NIA 

PS26 -33.2086111 -66.2370556 Granite 2.41 5 NIA NIA NIA 

PS29 -33.1807778 -66.2650833 Granite 2.72 4 NIA NIA NIA 
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Table 3 Description of the magnetic susceptibility samples 

Station Latitude Longitude Lithology Mean Susc. [SI] Samples SD Min [SI] Max [SI] 

PN47 -33.06247 -66.09097 Amphibolite 0.00070 5 NIA NIA NIA 

P062 -32.81435 -65.82520 Schist 0.00021 5 0.000029 0.00018 0.00024 

P044 -32.95450 -65.86882 Schist 0.00008 5 0.000054 0.00003 0.00015 

P047 -33.01379 -65.77465 Schist 0.00025 5 0.000049 0.00019 0.00030 

P048 -33.02226 -65.73540 Schist 0.00035 5 0.000047 0.00030 0.00040 

P056 -33.94511 -65.63687 Schist 0.00045 5 0.000249 0.00018 0.00078 

P058 -32.92761 -65.71078 Schist 0.00027 5 0.000068 0.00018 0.00035 

P057 -32.94102 -65.67459 Schist  0.00065 5 0.000249 0.00037 0.00090 

P049 -33.02803 -65.69568 Schist 0.00019 5 0.000070 0.00010 0.00027 

P059 -32.89499 -65.72192 Schist  0.00031 5 0.000094 0.00020 0.00042 

P050 -33.04605 -65.66351 Schist  0.00029 5 0.000149 0.00013 0.00042 

P063 -32.83043 -65.85850 Phyllite 0.00009 5 0.000043 0.00005 0.00014 

P029 -32.81865 -66.09590 Phyllite 0.00017 5 0.000036 0.00012 0.00021 

P034 -32.93746 -66.08263 Gneiss 0.00027 5 0.000152 0.00010 0.00046 

P037 -32.95277 -66.06947 Gneiss 0.00013 5 0.000017 0.00011 0.00015 

PS5 -33.24286 -65.92869 Gneiss 0.00030 5 NIA NIA NIA 

PS3 -33.22958 -65.88117 Gneiss 0.00033 5 NIA NIA NIA 

PS2 -33.20789 -65.87317 Gneiss 0.00063 5 NIA NIA NIA 

PN57 -33.03811 -66.17236 Granite 0.00004 5 NIA NIA NIA 

PS21 -33.23981 -66.17975 Granite 0.00020 5 NIA NIA NIA 

PS27 -33.19958 -66.24917 Granite 0.00020 5 NIA NIA NIA 

PN60 -33.01644 -66.19272 Granite 0.00020 5 NIA NIA NIA 

PN72 -32.93961 -66.26611 Granite 0.00040 5 NIA NIA NIA 

P026 -32.75040 -66.14929 Granite 0.00004 5 0.000013 0.00002 0.00005 

P030 -32.84665 -66.10593 Granite 0.00008 5 0.000020 0.00000 0.00010 

P025 -32.74338 -66.16239 Granite 0.00010 5 0.000046 0.00006 0.00016 

P038 -32.93143 -66.03911 MUM rock 0.00059 5 0.000210 0.00041 0.00084 

P067 -32.78966 -66.05505 Schist 0.00017 5 0.000042 0.00013 0.00021 

P041 -32.92879 -65.94317 Schist 0.00023 5 0.000050 0.00018 0.00030 

P040 -32.93703 -65.98526 Schist  0.00013 5 0.000070 0.00004 0.00019 

P046 -32.99718 -65.81220 Migmatite 0.00023 5 0.000075 0.00013 0.00031 

P023 -32.69044 -66.14831 Migmatite 0.00052 5 0.000393 0.00021 0.00083 

P027 -32.76456 -66.11832 Migmatite 0.00021 5 0.000073 0.00013 0.00030 

P024 -32.71688 -66.16120 Migmatite 0.03049 5 0.011848 0.01333 0.04054 

P065 -32.82419 -65.93814 Migmatite 0.00013 5 0.000077 0.00008 0.00024 

P066 -32.80977 -65.99000 Migmatite 0.00010 5 0.000048 0.00006 0.00017 

P060 -32.86643 -65.74503 Migmatite 0.00016 5 0.000069 0.00007 0.00021 

P045 -32.97871 -65.84613 Migmatite 0.00028 5 0.000125 0.00017 0.00045 

PN67 -32.97628 -66.24217 Schist 0.00001 5 NIA NIA NIA 

PS19 -33.26300 -66.16736 Schist 0.00003 5 NIA NIA NIA 

PS26 -33.20861 -66.23706 Granite 0.00003 5 NIA NIA NIA 
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Station Latitude Longitude Lithology Mean Susc. [SI] Samples SD Min [SI] Max [SI] 

PN24 -33.12267 -65.92883 Schist 0.00003 5 NIA NIA NIA 

PN38 -33.08708 -66.03636 Schist 0.00003 5 NIA NIA NIA 

PN61 -33.01153 -66.20392 Tonalite 0.00004 5 NIA NIA NIA 

PN18 -33.14372 -65.89328 Migmatite 0.00007 5 NIA NIA NIA 

PN12 -33.19797 -65.85358 Schist 0.00009 5 NIA NIA NIA 

PN10 -33.20972 -65.82389 Migmatite 0.00010 5 NIA NIA NIA 

PN37 -33.08803 -66.02517 Schist 0.00010 5 NIA NIA NIA 

PN68 -32.97206 -66.25100 Schist 0.00010 5 NIA NIA NIA 

PN69 -32.96589 -66.25844 Schist 0.00010 5 NIA NIA NIA 

PN70 -32.95753 -66.26197 Schist 0.00010 5 NIA NIA NIA 

PN44 -33.05806 -66.07556 Gneiss 0.00020 5 NIA NIA NIA 

PS30 -33.18697 -66.26989 Granite 0.00022 5 NIA NIA NIA 

PN41 -33.09653 -66.06247 Gneiss 0.00023 5 NIA NIA NIA 

PS29 -33.18078 -66.26508 Granite 0.00024 5 NIA NIA NIA 

PN26 -33.13294 -65.94542 Schist 0.00028 5 NIA NIA NIA 

PN22 -33.12050 -65.90800 Schist 0.00030 5 NIA NIA NIA 

PN33 -33.09556 -65.99278 Mylonite 0.00250 5 NIA NIA NIA 

P042 -32.94062 -65.92434 Mudstone 0.00016 5 0.000046 0.00011 0.00022 

PN35 -33.10269 -66.01189 Schist 0.00001 5 NIA NIA NIA 

PS18 -33.27481 -66.15950 Schist 0.00002 5 NIA NIA NIA 

P032 -32.89751 -66.11139 Tonalite 0.00029 5 0.000108 0.00014 0.00038 

PN63 -32.99247 -66.20528 Tonalite 0.00040 5 NIA NIA NIA 

P064 -32.84205 -65.89190 Latite 0.00096 5 0.000930 0.00022 0.00217 

P031 -32.87851 -66.11389 Granite 0.00014 5 0.000039 0.00009 0.00018 

P033 -32.91450 -66.08479 Schist 0.00028 5 0.000102 0.00013 0.00037 

P039 -32.95125 -66.00713 Granite 0.00035 5 0.000074 0.00026 0.00044 

P043 -32.92942 -65.90137 Phyllite 0.00033 5 0.000072 0.00024 0.00041 

P061 -32.81770 -65.78592 Schist 0.00024 5 0.000165 0.00006 0.00044 
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