
Acc
ep

ted
 M

an
us

cri
pt

 

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for 
Experimental Biology. All rights reserved. For permissions, please email: 
journals.permissions@oup.com 

Ferroptosis in plants: triggers, proposed mechanisms and the role of iron in modulating 

cell death  

Ayelén Mariana Distéfano
1§

, Gabriel Alejandro López
1§

, Nicolás Setzes
1
, Fernanda 

Marchetti
1
, Maximiliano Cainzos

1
, Milagros Cascallares

1
, Eduardo Zabaleta

1
, Gabriela 

Carolina Pagnussat
1*

 

1
 Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, 

Mar del Plata, Argentina. adistefa@mdp.edu.ar; gabriellopez@mdp.edu.ar;  

nicosetzes@gmail.com; marchettimariafernanda@gmail.com; cainzos.unmdp@gmail.com; 

cascallaresmilagros@gmail.com; ezabalet@mdp.edu.ar; gpagnussat@mdp.edu.ar 

§ 
Contributed equally to this work 

* Corresponding author, gpagnussat@mdp.edu.ar; Telephone number: +54-223-4753030  

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/eraa425/5904433 by U

niversity of M
elbourne Library user on 14 Septem

ber 2020

mailto:adistefa@mdp.edu.ar
mailto:gabriellopez@mdp.edu.ar
mailto:nicosetzes@gmail.com
mailto:marchettimariafernanda@gmail.com
mailto:cainzos.unmdp@gmail.com
mailto:cascallaresmilagros@gmail.com
mailto:ezabalet@mdp.edu.ar
mailto:gpagnussat@mdp.edu.ar


Acc
ep

ted
 M

an
us

cri
pt

 

2 
 

Highlight   

This review summarizes recent progress in our understanding of plant ferroptosis, focusing 

on environment-responsive signaling pathways and underlying mechanisms. 
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Abstract 

Regulated cell death plays key roles during essential processes along the plant life cycle. It 

takes part of specific developmental programs and maintains the organism homeostasis in 

response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent 

cell death pathway characterized by the accumulation of lipid reactive oxygen species. 

Ferroptosis in plants shares all the main hallmarks described for ferroptosis in other 

systems. Those specific features include biochemical and morphological signatures that 

seem conserved among species. However, plant cells have specific metabolic pathways and 

a high degree of metabolic compartmentalization. Together with their particular 

morphology, these features add more complexity to the plant ferroptosis pathway. In this 

review, we summarize the most recent advances in elucidating the roles of ferroptosis in 

plants, focusing on specific triggers, main players and underlying pathways.  

Key words: Cell death, ferroptosis, iron, lipid peroxidation, heat stress, biotic stress 
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Introduction: Cell death in plants  

Regulated cell death (RCD) is an active and controlled process that allows 

organisms to selectively eliminate specific cells in a highly coordinated fashion through the 

activation of molecular mechanisms and pathways. In plants, regulated cell death plays 

essential roles during the plant life cycle, driving specific gametophytic and sporophytic 

developmental programs. Some examples include the differentiation of tracheary elements, 

suspensor degeneration during embryogenesis or remodeling of leaf shape (Gunawardena, 

2008; Courtois-Moreau et al., 2009; Drews and Koltunow, 2011; Bollhöner et al., 2012; 

Choi, 2013; Xie et al., 2014). Regulated cell death is also considered as a mechanism that 

allows plants to maintain homeostasis under unfavorable environments or in response to a 

critical stress. As damaged tissues are removed, the stress signal is systemically amplified, 

resulting in plant survival. Diverse environmental stimuli are able to trigger RCD: salinity, 

drought, UV radiation, heavy metals and extreme temperatures are among the abiotic 

stresses known to activate cell death mechanisms (Barnabás et al., 2008; Liu et al., 2009; 

Petrov et al., 2015; Distéfano et al., 2017; Srivastava et al., 2018; Chua et al., 2019).  

Cell death pathways are also crucial to protect plants from pathogens. A localized 

cell death, the hypersensitive response (HR), is essential to trigger a systemic response and 

to limit infection spreading (Kiba et al., 2006; Coll et al., 2010; García-Marcos et al., 2013; 

Dangol et al., 2019; Noman et al., 2020). 

Although RCD can be triggered by a variety of developmental and environmental 

stimuli, reactive oxygen species (ROS) have been proven to play a central role in these cell 

death pathways (Doyle et al., 2010; Xie et al., 2014; Petrov et al., 2015; Liu et al., 2018; 

Cai et al., 2020). ROS are produced in different cell compartments. However, chloroplasts 

and mitochondria are among the principal organelles that contribute to the pool of ROS 

produced during RCD (Liu et al., 2007, 2014; Cvetkovska and Vanlerberghe, 2012; Bi et 

al., 2014; Wu et al., 2015). The concentration of ROS affects in turn not only the 

organelles’ redox-status but also the redox state of antioxidants such as plastoquinone, 

ascorbate, and glutathione pools (Foyer and Noctor, 2011; Noctor et al., 2012).  
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Plant cells do not display many of the morphological features that distinguish 

apoptosis (van Doorn et al., 2011). However, their large vacuole plays a key role during a 

plant-specific type of cell death that involves a gradual decrease in the cytoplasm volume 

and the formation of small lytic vacuoles (Jones, 2001) . This type of cell death is called 

vacuolar cell death (VCD) and has been associated with xylem cell death and with the 

hypersensitive response (Bollhöner et al., 2012; Vorster et al., 2019). VCD involves 

tonoplast rupture, disassembly of the nuclear envelope and nuclear segmentation, while 

mitochondria and other plant organelles remain intact until the final stages of this pathway 

(van Doorn et al., 2011). Notably, autophagy (ATG) related genes activation has also been 

implicated in VCD (Teper-Bamnolker et al., 2019).   

Even when plant RCD shows specific features, several events that characterize plant 

cell death overlap with processes observed in non-plant species, including mammals and 

other vertebrates. Among these characteristics ROS accumulation, lipid peroxidation and 

depletion of antioxidants emerge as key conserved hallmarks that are commonly detected 

during RCD across evolutionarily distant species.  

 

Ferroptosis: discovery and main players 

Ferroptosis is an iron-dependent type of cell death characterized by the 

accumulation of lipid reactive oxygen species and with unique biological and molecular 

characteristics. Although cell death pathways involving iron and lipid peroxidation have 

been observed in diverse species for a long time, the term and concept of ferroptosis was 

first introduced in 2012 to describe a cell death pathway found in tumor cells (Dixon et al., 

2012). Ferroptosis defines a type of cell death that is genetically, morphologically and 

biochemically distinct from other forms of RCD. It does not show the morphological 

features that characterize necrosis, such as swelling of the cytoplasm and organelles and 

rupture of the cell membrane. It also differs from cell apoptosis, as cell shrinkage, 

chromatin condensation and the formation of apoptotic bodies are all features that are not 

observed in cells undergoing ferroptosis. Morphologically, ferroptosis manifests with a 

noticeable shrinkage of mitochondria that also show increased membrane density and fewer 
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mitochondrial cristae. When ferroptosis was first described, the mechanism involved the 

action of erastin, a small molecule that inhibits the cystine/glutamate antiporter (system Xc-

) in tumor cells limiting the availability of cysteine in the cell. As cysteine is required for 

glutathione (GSH) synthesis, erastin treatments resulted in GSH depletion. In addition, this 

was accompanied by an overwhelming accumulation of cytosolic and lipid ROS, that were 

then postulated as the main triggers of cell death (Dixon et al., 2012). Two years later, 

glutathione peroxidase 4 (GPX4) was identified as a main player of ferroptosis (Yang et al., 

2014; Friedmann Angeli et al., 2014). GPX4 is a phospholipid hydroperoxidase that 

prevents uncontrolled peroxidation of phospholipids. The accumulation of lipid peroxides 

is highly dependent on iron availability. Chelation of intracellular iron using deferoxamine 

(DFO) is sufficient to prevent ferroptotic cell death even in Gpx4 knockout mice 

(Friedmann Angeli et al., 2014).  

Poly-unsaturated fatty acids (PUFAs) -containing membrane phospholipids are the 

most common lipids that undergo oxidation during ferroptotic cell death (Yang et al., 

2016). Lipidomic studies in animal cells have identified phosphatidylethanolamines 

containing arachidonic acid (C20:4) or the elongation product, adrenic acid (C22:4), as key 

phospholipids that are targets of peroxidation upon ferroptosis induction (Kagan et al., 

2017). Although the source of iron involved in lipid peroxidation has not been identified, it 

is thought to come from labile iron pools within the cell. The generation of toxic lipid‐

peroxides may result from enzymatic or non‐ enzymatic processes that involve different 

forms of catalytically active iron. The non-enzymatic mechanism involves Fenton 

chemistry, which generates highly toxic hydroxyl and peroxyl radicals. Enzyme-dependent 

processes involve iron-containing enzymes such as lipoxygenases (LOXs) (Stockwell et al., 

2017), which have been identified mediating lipid peroxidation as a specific downstream 

event of GPX4 inactivation in mice (Seiler et al., 2008). Since its discovery, ferroptotic cell 

death has been described in diverse mammals and non-mammalian vertebrates, 

invertebrates, (Conrad et al., 2018), fungi (Shen et al., 2020) and plants (Distéfano et al., 

2017; Hajdinák et al., 2019; Dangol et al., 2019; Macharia et al., 2020). 
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Ferroptosis in plants 

A few years after the discovery of ferroptosis in animals, this process was also 

described in plants. Distéfano et al. (2017) found a type of cell death in Arabidopsis 

thaliana, which shared many of the hallmarks described for animal ferroptosis: iron-

dependent ROS accumulation, lipid peroxidation and glutathione depletion (Distéfano et 

al., 2017). In addition, many morphological characteristics of mammal ferroptosis were 

also observed in plant cells: retracted cytoplasm, normal nuclei and mitochondria 

shrinkage. Ferroptosis in plants was triggered in roots exposed 10 min to a 55°C heat shock 

or in seedlings exposed for 1 h at 43°C and was prevented by pre-incubation with the 

canonical ferroptosis inhibitors Ferrostatin-1 (Fer-1, a lipophilic antioxidant) and 

Ciclopirox olamine (CPX, an intracellular iron chelator) (Distéfano et al., 2017). This 

pathway was not observed when plant cells were exposed to higher temperatures (77°C) or 

to other types of abiotic stresses (such as saline and oxidative stress), which led to a cell 

death pathway that was not preventable by the use of ferroptosis inhibitors. Furthermore, no 

evidence on the effect of ferroptosis inhibitors on vascular or reproductive development 

was found so far (Distéfano et al., 2017).  

The oxidative burst observed in Arabidopsis roots upon heat stress is preceded by 

glutathione and ascorbic acid depletion (Distéfano et al., 2017). Fer-1 or CPX are not able 

to prevent this, suggesting that such depletion might be an early event in the cell death 

pathway that follows heat stress and not a consequence of lipid peroxidation (Distéfano et 

al., 2017). GSH depletion can be explained by its extensively consumption in the ER lumen 

to repair disulfides formed as a consequence of high temperatures, which is also 

accompanied by an inactivation of GSH biosynthesis (Ozgur et al., 2014). In the absence of 

available GSH, ascorbic acid cannot be recycled, which can explain the low levels of 

reduced ascorbic acid detected in Arabidopsis roots after heat stress (Foyer and Noctor, 

2011; Noctor et al., 2012; Distéfano et al., 2017). 

In animal systems, the selenoenzyme glutathione peroxidase GPX4 has been 

identified as a main regulator of ferroptosis (Conrad and Friedmann Angeli, 2015; Conrad 

et al., 2018). In the presence of GSH as the hydrogen donor, GPXs reduce H2O2, organic 

hydroperoxides and lipid peroxides. GSH depletion causes the inactivation of GPX4, which 
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results in the accumulation of toxic lipid peroxides. Plant GPXs contain cysteine instead of 

selenocysteine in their active site, a difference that might explain their lower activities 

when compared to their mammalian counterparts. This idea is supported by site-directed 

mutagenesis experiments that showed that a selenocysteine to cysteine substitution 

decreases the catalytic activity of the mammalian GPX by 2-3 orders of magnitude (Bela et 

al., 2015). It is also important to note that plant GPXs generally use thioredoxin as a 

reductant agent instead of glutathione, e.g. AtGPX8 (Gaber et al., 2012). Although several 

GPX proteins are able to use both glutathione and thioredoxin as electron donors, the 

thioredoxin regeneration system was shown to be more efficient than the glutathione 

system (Gaber et al., 2012; Bela et al., 2015; Attacha et al., 2017).  

Plant GPXs have important roles alleviating the oxidative stress caused by several 

stimuli. Plants impaired in AtGPX8 show high levels of membrane phospholipid 

peroxidation, indicating a physiological role in the defense of Arabidopsis cells against 

oxidative stress (Gaber et al., 2012). In agreement with this physiological role moderating 

oxidative stress, GPX proteins were also shown to play key functions during ferroptotic cell 

death processes. The expression of a tomato GPX encoding gene was sufficient to inhibit 

cell death induced by salt and heat stress in Nicotiana tabacum plants (Chen et al., 2004). 

In addition, treatment of Arabidopsis cells with the GPX inhibitor RSL3 leads to cell death, 

which can be prevented by the ferroptosis inhibitors Liproxstatin-1 and Fer-1 (Hajdinák et 

al., 2019). Moreover, a recent study in Nicotiana benthamiana showed that silencing of 

NbGPX4 leads to enhanced ferroptotic cell death induced by tobacco mosaic virus 

24A+UPD infection. NbGPX4 shares high sequence similarity to AtGPX6 (Macharia et al., 

2020). Altogether, these data suggest an active role for GPX proteins modulating plant 

ferroptosis.  

Carotenoids are well known antioxidants with recognized activity in both plants and 

animals. Interestingly, oxidation of β-Carotene by O2 generates an array of cleavage 

products of varying chain length that are thought to act as signaling molecules in response 

to stress conditions (Ramel et al., 2012). In Arabidopsis, exposure to high light induces the 

oxidative cleavage of β-carotene to β-cyclocitral (β-CC), which in turn induces the 

transcription of genes that respond to  lipid peroxidation stress (D’Alessandro et al., 2018). 
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Remarkably and supporting a putative role of carotenoids regulating ferroptosis, application 

of β-Carotene to humans cells was shown to inhibit ferroptosis (Yagoda et al., 2007; Yang 

and Stockwell, 2016). 

Plant ferroptosis is highly dependent on PUFAs peroxidation. Pretreatment with 

PUFAs containing the heavy hydrogen isotope deuterium at bis-allylic carbons (D-PUFAs), 

which inhibits PUFA oxidation, prevents heat stress-triggered ferroptosis in root cells 

(Distéfano et al., 2017). LOXs were reported to mediate ferroptosis in animal cells (Conrad 

et al., 2018; Kagan et al., 2017) through the specific peroxidation of PUFA-PE. Such 

substrate specificity seems to be directed by a small scaffolding protein, 

phosphatidylethanolamine-binding protein 1 (PEBP1), that binds to two LOX isoforms 

(15LO1 and 15LO2) changing their substrate competence to generate hydroperoxy-PE 

(Wenzel et al., 2017). The PEBP gene family is present in all eukaryotes. In plants, the 

PEBP family can be divided into three subfamilies, TERMINAL FLOWER1 (TFL1)-like, 

FLOWERING LOCUS T (FT)-like, and MOTHER OF FT AND TFL1 (MFT)-like (Wang 

et al., 2015). TFL1 and FT both control flowering time and plant architecture in A. 

thaliana, while MFT plays a critical role regulating seed germination via the abscisic acid 

and gibberellic acid signaling pathways (Vishal and Kumar, 2018). However, there are no 

reports on the involvement of plant-specific PEBPs in the modulation of lipid peroxidation 

or cell death so far.  

Lipid peroxidation triggered by LOX enzymes constitutes a hallmark for the cell 

death that takes place during specific plant pathogen responses. Arabidopsis LOX isoforms 

are classified as 9-LOXs or 13-LOXs according to the position at which the oxygen is 

incorporated into the LOX substrates (Zhao et al., 2014). While LOX1 and LOX5 are 9-

LOXs, LOX2, LOX3, LOX4, and LOX6 are 13-LOXs. It has been shown that silencing 

either 9-LOXs or 13-LOXs attenuated the programmed cell death (PCD)-associated by 

infection with either Potato Virus X-Potato Virus Y or Tomato Spotted Wilt Virus (PVX-

PVY and TSWV respectively, (García-Marcos et al., 2013)). A pepper 9-LOX (CaLOX1) 

was also shown to be involved in cell death. Transient expression of CaLOX1 in pepper 

leaves was sufficient to induce cell death and defense responses (Hwang and Hwang, 

2010). In addition, silencing of CaLOX1 resulted in a reduced expression of defense-related 
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genes, lower lipid peroxidation, a decrease in ROS and salicylic acid accumulation (Hwang 

and Hwang, 2010). Interestingly, 9-LOX activity on linoleic acid produces 10-oxo-11-

phytoenoic acid (10-OPEA) and a series of related 12- and 14-carbon cyclopente(a)nones, 

collectively named “death acids” (DAs). DAs mediate defense gene expression and 

promote cytotoxicity resulting in cell death (Christensen et al., 2015). A lipidomic analysis 

in the interaction of Arabidopsis with Pseudomonas syringae revealed that lipid 

peroxidation precedes cell death and that is mainly confined to plastid lipids including 

galactolipid and triacylglyceride species. While singlet oxygen was identified as the major 

cause of lipid oxidation in control conditions, the activity of LOX2 and free radical-

catalyzed lipid oxidation increases significantly upon pathogen infection. Additionally, the 

analysis of mutants impaired in LOX2 revealed that its activity is essential for enzymatic 

membrane peroxidation induced by the plant-pathogen interaction (Zoeller et al., 2012). 

Recently, a study showed that acrolein, a highly reactive α,β-unsaturated aldehyde might 

mediate ferroptosis in Arabidopsis cell cultures (Hajdinák et al., 2019). The addition of 

acrolein is sufficient to induce cell death, which is mitigated by canonical ferroptosis 

inhibitors and GSH (Hajdinák et al., 2019). 

Lipid peroxidation can also result from a non-enzymatic pathway. The non-

enzymatic catalysis of lipid peroxidation is a consequence of the radicals formed through 

the Fenton reaction, where iron reacts with endogenously produced hydrogen peroxide to 

form oxygen radicals (Fe
2+

 + H2O2 → Fe
3+

 + HO
•
 + HO). This oxygen radical is able to 

abstract hydrogen from an unsaturated fatty acid, to yield a lipid-peroxyl radical (Yang et 

al., 2016; Gaschler and Stockwell, 2017). This non-enzymatic reaction was suggested to 

take place during plant-pathogen interactions. It has been shown that Fe
3+

 and ROS 

accumulate at the site of inoculation in several incompatible plant-pathogen interactions 

(Dangol et al., 2019). Such co-accumulation indicates that Fe
3+

 might result from the 

reaction between highly reactive Fe
2+

 and H2O2 to produce Fe
3+

 and hydroxyl radicals, 

which can ultimately result in the iron-dependent accumulation of toxic lipid ROS observed 

during ferroptosis (Dixon et al., 2012; Distéfano et al., 2017). 

Additionally, a search for putative orthologs of ferroptosis markers in Arabidopsis 

thaliana revealed that Kiss of Death (KOD), a gene encoding for a 25-amino-acid peptide 
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that induces cell death in Arabidopsis roots, is significantly up-regulated in response to HS 

in a Fer-1 sensitive manner. This suggests that KOD might act downstream of GSH 

depletion and ROS accumulation in the cascade of events that lead to HS-induced 

ferroptosis in plants (Distéfano et al., 2017). 

 

Iron and ferroptosis in plants 

Due to its redox properties, iron serves as a cofactor of many important enzymes 

required for a large range of metabolic processes. It facilitates hydroxylation and 

(de)hydration reactions like the activation and decomposition of peroxides and the electron 

transfer via an assortment of electron carriers with different redox potentials. However, due 

to its high reactivity, it could also lead to oxidative stress. To overcome this dual activity, 

living organisms have evolved complex mechanisms and pathways that regulate iron 

homeostasis. Plants and animals are able to sense iron availability and to regulate a plethora 

of iron transporters, chaperons, scavengers, and iron-containing enzymes (Bogdan et al., 

2016; Connorton et al., 2017). As intracellular iron is essential for ferroptotic cell death, all 

the players involved in the regulation of iron availability and metabolism can also play a 

key role modulating ferroptosis (Stoyanovsky et al., 2019).  

While regulation of iron transport and iron homeostasis is known to affect 

ferroptosis in animal systems, very little information is available for plant cells so far. In 

animals, blocking iron acquisition inhibits ferroptosis (Yang and Stockwell, 2008; Gao et 

al., 2015) whereas knocking down iron efflux transporters is sufficient to accelerate 

ferroptotic cell death (Ma et al., 2016).  

Ferroptosis in plants is also an iron-dependent pathway. Ferroptosis triggered by 

heat stress can be blocked with iron chelators (Distéfano et al., 2017). Additionally, a 

recent report showed that exogenous supplementation of iron led to an accelerated 

ferroptotic cell death in plants infected with the highly virulent tobacco mosaic virus 

24A+UPD (Macharia et al., 2020). However, the mechanisms leading to iron accumulation 

during ferroptotic cell death are still unknown in plants.  
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Iron transport is quite different in animals and plants (Connorton et al., 2017; Wang 

et al., 2020). This is not only due to the presence of specific iron transporters involved in 

iron uptake at the plasma membrane, but also because plant cells contain plastids and a 

large vacuole that also participate in the regulation of iron homeostasis. In fact, vacuolar 

iron transporters play essential roles in iron storage and transport (Bashir et al., 2016). In 

leaves, chloroplasts contain around 70% of total iron, which is mostly associated with 

thylakoids (Kroh and Pilon, 2020). Since exposing heat-treated seedlings to light 

accelerates ferroptosis, it was proposed that active chloroplast might have a role in this 

process (Distéfano et al., 2017). It is also known that expression of chloroplastic iron 

transporters is induced by light. While chloroplasts display specific iron transporters as 

PIC1 (permease in chloroplasts 1) (Duy et al., 2011), transporters of the FRO and YSL 

families are also present (Jeong et al., 2008; Divol et al., 2013). In addition, NEET proteins 

are proposed to participate in Fe-S/Fe transfer and to play a role in iron homeostasis (Kroh 

and Pilon, 2020). On the other hand, YSL transporters seem to be involved in iron-

nicotinamide release, playing an important role during embryogenesis and senescence 

(Divol et al., 2013). As in animals, mitochondria shrinkage is a hallmark of ferroptosis in 

plants (Distéfano et al., 2017). Although mitochondrial ROS production is not always 

involved, a number of metabolic changes are described in animal mitochondria associated 

to ferroptosis (Wang et al., 2020). For instance, mitochondrial voltage-dependent anion 

channels (VDACs), which transport a large variety of compounds such as ions, DNA and 

tRNA molecules (Hemono et al., 2020), were shown to be direct targets of the ferroptosis 

inducer erastin (Dixon et al., 2012; Mühlenhoff et al., 2015). Accordingly, not only 

VDACs were reported to play a role in plant cell death (Homblé et al., 2012), but erastin 

also induces a ferroptotic type of cell death in plants (Dangol et al., 2019). While the effect 

of erastin as a ferroptosis inducer was mainly associated with the inhibition of the 

cystine/glutamate antiporter (system Xc-) in tumor cells (Dixon et al., 2012), the molecular 

bases underlying the effect of erastin are still elusive in plants. For instance, there are no 

orthologs for the cystine/glutamate antiporter. However, as explained above, erastin could 

target plant VDAC channels, which might affect the permeability of the outer 

mitochondrial membrane as reported in cancer cells (Yang et al., 2020). 
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FRO and specific mitochondrial iron transporters such as MIT1 and MIT2 are 

involved in iron acquisition in mitochondria (Heazlewood et al., 2004; Wu et al., 2005; Jain 

et al., 2019). Additionally, Arabidopsis plants harbor a unique member of the NEET 

proteins family (also named CISDs) which is involved in sulfur and iron efflux and is 

localized both in mitochondria and chloroplasts (Nechushtai et al., 2012). AtNEET knock-

down plants show early senescence and accumulate high levels of iron and ROS 

(Nechushtai et al., 2012). In animals, NEET proteins negatively regulate ferroptosis (Yuan 

et al., 2016; Kim et al., 2018). Remarkably, recent data show that a specific NEET protein 

negatively regulates VDAC in a redox dependent manner (Lipper et al., 2019). These data 

support a putative role of NEET proteins during ferroptosis, modulating mitochondrial iron 

influx and ROS homeostasis in plants. Finally, ATM3 (a member of the ATP Binding 

Cassette family) exports glutathione disulfide from mitochondria to the cytoplasm, where it 

is required for the assembly of cytosolic Fe-S clusters in Arabidopsis (Schaedler et al., 

2014). Regulation of this assembly machinery could be important during plant ferroptosis, 

as it was shown that suppressing Fe-S clusters biosynthesis induces ferroptosis in other 

systems (Alvarez et al., 2017).  

Another mitochondrial protein with conserved functions in mammals, yeast, 

bacteria and plants is frataxin (Buchensky et al., 2017; Gomez-Casati et al., 2018). In 

Arabidopsis, frataxin knockout mutants are embryo lethal (Vazzola et al., 2007) while 

knockdown mutants display a deficiency in Fe–S cluster assembly (Busi et al., 2006) and 

abnormal iron accumulation (Martin et al., 2009; Jain et al., 2019). In addition, double 

mutants impaired in frataxin and Fer4 genes suggested that both proteins contribute to the 

composition of the leaf ionome (Murgia and Vigani, 2015). As in plants, frataxin 

knockdown human cells also show iron accumulation and aberrant Fe–S cluster assembly 

(Du et al., 2020). These cells are also more sensitive to erastin induced cell death while 

frataxin overexpression results in erastin resistance, although they are still sensitive to 

RSL3 (Du et al., 2020). 

Ferritins are iron-storage proteins that are generally targeted to chloroplasts (Briat et 

al., 2010), although localization of a specific isoform, Fer4, has been also documented in 

mitochondria (Tarantino et al., 2010). In Arabidopsis there are four ferritins whose 
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expression is not only regulated by tissue or developmental stage, but also by 

environmental conditions, iron availability or wounding (Ramirez et al., 2011). By 

buffering excess of iron in the cell, ferritins also protect the cells against oxidative stress. 

This has been extensively shown in different plant species (Ravet et al., 2009; Yadav et al., 

2017; Zang et al., 2017). Remarkably, it was recently demonstrated that silencing ferritin 

encoding genes results in accelerated ferroptosis upon virus infection in tobacco plants 

(Macharia et al., 2020). In agreement, overexpression of an At-Ferritin enhances tolerance 

to heat stress in Arabidopsis and wheat by reducing the oxidative stress triggered by high 

temperatures (Zang et al., 2017). These reports support a role for ferritin not only in iron 

homeostasis and oxidative stress moderation, but also playing an active role in plant 

ferroptosis. A similar role has been proposed for ferritins in mammalian cells, where it was 

shown that genetic inhibition of the ferritin heavy chain 1 (FTH1) promotes erastin-induced 

ferroptosis (Hao et al., 2018). In addition, ferroptosis-sensitive cells show decreased ferritin 

expression (Hao et al., 2018). Ferritin degradation was also shown to contribute to 

ferroptosis, increasing the levels of labile iron in fibroblasts and cancer cells (Gao et al., 

2016; Hou et al., 2016). 

GSH depletion has been largely recognized as a ferroptosis hallmark both in plants 

and animals (Distéfano et al., 2017; Stockwell et al., 2017). In mammalian cells, the main 

effect of such GSH drop is GPX4 inactivation (Yang et al., 2014), which leads to the 

accumulation of toxic lipid peroxides. However, increasing evidence supports the notion 

that GSH might have additional new functions related to cellular iron homeostasis. Through 

the formation of iron complexes, GSH is able to sense and regulate iron levels, iron 

transport, and the biosynthesis of iron cofactors in mammalians and yeast (Berndt and 

Lillig, 2017; Patel et al., 2019).  

GSH may also play a role in nitric oxide (NO) accumulation, as the synthesis of a 

major cellular NO reservoir, S‐ nitrosoglutathione (GSNO), requires glutathione 

(Shanmugam et al., 2015). In addition, GSH forms a mixed of mono- or di‐ thiol 

dinitrosyl‐ Fe complexes (MNIC and DNIC) which facilitates its diffusion and/or transport 

from cell to cell (Watts and Richardson, 2001; Buet et al., 2019). These MNIC/DNIC 

complexes together with Glutathione‐ associated NO‐ mediated S‐ nitrosylation of 
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proteins were shown to mediate the signaling cascades that are triggered in response to iron 

deficiency (Ramirez et al., 2011; Shanmugam et al., 2015; Buet et al., 2019). When GSH 

levels are low, a situation that takes place during ferroptosis, there is a drop in NO and 

GSNO levels in Arabidopsis (Shanmugam et al., 2015). In addition, it has been shown that 

the enzymatic degradation of GSNO via GSNOR is required to provide tolerance to iron 

excess (Li et al., 2019). Although these molecules were not traditionally associated to 

animal ferroptosis, a recent report showed that inducible nitric oxide synthase (iNOS) 

modulates susceptibility to ferroptosis in macrophages and microglia (Kapralov et al., 

2020). Inactivation of iNOS confers sensitivity, whereas NO donors confer resistance of 

cells to ferroptosis. The anti-ferroptotic effects of NO in these cells were attributed to its 

ability to react with lipid radicals generated by 15-LOX (Kapralov et al., 2020). 

In addition, increasing evidence supports a role of glutaredoxins (GRXs) regulating 

iron homeostasis. GRXs are ubiquitous disulfide oxidoreductases that play an important 

role in the response of plants to oxidative stress, catalyzing the reduction of disulfide bonds 

and regulating redox status (Rouhier et al., 2004). Specifically, class II GRXs bind Fe-S 

clusters, taking part in their biogenesis and also in their transfer to Fe-S-containing 

enzymes (Rouhier et al., 2007; Moseler et al., 2015). Arabidopsis AtGRXs14, 15, 16, and 

17 all can bind Fe–S clusters (Iñigo et al., 2016; Ströher et al., 2016). Remarkably, 

GRXs17 shows redox-dependent holdase activity, releasing Fe-S clusters upon stress (Wu 

et al., 2017; Martins et al., 2020). Accordingly, class II GRXs might constitute a plausible 

source of labile iron during ferroptosis, as high temperatures induce the release of 2Fe-2S 

clusters (Wu et al., 2017; Martins et al., 2020). Also, an imbalance in iron-sulfur cluster 

assembly could also lead to iron accumulation, priming cells to ferroptosis as observed in 

tumor cells (Du et al., 2020). Interestingly, silencing glutaredoxin 5 (GLRX5) activated 

iron-starvation response in mouse models, boosting up intracellular free iron predisposing 

cells to ferroptosis (Lee et al., 2020). 

Iron can also bind to Poly rC Binding-Proteins (PCBPs), which in humans were 

found to transfer iron to the lipoxygenases implicated in ferroptosis (Stoyanovsky et al., 

2019). Supporting a similar role in plants, ferroptosis triggered upon virus infection 
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involves a strong induction of a PCBP protein in Nicotiana Benthamiana (Macharia et al., 

2020). 

Transcription factors from the bHLH family are also implicated in iron sensing, 

regulating the expression of iron-related genes, such as iron transporters FRO and IRT 

(Zhang et al., 2019). These transcription factors are induced in response to iron deficiency 

(García et al., 2018; Rodríguez-Celma et al., 2019). Interestingly, iron deficiency in 

combination with heat stress downregulates the expression of iron deficiency-responsive 

genes, which might ameliorate heat stress-induced ferroptosis in plants (Buckner et al., 

2019). Similarly, silencing of IREB2, which encodes a protein that senses iron levels and 

controls the expression of many other proteins related to iron transport, storage and 

turnover, attenuates erastin-induced ferroptosis in cancer cells (Dixon et al., 2012). 

Lastly, iron is also essential to regulate many metabolic reactions, as it is part of key 

cofactors such as heme groups, Fe-S clusters and non-heme iron centers. Chloroplasts and 

mitochondria are rich in Fe-S proteins, while peroxisomes and the endoplasmic reticulum 

contain heme proteins such as peroxidases and cytochrome P450s; and mono- and di-iron 

enzymes are found in all cell compartments (Connorton et al., 2017). Many of those co-

factors are required for enzymatic activities involved in the execution of ferroptosis 

(Stockwell et al., 2017). Besides the LOXs activity already described, other iron containing 

enzymes, such as cytochrome P450 oxidoreductases, were also identified to mediate 

PUFAs peroxidation (Zou et al., 2020). Furthermore, it was observed that suppressing iron-

sulfur clusters biosynthesis induces ferroptosis in lung tumors (Alvarez et al., 2017). 

Interestingly, most of the plant metabolically-active iron is included in these clusters and 

the selective protein degradation that takes place during abiotic stresses was shown to have 

an impact on iron metabolism (Wawrzyńska and Sirko, 2020).  
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Concluding Remarks 

Ferroptosis in plants shares all the main hallmarks described for ferroptosis in other 

systems. As described above, it occurs through GSH depletion, ROS accumulation and 

iron-dependent lipid peroxidation. Iron plays an essential role in ferroptosis. Accordingly, 

several proteins involved in iron homeostasis were shown to be modulated during plant 

ferroptosis or to regulate cell death (Table 1). In addition, growing evidence supports an 

active role for several iron-storage proteins and iron transporters during plant ferroptosis, as 

reported for animal systems (Table 1). The particularities of the plant cell also add more 

complexity to the ferroptosis pathway, as different compartments might contribute not only 

as an iron source but also as sites of localized ROS accumulation or by providing PUFAs 

containing membrane lipids (Figure 1). How these lipid peroxides act as pro-ferroptotic 

signals is a question that still remains to be elucidated. However, recent reports suggest that 

they might interact with protein targets causing the formation of pores in plasma 

membranes or even their rupture (Stoyanovsky et al., 2019). 

Ferroptosis can be triggered by abiotic or biotic stresses. Recent reports showed the 

relevance of ferroptosis during plant-pathogen interactions (Dangol et al., 2019; Macharia 

et al., 2020). Interestingly, the role of iron homeostasis in plant disease has been largely 

documented in several systems (Greenshields et al., 2007; Douet et al., 2009; Dellagi et al., 

2009). As iron-dependent cell death seems essential for restricting pathogen growth and 

plant infection, iron sequestering from the host might be a successful strategy for infection. 

Concordantly with this idea, high-affinity iron uptake mechanisms such as siderophore-

mediated iron uptake have been reported to be essential for virulence in fungi and bacteria 

(Greenshields et al., 2007; Dellagi et al., 2009). 
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Heat stress is also able to induce ferroptosis in a very specific manner (Distéfano et 

al., 2017). Even when there is not a master regulator described for stress response in plants, 

several metabolic and transcriptional changes are commonly seen in response to different 

types of environmental stimuli (Buckner et al., 2019). Ferroptosis, in fact, involves 

molecular events such as ROS accumulation, activation of lipid peroxidation and 

antioxidant depletion that have been described after several kinds of insults (Senda and 

Ogawa, 2004; Pavet et al., 2005; Van Breusegem and Dat, 2006; Doyle et al., 2010; Noctor 

et al., 2012; Xie et al., 2014). As knowing the kind of stimuli that triggers ferroptosis 

would provide with new insights for this cell death pathway, revisiting already described 

regulated cell death processes might contribute to a better understanding of the implications 

of ferroptosis in plants. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/eraa425/5904433 by U

niversity of M
elbourne Library user on 14 Septem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

19 
 

Data Availability 

All data supporting the findings of this study are available within the paper and 

within its supplementary materials published online. 
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Table 1. Proteins/compounds involved in iron sensing, transport and homeostasis that might 

have an active role modulating plant ferroptosis.  

Iron-related activity Protein/ 
compounds 

Subcellular  
compartment 

References 

Iron transporters 
 
 
 

VDAC Mitochondrion (Homblé et al., 2012) 
(Dangol et al., 2019) 

NEET Mitochondrion (Nechushtai et al., 2012) 

Iron storage proteins/Iron 
 Scavengers 
 

Ferritin 
 

Plastids (Macharia et al., 2020) 
(Zang et al., 2017) 

Iron chaperons Frataxin 

GRXs Class II 

Mitochondrion 

Plastid/Mitochondrion/Cytosol 

(Busi et al., 2006) 
(Martins et al., 2020) 

PCBP Cytosol (Macharia et al., 2020) 
 

Iron containing enzymes LOX Cytosol (García-Marcos et al., 

2013a) 
 

Iron levels modulators BURTUS 
POPEYE 

Nucleus 
Nucleus 

(Buckner et al., 2019) 
(Buckner et al., 2019) 

GSH Cytosol (Distéfano et al., 2017) 
GSH-NO-Fe Cytosol (Buet et al., 2019) 
GSNOR Cytosol (Li et al., 2019) 
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Figure Legends 

Fig. 1. Proposed model for ferroptosis in plants. Ferroptosis is induced upon heat and 

biotic stress. The pathway involves GSH depletion, ROS accumulation and iron-dependent 

lipid peroxidation. Cytoplasmic retraction, normal nuclei, mitochondria shrinkage, and the 

formation of small lytic vacuoles are the main morphological hallmarks of plant ferroptosis. 

Iron accumulation might implicate different mechanisms and subcellular compartments. 

Several proteins related to iron homeostasis are modulated during plant ferroptosis, such as 

ferritins and PCBPs proteins. Voltage-dependent anion channels (VDAC) and NEET 

proteins, ATM3 transporters, frataxin and the iron-sensitive proteins POPEYE (PYE) and 

BRUTUS (BTS) might also have a significant role. An oxidative burst occurs via 

cytoplasmic ROS accumulation through NADPH oxidase activity (NOX) and the 

generation of toxic lipid‐ peroxides. Those lipid peroxides may result from enzymatic or 

non‐ enzymatic processes on membrane poly-unsaturated fatty acids (PUFAs), involving 

either lipoxygenases (LOXs) activity or Fenton chemistry. However, where lipid 

peroxidation occurs or which specific lipids undergo peroxidation, it is still unknown. 

Glutathione peroxidase (GPX) detoxifies lipid peroxides, acting as a ferroptosis negative 

regulator. GPX uses thioredoxin (TRX) as a main reductant agent, but it might also utilize 

GSH. GSH is also required for nitric oxide (NO) accumulation, since the synthesis of a 

major cellular NO reservoir, GSNO, requires GSH. Lipid peroxides act as pro-ferroptotic 

compounds, although their targets are still unknown. However, recent evidence suggests 

that they might interact with membrane proteins forming pores and damaging the plasma 

membrane. CPX, Fer-1, Lip-1 and DPI inhibit ferroptosis. Erastin and RSL3 are ferroptosis 

inducers. Dashed lines indicate indirect evidence.  
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