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Abstract  

Aims: To address the effect of a diet enriched in extra virgin olive oil (EVOO) on 

maternal metabolic parameters and placental proinflammatory markers in Gestationa l 

diabetes mellitus (GDM) patients. Methods: Pregnant women at 24-28 weeks of 

gestation were enrolled: 33 GDM patients which were randomly assigned or not to the 

EVOO-enriched group and 17 healthy controls. Metabolic parameters were determined. 

Peroxisome proliferator activated receptor (PPAR) γ and PPARα protein expression, 

expression of microRNA (miR)-130a and miR-518d (which respectively target these 

PPAR isoforms) and levels of proinflammatory markers were evaluated in term placentas. 

Matrix metalloproteinases (MMPs) activity was evaluated in term placentas and umbilica l 

cord blood. Results: GDM patients that received the EVOO-enriched diet showed 

reduced pregnancy weight gain (GDM-EVOO:10.3±0.9, GDM:14.2±1.4, P=0.03) and 

reduced triglyceridemia (GDM-EVOO:231±14, GDM:292±21, P=0.02) compared to the 

non-EVOO-enriched GDM group. In GDM placentas, the EVOO-enriched diet did not 

regulate PPARγ protein expression or miR-130a expression, but prevented the reduced 

This article is protected by copyright. All rights reserved.



 
 

PPARα protein expression (P=0.02 vs GDM) and the increased miR-518d expression 

(P=0.009 vs GDM). Increased proinflammatory markers (interleukin-1β, tumor necrosis 

factor-α and nitric oxide overproduction) in GDM placentas were prevented by the 

EVOO-enriched diet (respectively P=0.001, P=0.001 and P=0.01 vs GDM). MMPs 

overactivity was prevented in placenta and umbilical cord blood in the EVOO-enriched 

GDM group (MMP-9: respectively P=0.01 and P=0.001 vs GDM). Conclusions: A diet 

enriched in EVOO in GDM patients reduced maternal triglyceridemia and weight gain 

and has anti-inflammatory properties in placenta and umbilical cord blood, possibly 

mediated by the regulation of PPAR pathways.  

 

1. INTRODUCTION 

 

Gestational diabetes mellitus (GDM) is a prevalent disease that increases the risks 

of maternal, placental, and perinatal adverse outcomes and induces long-term adverse 

effects on the offspring´s later life1,2. Adverse outcomes in GDM have been related to an 

intrauterine proinflammatory environment3. Indeed, proinflammation is a common 

alteration in gestational diseases and can influence the placental development and 

function, the fetal development and the offspring´s later life4,5.  

Our previous studies performed in experimental models of diabetes and pregnancy 

allowed us to identify changes in pathways regulated by peroxisome proliferator activated 

receptors (PPARs) in embryos, fetuses and placentas, related to a proinflammatory 

environment6. PPARs are ligand activated transcription factors capable of regulat ing 
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metabolic and anti-inflammatory pathways, as well as intrauterine development7,8 . 

PPARs are nutrigenomic agents, being monounsaturated fatty acids (MUFAs, the main 

components of olive oil), PPARs endogenous ligands9,10. In experimental models of 

diabetes and pregnancy, our previous studies have shown that diets enriched in extra 

virgin olive oil (EVOO) lead to anti-inflammatory effects, as shown by the ability of these 

diets to prevent increased levels of proinflammatory cytokines, nitric oxide 

overproduction, and matrix metalloproteinases (MMPs) overexpression in placentas, 

embryos and different fetal organs11-16. Studies have also shown that although maternal 

EVOO-dietary treatments do not prevent programming of metabolic diseases in the 

offspring of diabetic animals, this treatment reduces the levels of proinflammatory 

markers in the offspring´s heart and prevents hypertriglyceridemia in the adult offspring 

of diabetic rats11,16.   

In women with pregestational and gestational diabetes, placental levels and 

expression of PPARγ and PPARα are reduced17,18. Besides, expression of microRNA-

518d, a microRNA that targets PPARα, is increased in the placentas of GDM patients19 . 

Whether microRNAs that regulate PPARs are related to PPARγ changes and whether 

alterations in placental microRNAs that target PPARs can be prevented by diets enriched 

in PPAR ligands are unknown.  

EVOO is the main vegetable oil that composes the Mediterranean diet, which is 

increasingly being considered as a medical treatment20,21. The Mediterranean diet has 

been found associated with a lower incidence of GDM22. Out of pregnancy, an EVOO-

enriched diet has beneficial effects on metabolic and cardiovascular diseases, as 
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demonstrated in the PREDIMED study and other clinical studies23-25. In pregnant women, 

studies addressing a diet enriched in EVOO and pistachios reduced the incidence of 

GDM26. No previous studies addressing a putative beneficial effect of an EVOO-enriched 

diet in GDM pregnancies have been conducted so far. In this work, we conducted a 

randomized clinical trial and tested the hypothesis that a maternal diet enriched in EVOO 

ameliorates triglyceridemia in the mothers, regulates placental PPAR protein levels, 

modulates the expression of microRNAs that regulate PPARs expression, and reduces 

pro-inflammatory markers in the placenta and the umbilical cord blood from GDM 

patients.  

 

2. METHODS 

 

2.1 Study design  

Pregnant women with a singleton fetus at the time of GDM diagnosis (between 24 to 28 

weeks) were randomly assigned in a 1:1 manner to receive a diet with additional three 

tablespoons of crude EVOO daily (36 g/day). GDM was diagnosed according to Latin 

American Diabetes Association (ALAD)/ Argentine Society of Diabetes (SAD) 

diagnostic criteria, based on glycemia values either at fasting (>99 mg/dl in two 

measurements) or after the universal p75 g oral glucose tolerance test (>140 mg/dl at 2 

h)27. Control women were recruited at the same gestational age. Exclusion criteria 

included BMI over 30 kg/m2 before pregnancy, multiple pregnancies and concurrent 

pathologies including: thrombophilia, preeclampsia, pregestational diabetes, vascular or 
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renal complications associated with chronic hypertension, anemia with total hemoglob in 

below 8 g/dL and positive serology for HIV, VDRL, Hepatitis B or Chagas disease. 

Potential participants received written and oral information about the trial and had at least 

24 h to decide their participation. This clinical trial was approved on 14th January 2016 

by the Ethics and Research Committee of the Pirovano Hospital (Review Board Project: 

DI-2016-29-HGAIP) and registered at the Ministry of Health of the City of Buenos Aires 

on October 2016, IF-2016-22533767. Participants were recruited at Hospital de Agudos 

Dr. Ignacio Pirovano, Buenos Aires, Argentina, from December 2016 to December 2018. 

The study was undertaken in accordance with the Declaration of Helsinki and followed 

the 2010 Consort guidelines. All women that agreed to participate provided their written 

informed consent. 

All eligible women received standardized personal advice on healthy eating and 

appropriate medical care. The study was not blinded, as those women in the EVOO-

enriched group received commercial bottles of EVOO at the nutrition visits to ensure 

adherence. In the three experimental groups (Control, GDM, GDM-EVOO), the women 

received dietary indications to follow a nutritional plan with the following composition: 

2100-2400 Kcal/day; carbohydrates 48-50%, proteins 18-20% and lipids 30-32%. In the 

intervention group, women were indicated to include three tablespoons of EVOO daily 

(36 g/day). The EVOO was indicated to be consumed uncooked and within the main 

meals. The group that did not receive the EVOO-enriched diet was indicated to include 

none to one tablespoon of EVOO daily (0 to 12 g per day). Follow-up appointments to 

the obstetrics and nutrition professionals in charge of the study were frequent (every 1 to 
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4 weeks according to the gestational age and requirements). To assess adherence to the 

EVOO dietary intervention, questionnaires were performed and diet composition was 

evaluated at each nutritional visit. Adherence was considered good if reports indicated a 

daily EVOO consumption over 26 g/day 5 to 7 times a week, regular if daily EVOO 

consumption was over 26 g/day 3 or 4 times a week and bad if daily EVOO consumption 

was lower than 26 g/day or lower than 3 times a week. Clinical data of the participants 

were recorded at each visit. At GDM diagnosis, women received the dietary treatment 

and the indications for glucose monitoring. In subsequent visits, insulin was added if 

target blood-glucose values were not achieved27.  

 

2.2 Metabolic parameters and pregnancy outcomes 

Eight-hour fasting blood was collected at enrolment (gestational weeks 24 to 28) and at 

gestational week 37. Plasma glucose, fructosamine and glycated hemoglobin were 

evaluated using an Abbott autoanalyzer (Architect C8000). Triglycerides were evaluated 

by colorimetric methods (Wiener lab, Rosario, Argentina). Gestational weight gain 

(defined as the difference in maternal weight between the reported weight at term and 

prior to pregnancy) was determined. Maternal and fetal complications were reported. 

Neonatal and placental weight were obtained at birth.   

 

2.3 Placenta and umbilical cord blood sampling 

Umbilical cord blood was collected before placental delivery and citrate plasma 

immediately obtained and conserved at -80°C. Placental tissues were collected from 
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centrally located cotyledons, avoiding decidua and membrane layers. Placental tissues 

were stored in 10% formalin for immunohistochemical studies, immersed in RNA-later® 

solution and stored at -80°C for PCR studies, or immediately stored at -80°C for Western 

Blot, zymography and nitric oxide production evaluation.  

 

2.4 Western blot analysis 

Placental explants were homogenized, proteins were separated by SDS-PAGE and 

transferred to nitrocellulose membranes (35V constant, overnight at 4°C), as previously 

described28. The membranes were stained with Ponceau Red staining solution for total 

proteins (Sigma-Aldrich, St Louis, MO, USA) to confirm proper transfer. After blocking 

for 1 h the membranes were incubated overnight at 4°C with PPARγ antibody (1:100, 

Cayman Chemical Co., MI, USA), PPARα antibody (1:100, Cayman Chemical Co.) or 

actin antibody (1:500, Sigma-Aldrich), which was used as a loading control. After 

washing, the membranes were incubated with the appropriate peroxidase conjugated 

secondary antibody, visualized using ECL detection solution (Thermo Scientific) and 

captured in an ImageQuant LAS 4000 (GE Healthcare Life Sciences, NJ, USA). The 

relative intensity of protein signals was quantified by densitometric analysis using the 

ImageJ Software (NIH, MD, USA). Results are expressed as protein of interest /actin 

protein ratio. 

 

2.5 Total RNA and microRNA isolation, and qRT-PCR analysis 
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Total RNA and microRNA were isolated from placental explants (100 mg) using 

RNAzol® (MCR Inc., OH, USA) and their concentrations determined using the 

NanoDrop spectrophotometer.  

For microRNA evaluation, cDNA was obtained using the TaqMan MicroRNA reverse 

transcription kit (Applied Biosystems, CA, USA). The relative expression of miR-130a 

and of miR-518d was determined using the TaqMan detection system (Applied 

Biosystems), the appropriate primers (assay ID 000454 and 002389 respectively), and the 

U6 spliceosomal RNA (assay ID 001973) as endogenous control (Applied Biosystems).  

From total RNA, cDNA was synthesized incubating 1 μg of extracted RNA in a buffer 

containing 200 U MML-V enzyme (Promega, WI), 7.5 mM random primer hexamers and 

0.5 mM of each dNTPs, as previously28. The reaction mixture was incubated for 60 min 

at 37°C followed by 15 min at 70°C. Then, 2.5 μl of cDNA was used to perform the 

amplification in 10 μl reaction buffer containing dNTPs mix 20 mM, GoTaq Polymerase 

(Promega), Eva Green 20x, and gene specific primer (Cu/Zn SOD, forward: 5′-

ACAAAGATGGTGTGGCCGAT-3′, reverse: 5′-AACGACTTCCAGCGTTTCCT-3′). 

The qPCR conditions started with a denaturation step at 95°C for 5 min and followed by 

up to 40 cycles of denaturation (95°C), annealing (62°C) and primer extension (72°C). 

mRNA levels were normalized to the 60s ribosomal protein L30 levels (L30 primer: 

forward: 5′- TGATCAGACAAGGCAAAGCG-3′, reverse: 5′- 

GCCACTGTAGTGATGGACACC-3′).   

From total RNA and microRNA, the course of PCR amplification was followed in each 

cycle by the fluorescence measurement on Corbett Rotor-Gene 6000 (QIAGEN, MD). 
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Gene expression was quantified using the 2-ΔΔCt method. Relative mRNA and microRNA 

levels are reported as fold value of the control. 

 

2.6 Immunohistochemistry 

Placentas were paraffinized and serially cut in 5-μm-thick sections for further evaluation 

of interleukin 1β (IL-1β) and tumor necrosis factor-alpha (TNF-α) immunostaining. 

Sections were deparaffinized, rehydrated through a graded series of ethanol and the 

endogenous peroxidase activity was blocked. The sections were processed overnight 

using anti-TNF-α primary antibody (mouse  monoclonal antibody, 1:100 dilution, Santa 

Cruz Biotechnology, CA, USA) and anti-IL-1β primary antibody (mouse monoclona l 

antibody, 1:100 dilution, Santa Cruz Biotechnology)  in a humidified chamber at room 

temperature and then incubated with the biotinylated anti-mouse secondary antibody 

(anti-mouse IgG, dilution 1:200, Vector Laboratories, CA) for 1 h. Sections were 

incubated with the Avidin-Biotin-Complex (Vectastain, Vector Laboratories, USA) for 1 

h and then the stain was developed with 3,3’-diaminobenzidine, as previously described15. 

Control sections were generated by omitting the primary antibody. Two skilled blinded 

observers evaluated three sections per placenta. Immunoreactivity intensity was 

quantified with the ImageProPlus software. Data are shown as relative to a value of 1 

assigned to the mean values in the control group.  

 

2.7 Nitric oxide production 
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Nitric oxide production was determined by measuring the concentration of its stable 

metabolites nitrates/nitrites, as reported previously28. Briefly, placental explants were 

homogenized in 1 ml Tris-HCl buffer pH 7.6, and an aliquot was separated for protein 

analysis. After reducing nitrates to nitrites by using nitrate reductase enzyme, nitrites were 

measured by the Griess reaction using a commercial assay kit (Cayman Chemical Co.). 

 

2.8 Gelatinase activity of matrix metalloproteinases  

Zymography was performed to evaluate the gelatinase activity of matrix 

metalloproteinases (MMP) 2 and 9, as previously described15. Briefly, placental explants 

were homogenized in 50 mM Tris, 5 mM CaCl2, 1 μM ZnCl2 and 1% Triton X-100. Then, 

30 µg of protein of the homogenates was mixed with loading buffer (2% SDS, 10% 

glycerol, 0.1% bromophenol blue, 50 mM Tris-HCl, pH 6.8) and subjected to a 7.5% 

SDS-PAGE containing 1 mg/ml gelatin (type A from porcine skin). Gels were rinsed, 

stained with Coomassie blue and destained with 10% acetic acid and 30% methanol in 

water. The areas of proteolytic activity appeared as negatively stained bands in a dark 

background. MMPs were identified by their molecular weights and a positive interna l 

control (conditioned medium of human fibrosarcoma HT-1080 cells). The enzymatic 

activity was quantified using ImageJ software and expressed as arbitrary densitometr ic 

units. Data are shown as relative to a value of 1 assigned to the mean value for MMP 

activity in the control group.   

 

2.9 Study endpoints 
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The primary endpoint was a change in PPARγ and PPARα levels and placental markers 

of a prooxidant/proinflammatory state (TNFα and IL-1β levels, nitric oxide production, 

SOD expression, and MMPs gelatinase activity). Second endpoints were changes in 

maternal metabolic control, triglyceridemia, maternal weight gain, neonatal and placental 

weight as well as microRNAs that target PPARγ and PPARα (miR-130a and miR-518d 

respectively).  

 

2.10 Statistical analysis 

Data are presented as the mean ± SEM. Groups were compared by one-way ANOVA 

followed by Bonferroni´s post-hoc test to compare all groups to each other, Student´s t-

test or chi-square test as appropriate (Graphpad Prism 8 software). Normality of the 

variable distribution was corroborated with the Shapiro-Wilk test. Homogeneity of 

variance was evaluated with the Levene´s test, and in the cases where homogeneity of 

variance was not verified, the variance function Varldent was applied to the model 

(Infostat 2017 software). A P value lower than 0.05 was considered statistica l ly 

significant. 

 

3 RESULTS 

 

3.1 Metabolic parameters and pregnancy outcomes  

As shown in the study Flow chart (Supplementary Figure 1), we were able to obtain the 

complete samples at term of 45 women (15 of the Control group, 15 of the GDM group 
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and 15 of the GDM-EVOO-enriched group (GDM-EVOO). Adherence to the EVOO 

dietary intervention was good in 80% of the GDM patients (Table 1). Age and pre-

pregnancy weight were similar between the three groups (Table 1). Total weight gain was 

increased in the GDM group (P=0.02 GDM vs. Control), an alteration prevented by the 

maternal diet enriched in EVOO (P=0.03 GDM-EVOO vs. GDM) (Table 1). A very good 

metabolic control was achieved in both the GDM and the GDM-EVOO group, as shown 

by the fasting blood glucose, fructosamine and HbA1c levels at term (Table 1). GDM 

patients were treated with diet or diet and insulin, with no significant changes between 

the two groups (P=0.14, Table 1). At enrolment, triglyceridemia values in the groups 

evaluated showed no changes (Table 1). Differently, at term, triglyceridemia was 

increased in the GDM group compared to Controls (P=0.04), an alteration prevented in 

the GDM group that received the EVOO-enriched diet (P=0.02 GDM-EVOO vs. GDM) 

(Table 1). Regarding the pregnancy outcomes, gestational age at delivery, Cesarean 

delivery rate, maternal complications, neonatal complications, neonatal weight and 

placental weight were similar in the three groups evaluated (Table 2).  

 

3.2 PPARs and microRNAs that regulate PPARs expression 

We next addressed PPAR pathways, and found reduced protein expression of PPARγ in 

the placentas from GDM patients that received or not the diet enriched in EVOO 

compared to controls (P=0.007 GDM vs. Control, P=0.03 GDM-EVOO vs. Control, 

Figure 1). Differently, the reduced protein expression of PPARα in the placentas from 

GDM patients was prevented by the diet enriched in EVOO (P=0.02 GDM vs. Control, 
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P=0.02 GDM- EVOO vs. GDM, Figure 1). To determine whether microRNAs that target 

PPARs are involved in the changes observed, we evaluated the expression of miR-130a, 

which targets PPARγ in different tissues29, and of miR-518d, which targets PPARα in the 

placenta19. The expression of miR-130a showed no changes in the groups evaluated 

(Figure 1), but miR-518d expression, which was increased in the placenta of GDM 

patients (P=0.003 vs. Control), was reduced in the placentas of the GDM patients that 

received the EVOO-enriched diet (P=0.009 vs. GDM, Figure 1).  

 

3.3 Regulation of the proinflammatory environment 

As PPARs are largely involved in the regulation of the proinflammatory environment and 

the EVOO diet is enriched in MUFAs, which are PPAR ligands, we next evaluated 

proinflammatory markers in term placentas from the GDM patients that received or not 

the EVOO-enriched diet. We found that TNF-α levels were increased in the placentas 

from GDM patients compared to controls (P=0.0002), an alteration prevented by the 

maternal diet enriched in EVOO (P=0.0002 vs. GDM) (Figure 2). Similarly, IL-1β levels 

were increased in the GDM group compared to controls (P=0.0001), an alteration 

prevented by the maternal diet enriched in EVOO (P=0.0001 vs. GDM) (Figure 2). The 

production of nitric oxide was increased in the GDM group compared to controls 

(P=0.03), an alteration prevented by the maternal diet enriched in EVOO (P=0.01 vs. 

GDM) (Figure 2). Moreover, the gene expression of the antioxidant enzyme Cu-Zn 

superoxide dismutase was reduced in the placentas from GDM patients compared to 

controls (P=0.004), an alteration prevented by the maternal diet enriched in EVOO 
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(P=0.004 vs. GDM) (Figure 2). Finally, the activity of MMPs was measured both in the 

placenta and the umbilical cord blood. MMP-2 activity showed no changes, whereas 

MMP-9 activity was increased in the placentas from GDM patients compared to controls 

(P=0.003), an alteration prevented by the maternal diet enriched in EVOO (P=0.01 vs. 

GDM) (Figure 3). Moreover, MMP-2 and MMP-9 activities were increased in the 

umbilical cord blood from GDM patients compared to controls (P=0.03 and P=0.009 

respectively), alterations prevented by the maternal diet enriched in EVOO (P=0.03 and 

P=0.001 vs. GDM, respectively) (Figure 3).    

 

4. DISCUSSION 

 

The study presented here is the first to address the effects of an EVOO-enriched diet in 

GDM pregnancies. In GDM mothers, the EVOO-enriched diet reduced triglyceridemia 

and weight gain. In the placenta of GDM patients, the maternal EVOO-enriched diet did 

not regulate miR-130a expression or PPARγ levels, but did regulate miR-518d expression 

and PPARα levels. Anti-inflammatory effects were observed in the placenta and the 

umbilical cord blood in the GDM patients that received the EVOO-enriched diet. If 

replicated in a larger number of patients, these results would have important clinica l 

implications as a feasible dietary treatment that provides benefits to GDM mothers and 

their placentas, with possible beneficial effects on the offspring´s later life.  

Maternal nutrition is crucial in GDM metabolic control. Modified diet interventions 

favorable influence outcomes related to maternal glycemia and birth weight30 and the 
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follow up of nutritional advices, such as consumption of low-glycemic index 

carbohydrates, has largely improved the metabolic control in this prevalent gestationa l 

disease31,32. In the last years, the nutrigenomic concepts brought to a new dimension the 

interaction of nutrients and the genome, with implications in multiple diseases, includ ing 

GDM33. PPARs are ligand activated transcription factors that respond to nutrients to bring 

transcriptional regulation of metabolic, developmental and proinflammatory pathways7. 

Endogenous PPAR ligands have lipid nature and can be incorporated through the diet9. 

Dietary unsaturated fatty acids are endogenous PPAR ligands that can efficiently be 

transferred through the placenta and the fetus to act as PPAR activators6,34. Considering 

this, the low levels of PPARα and PPARγ previously observed in the placentas from 

GDM patients17 provide a rationale to provide PPAR agonists from the maternal diet to 

the placenta in GDM pregnancies.  

Our previous studies performed in experimental models of diabetes and pregnancy 

have shown that a maternal EVOO dietary treatment regulates PPAR pathways and 

reduces proinflammatory markers in rat embryos, fetuses, placentas and in the offspring´s 

heart6,11-13,15. The dose of olive oil that shows these beneficial effects in animal models of 

diabetes and pregnancy provides half of the lipid-derived calories (5% in an 11% lipid 

content diet). Based on this, in this translational clinical study, we provided a diet that 

brings about half of the lipid-derived calories by the olive oil (14% in a 30% lipid content 

diet). This amount of EVOO added to the diet was similar to that reported to be benefic ia l 

in different clinical studies, including those evaluating the ability of an EVOO-enriched 

diet to prevent GDM induction in a general population21,26. 
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The PREDIMED and other clinical studies have addressed the ability of EVOO- enriched 

diets to ameliorate cardiovascular diseases and improve lipid metabolic profiles 21,23,25. 

Here, the fact that triglycerides and weight gain are reduced to control values in the GDM 

patients that received the EVOO-enriched diet is clinically relevant and deserves to be 

studied in larger populations. The mechanisms involved are likely to be related to effects 

on maternal target organs, including the liver, through mechanisms which are possibly 

related to the activation of PPARα35.  

Other pregnancy outcomes, including gestational age, Cesarean delivery, maternal and 

neonatal complications, and neonatal and placental weight did not change between the 

groups evaluated, and a larger number of patients would be needed to address putative 

changes in these and other maternal/perinatal outcomes. Indeed, a limitation of this work 

was the limited number of patients included in this study. Another limitation is that we 

did not quantify overall caloric intake and macronutrient consumption, and thus we 

cannot rule out that differences in caloric intake could explain some of the benefits 

observed. A third limitation of this work is the lack of use of operator-independent 

biomarkers of fatty acid consumption such as circulating fatty acids36.  

In this study, we focused in the placenta and the putative changes in PPARs 

expression. Similar to that previously found in a rat model of GDM11, we here found that 

the maternal EVOO-enriched diet did not prevent the reduced PPARγ levels, but induced 

anti-inflammatory effects in the placenta. Indeed, PPAR ligands are provided by the 

EVOO-enriched diet, and thus, even without changing PPARγ levels, the activity of this 

nuclear receptor may be increased, in turn leading to the observed anti-inflammatory 
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effects37. Besides, the expression of miR-130, a microRNA that targets PPARγ and is 

related to PPARγ changes in the livers of GDM rats29, was similar in the three groups 

evaluated, suggesting that other epigenetic regulators are those related to the observed 

PPARγ changes induced by GDM. Zhao et al. showed that the reduced PPARα levels in 

GDM placentas are related to increased levels of miR-518d19. In this work, together with 

confirming this result, we found that the EVOO-enriched diet was able to prevent both 

increased miR-518d expression and reduced PPARα levels. This points to the miR-

518d/PPARα pathway as a relevant component in the placental anti-inflammatory effects 

observed.  

In non-pregnant subjects, EVOO-enriched diets have been found to exert potent anti-

inflammatory effects in different tissues21,24. In this work, the anti-inflammatory effects 

observed in the placentas from the GDM patients that received the EVOO-enriched diet 

included reductions in cytokine levels, regulation of antioxidant enzymes gene expression 

and reduction of nitric oxide overproduction. These proinflammatory markers have been 

previously found altered in GDM placentas and are difficult to modulate even with a good 

metabolic control3,5. Also, the ability of the EVOO-enriched diet to prevent MMPs 

activity in the placenta and the umbilical cord blood observed in GDM patients is 

supported by previous studies addressing the effect of diets added with EVOO as negative 

regulators of MMPs in placentas from diabetic rats and in different human diseases15,38, 

and provides evidence of the capacity of the benefits of the EVOO-enriched diet to reach 

the fetal compartment.  
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5. CONCLUSIONS 

 

This randomized clinical study allowed identifying, for the first time, the ability of an 

EVOO-enriched diet in GDM pregnancies to reduce maternal triglyceridemia and weight 

gain, which are clinically relevant parameters, thus suggesting a putative benefit that 

should be addressed in larger populations. Also, this clinical study provides evidence of 

the capacity of an EVOO-enriched diet to induce placental anti-inflammatory effects, at 

least partly mediated by the activation/regulation of PPAR pathways. Anti-inflammatory 

effects were also evidenced in the umbilical cord blood, suggesting benefits in the 

perinatal period and the offspring´s later life. Further studies addressing long term effects 

of this dietary treatment will be needed to establish its clinical significance in the 

offspring´s later life.  
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FIGURE LEGENDS 

 

Supplementary Figure 1. Flow chart and trial overview  

 

FIGURE 1. Protein expression of PPARγ and PPARα and expression of microRNAs that 

target these PPAR isotypes in term placentas of GDM patients that received or not a 

maternal diet enriched in three tablespoons of EVOO per day from weeks 24-28 of 

pregnancy until term and in controls. a. PPARγ. b. PPARα. c. miR-130a (targeting 

PPARγ). d. miR-518d (targeting PPARα). Values represent mean ± SEM. Statistica l 

analysis: one-way ANOVA in conjunction with Bonferroni´s test.  ‡P<0.05 and ‡‡P <0.01 

vs. Control, §P<0.05, §§P<0.01 vs. GDM. 

 

FIGURE 2. Evaluation of proinflammatory and prooxidant markers in term placentas of 

GDM patients that received or not a maternal diet enriched in three tablespoons of EVOO 

per day from weeks 24-28 of pregnancy until term and in controls. a. TNF-α. 

Representative images and densitometric analysis. b. IL-1β. Representative images and 

densitometric analysis. c. Nitric oxide production (evaluated through the determina t ion 
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of its stable metabolites nitrates/nitrites). d. Gene expression of Cu-Zn SOD. Values 

represent mean ± SEM. Statistical analysis: one-way ANOVA in conjunction with 

Bonferroni´s test. ‡P<0.05 and ‡‡P<0.01, ‡‡‡P<0.001 vs. Control. §P<0.05 and §§P<0.01, 

§§§P<0.001 vs. GDM. 

 

FIGURE 3. Gelatinase activity of MMP-2 and MMP-9 in term placentas and umbilica l 

cord blood in GDM patients that received or not a maternal diet enriched in three 

tablespoons of EVOO per day from weeks 24-28 of pregnancy until term and in controls. 

a. MMP-2 in term placentas. b. MMP-9 in term placentas. c. MMP-2 in umbilical cord 

blood. d. MMP-9 in umbilical cord blood. Values represent mean ± SEM. Statistica l 

analysis: one-way ANOVA in conjunction with Bonferroni´s test. ‡P<0.05 and ‡‡P<0.01 

vs. Control. §P<0.05 and §§P<0.01 vs. GDM. 

  

This article is protected by copyright. All rights reserved.



 
 

TABLE 1 

 
Control 
(n=15) 

GDM 

(n=15) 
GDM-EVOO 

(n=15) 
P-value 

Adherence to 

dietary treatment 
- - 

Good: 80% 
(12/15) 

Regular: 20% 
(3/15) 

Bad: None 

-  

Age (years) 27.4±1.9 29.6±1.6 31.1±1.6 

>0.99 GDM vs. Control 

>0.99 GDM-EVOO vs. GDM 

0.39 GDM-EVOO vs. Control 

Pre-pregnancy weight (kg) 57.5±1.9 62.3±2.0 61.3±2.0 

0.27 GDM vs. Control 

>0.99 GDM-EVOO vs. GDM 

0.53 GDM-EVOO vs. Control 

Total weight gain (kg) 9.9±0.7 14.2±1.4 10.3±0.9 

0.02 GDM vs. Control 

0.03 GDM-EVOO vs. GDM 

>0.99 GDM-EVOO vs. Control 

Fasting blood glucose at 
enrolment (mg/dL) 

81.4±1.9 88.0±2.7 86.0±1.8 

0.11 GDM vs. Control 

>0.99 GDM-EVOO vs. GDM 

0.43 GDM-EVOO vs. Control 

Fasting blood glucose 

at term (mg/dL) 
81.3±1.6 89.0±3.6 87.6±2.7 

0.16 GDM vs. Control 

>0.99 GDM-EVOO vs. GDM 

0.34 GDM-EVOO vs. Control 

Blood fructosamine at 
enrolment (mg/dL) 

- 183.0±6.1 181.1±4.2 0.80 GDM-EVOO vs. GDM 

Blood fructosamine 

at term (mg/dL) 
- 185.8±5.8 189.6±2.6 0.55 GDM-EVOO vs. GDM 

This article is protected by copyright. All rights reserved.



 
 

HbA1c at enrolment (% ) - 5.0±0.08 4.9±0.10 0.44 GDM-EVOO vs. GDM 

HbA1c at term (% ) - 5.4±0.10 5.5±0.06 0.39 GDM-EVOO vs. GDM 

Blood triglycerides 

at enrolment (mg/dL) 
185±8 209±10 219±15 

0.43 GDM vs. Control 

>0.99 GDM-EVOO vs. GDM 

0.12 GDM-EVOO vs. Control 

Blood triglycerides 

at term (mg/dL) 
238±6 292±21 231±14 

0.04 GDM vs. Control 

0.02 GDM-EVOO vs. GDM 

>0.99 GDM-EVOO vs. Control 

Treatment - 

Diet only: 

73% (11/15) 

Diet+Insulin:  

27% (4/15) 

Diet only: 93% 
(14/15) 

Diet+Insulin: 
17% (1/15) 

0.14 GDM-EVOO vs. GDM 

Table 1. Pregnancy and metabolic control data. Data are presented as mean ± SEM. Statistica l 
analysis: One-way ANOVA in conjunction with Bonferroní s test or Student´s t test on continuous 
variables and chi-square test for categorical variables.  
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TABLE 2 

 

Parameter 

 

 

Control 

(n=15) 

 

 

 

GDM 

(n=15) 

 

 

 

GDM-EVOO  

(n=15) 

 

P-value 

Gestational 
age at delivery 
(weeks) 38.1±0.3 37.6±0.3 37.8±0.3 

0.73 GDM vs. Control 

>0.99 GDM-EVOO vs. GDM 

>0.99 GDM-EVOO vs. Control 

Cesarean 
delivery 40% (6/15) 47% (7/15) 40% (6/15) 0.91 

Maternal 
complications None None None - 

Neonatal 
complications 

0% (0/15) 

 

26.7% (4/15) 

Respiratory Distress 
Syndrome (1) 

Hyperbilirubinemia (3) 

13.3% (2/15) 

Hypoglycemia and 

Macrosomia (1) 

Hyperbilirubinemia (1) 

0.10 

 

Neonatal 
weight (g) 

3312±168 3205±113 3332±135 

>0.99 GDM vs. Control 

>0.99 GDM-EVOO vs. GDM 

>0.99 GDM-EVOO vs. Control 

Placental 
weight (g) 

599±27 613±40 672±32 

>0.99 GDM vs. Control 

>0.66 GDM-EVOO vs. GDM 

>0.39 GDM-EVOO vs. Control 

Table 2. Pregnancy outcomes. Data are presented as mean ± SEM. Statistical analysis: One-way ANOVA in conjunction 
with Bonferroní s test on continuous variables and chi-square test for categorical variables. Maternal complications 
considered: pyelonephritis, cholestasis, preeclampsia, pregnancy-induced hypertension and threatened preterm labor. 
Neonatal complications considered: shoulder dystocia, brachial plexus injury, clavicle fracture, respiratory distress 
syndrome, intrauterine growth restriction, hypoglycemia, hyperbilirubinemia, birth defects and perinatal mortality.  
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FIGURE 1. Protein expression of PPARγ and PPARα and expression of microRNAs that target these PPAR 
isotypes in term placentas of GDM patients that received or not a maternal diet enriched in three 

tablespoons of EVOO per day from weeks 24-28 of pregnancy until term and in controls. a. PPARγ. b. 
PPARα. c. miR-130a (targeting PPARγ). d. miR-518d (targeting PPARα). Values represent mean ± SEM. 
Statistical analysis: one-way ANOVA in conjunction with Bonferroni´s test.  ‡P<0.05 and ‡‡P <0.01 vs. 

Control, §P<0.05, §§P<0.01 vs. GDM. 
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FIGURE 2. Evaluation of proinflammatory and prooxidant markers in term placentas of GDM patients that 
received or not a maternal diet enriched in three tablespoons of EVOO per day from weeks 24-28 of 

pregnancy until term and in controls. a. TNF-α. Representative images and densitometric analysis. b. IL-1β. 
Representative images and densitometric analysis. c. Nitric oxide production (evaluated through the 

determination of its stable metabolites nitrates/nitrites). d. Gene expression of Cu-Zn SOD. Values represent 
mean ± SEM. Statistical analysis: one-way ANOVA in conjunction with Bonferroni´s test. ‡P<0.05 and 

‡‡P<0.01, ‡‡‡P<0.001 vs. Control. §P<0.05 and §§P<0.01, §§§P<0.001 vs. GDM. 
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FIGURE 3. Gelatinase activity of MMP-2 and MMP-9 in term placentas and umbilical cord blood in GDM 
patients that received or not a maternal diet enriched in three tablespoons of EVOO per day from weeks 24-
28 of pregnancy until term and in controls. a. MMP-2 in term placentas. b. MMP-9 in term placentas. c. MMP-

2 in umbilical cord blood. d. MMP-9 in umbilical cord blood. Values represent mean ± SEM. Statistical 
analysis: one-way ANOVA in conjunction with Bonferroni´s test. ‡P<0.05 and ‡‡P<0.01 vs. Control. 

§P<0.05 and §§P<0.01 vs. GDM. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e
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