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8400-S.C. de Bariloche, Rı́o Negro, Argentina

E-mail: pablo.bueno@cab.cnea.gov.ar, casini@cab.cnea.gov.ar

Abstract: Exploiting the split property of quantum field theories (QFTs), a notion of von

Neumann entropy associated to pairs of spatial subregions has been recently proposed both

in the holographic context — where it has been argued to be related to the entanglement

wedge cross section — and for general QFTs. We argue that the definition of this “reflected

entropy” can be canonically generalized in a way which is particularly suitable for orbifold

theories — those obtained by restricting the full algebra of operators to those which are

neutral under a global symmetry group. This turns out to be given by the full-theory

reflected entropy minus an entropy associated to the expectation value of the “twist” op-

erator implementing the symmetry operation. Then we show that the reflected entropy

for Gaussian fermion systems can be simply written in terms of correlation functions and

we evaluate it numerically for two intervals in the case of a two-dimensional Dirac field as

a function of the conformal cross-ratio. Finally, we explain how the aforementioned twist

operators can be constructed and we compute the corresponding expectation value and

reflected entropy numerically in the case of the Z2 bosonic subalgebra of the Dirac field.

Keywords: Conformal Field Theory, Global Symmetries

ArXiv ePrint: 2003.09546

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2020)103

mailto:pablo.bueno@cab.cnea.gov.ar
mailto:casini@cab.cnea.gov.ar
https://arxiv.org/abs/2003.09546
https://doi.org/10.1007/JHEP05(2020)103


J
H
E
P
0
5
(
2
0
2
0
)
1
0
3

Contents

1 Introduction 1

2 Symmetries, twist operators, and type-I entropy 4

3 Reflected entropy for free fermions 9

3.1 Purification of free fermions 9

3.2 Lattice calculations 12

3.2.1 Reflected entropy 13

3.2.2 Correlators matrix spectrum 16

3.3 Spatial density of the standard type-I factor 18

4 Twist operators 21

4.1 Type-I entropy for the bosonic subalgebra 23

5 Final comments 25

1 Introduction

In the context of quantum field theory (QFT), the entanglement entropy (EE) of spatial

subregions is not a well-defined quantity. This is because as the cutoff is removed, more

and more entanglement in ultraviolet modes across the surface is added up, leading to

divergences. For the continuum model itself, the necessity of these divergences can be

understood from a different perspective. Operator algebras attached to regions are type-

III von Neumann algebras. These are mathematical objects which (intrinsically) do not

admit a well defined entropy — see e.g., [1, 2]. By the same reason, without a cutoff, a

region and its complement cannot be associated with a tensor product decomposition of

the Hilbert space. This tensor produt would give place to type-I factors — the algebras of

operators acting on each of the Hilbert space factors in the tensor product — instead of

type-III ones.

Alternatively to the EE, there exist other statistical quantities that can be studied and

which are finite in the continuum theory. A prototypical example is the mutual information

I(A,B), which, as opposed to the EE, depends on two disjoint regions A and B instead of

one. The distance ε between the boundaries of both regions may be used as a meaningful

universal regulator of EE [3, 4], but I(A,B) remains a physical measure of correlations for

arbitrary regions on its own right.

Interestingly, in the above setting of two spatially separated regions, there is in general

an intermediate tensor product decomposition of the Hilbert space separating the algebras

AA and AB attached to those regions. This is called the “split property” and has been

shown to hold under very general conditions controlling the growth of the number of high

energy degrees of freedom [5, 6].
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More explicitly, a tensor product decomposition of the global Hilbert space as a product

of two Hilbert spacesH = HN⊗HN ′ gives place to the type-I factor N corresponding to the

operators acting on the first Hilbert space HN . The split property states that there exists

a decomposition where N is bigger that the algebra AA but such that it still commutes

with the operators in AB, which are included in N ′. We have

AA ⊆ N ⊆ (AB)′ , (1.1)

where A′ is the algebra of operators commuting with the algebra A. It is important to

note that, as opposed to AA or AB, N is not the algebra of a particular geometric region.

Given this structure, it is then possible to define the von Neumann entropy S(N ) to any

given split for A and B, which is the entropy of the reduced state in one of the factors of

the tensor product.

While there are in general infinitely many splits associated to A and B, there exists a

particular one which can be canonically associated to a given state [7–9].1 The canonical

type-I factor is [8]

NAB ≡ AA ∨ JABAAJAB , or N ′AB = AB ∨ JABABJAB . (1.2)

In this expression JAB is the Tomita-Takesaki conjugation corresponding to the algebra

AB and the state, and A ∨ B is the algebra generated by the two algebras A and B. This

therefore defines a canonical von Neumann entropy [10],

R(A,B) ≡ S(NAB) . (1.3)

In [10] this was proven to be finite for free fermions in d = 2, and this is expected to be

the case for most QFT models — see also [11–13].

The same notion had been previously considered in [14], where it was called “reflected

entropy” — we shall adopt this nomenclature henceforth.2 This can be expressed in more

simple terms for finite systems, bearing in mind that is the case of a regularized QFT. A

state ρAB defined in the Hilbert space HA ⊗HB can be purified in a canonical way as the

pure state |√ρAB〉 ∈ (HA ⊗ H∗A) ⊗ (HB ⊗ H∗B). The reflected entropy is then defined as

the von Neumann entropy associated to ρAA∗ , which is the density matrix resulting from

tracing out over HB ⊗H∗B in the purified state. If ρAB does not have zero eigenvalues, the

modular conjugation operator JAB induced by the global pure state and the algebra AAB
maps precisely AA into AA∗ .3 Then the reflected entropy coincides with the entropy of

the type-I factor defined above. In particular, one has NAB = AAA∗ . By construction, the

reflected entropy is a quantity depending only on AAB and the state ρAB in this algebra,

and not on the basis chosen for the purification of this state.

Interestingly, in [14] it was shown that the reflected entropy has an expression in

terms of replica manifold partition functions in QFT, giving an important practical handle

1It has to be cyclic and separating for the different algebras [8].
2On the other hand, we use the notation “R(A,B)” to denote the reflected entropy, which differs from

previous papers.
3See for example [15]. For finite systems, the case of ρAB with some zero eigenvalues can be dealt with

by taking limits.
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for computations. Rényi entropies associated to |√ρAB〉 can be obtained using the same

expression for the Rényi entropy in terms of correlators involving the original fields acting

on A ∪ B as well as those acting on (A ∪ B)∗. In the same paper, the authors argued

that holographic reflected entropy can be computed from the minimal entanglement wedge

cross section EW (A,B) as

Rholo.(A,B) = 2EW (A,B) +O(G0
N) , (1.4)

where GN is Newton’s constant — see [16, 17] for further developments. This updates a

previous conjecture proposing that such a quantity actually equals the so-called “entangle-

ment of purification” [18, 19].

Some additional consequences of the Rholo.(A,B) = 2EW (A,B) proposal were studied

in [20], where it was argued that such relation is incompatible with the previously proposed

claim [21] that holographic states have a mostly-bipartite entanglement structure (a similar

argument in the same direction was provided assuming the entanglement of purification

proposal instead). The time dependence of R(A,B) on various holographic setups was

studied in [22–24]. Candidates for multipartite notions of reflected entropy have also been

explored in [25–27].

In comparing reflected entropy and mutual information, we have the general inequal-

ity [14]

I(A,B) ≤ R(A,B) . (1.5)

Just like the latter, reflected entropy can also be used as a regulator of EE by letting A−

be contained in some slightly greater region (A+)′ (in this paper X ′ denotes the causal

complement of a region X). We can then define the regulator as [14]

SEE =
1

2
R(A−, A+) . (1.6)

It can be reasonably expected that universal terms (terms that are not local and additive

along the boundary of the region) should be the same when regulating with the mutual

information or the reflected entropy.

The standard split has another important application in theories with global symme-

tries. Let G be a global symmetry group and g ∈ G. The split between A and B can

be used to construct a twist operator τg implementing the group operation in AA and

leaving invariant AB [8]. For Lie groups, Noether’s theorem gives a way to construct such

operators by exponentiating the local charges formed by smearing the charge density. In

this sense the split allows for a version of the Noether theorem which is more general4 and

applies to any symmetry group [28]. On a different note, given a QFT and a symmetry

group, we can form a new theory by considering only the operators that are invariant un-

der such symmetry. This net of neutral operator algebras is sometimes called the “orbifold

theory” [29].

The first goal of the present paper is to study the reflected entropy of neutral subalge-

bras. We do so in section 2, where we point out that there exist two alternative definitions

4Another advantage of the twists is that they form a representation of the group while this is not the

case of the exponentials of the local smeared Noether charge.
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which extend the notion of reflected entropy to this case (reducing to it for theories with-

out superselection sectors). One of these definitions is singled out by the simplicity of the

answer: the modified reflected entropy for the subalgebra, which we call “type-I entropy”

turns out to be the one for the original theory corrected by an explicit expression depending

on the expectation value of the corresponding twist operators.

Then, in section 3, we study Gaussian fermion systems. The standard split also gives

place to a Gaussian state in this case. The reflected entropy then has a compact expression

in terms of correlation functions (see also [10]). This makes it amenable to numerical

analysis in concrete models. We study it in detail in the case of a free massless chiral field

in d = 2 and compute the reflected entropy numerically taking the continuum limit. We

also analyze the behavior of the eigenvalues of the correlator matrix for the type-I factor

as the cutoff is removed and compare it with the case of the algebra of a single interval

(corresponding to a type-III factor with divergent entropy in the continuum). We study

how the standard type-I factor is distributed in the line by computing a quantity with the

interpretation of a density of the algebra in terms of the fermion field operator.

Finally, in section 4 we show how twist operators for the Z2 fermionic and U(1) sym-

metries of the Dirac field can be constructed, and explicitly compute the corresponding

expectation values. From this, we compute the type-I entropy for the bosonic subalgebra

using the results in section 2.

2 Symmetries, twist operators, and type-I entropy

In this section we first recall how standard splits can be used to define twist operators

in theories with symmetries. Then we study possible extensions of the idea of reflected

entropy for the subalgebras of operators invariant under the symmetries. This will be

connected with the expectation values of twist operators.

Let F a QFT with global internal symmetry group G. If we take a region A, the group

transforms FA into itself. But these automorphisms of FA are outer-automorphisms, that

is, they cannot be implemented by unitaries in FA. Such hypothetical unitaries would

transform FA while leaving the complementary algebra FA′ invariant. However, those

transformations would be too sharply divided at the boundary of A to be produced by an

operator. Notwithstanding, given two spatially separated regions, A, B, there exist twist

operators τg, g ∈ G, which implement the group operation in FA and act trivially on FB.

Given two regions A, B, there are infinitely many possible twist operators. We consider

single component disjoint regions A, B, for simplicity. As shown in [8], an explicit standard

construction follows using a vector state |Ω〉 invariant under group transformations (such

as the vacuum) to produce the standard split for A and B explained above. The global

group transformations leave the type-I factors NAB and N ′AB in themselves. Equivalently,

they act on each Hilbert space factor in the decomposition HN ⊗HN ′ independently. This

follows from (1.2) and the fact that both AA and JAB are invariant under the group. The

latter is a consequence of AAB and |Ω〉 being invariant. The group transformation is then

implementable by a unitary τg ⊗ τ ′g where τg ∈ NAB, τ ′g ∈ N ′AB. From this it follows that

the twist operators τg form a representation of G, and they transform covariantly under
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the full symmetry group,

τgτh = τgh , gτhg
−1 = τghg−1 . (2.1)

Now let us consider the orbifold theory O containing only “neutral algebras”, i.e. the

operators of F invariant under G. We can formalize this relation with a projection E of

the full Hilbert space HF of the vacuum representation of the theory F to the one HO of

the vacuum representation of the theory O, and call with the same name the mapping of

algebras E : F → O, E(f) = EfE.

We would like to obtain simple relations for the entropy in these two theories which

are thus simply related to each other. These relations will be connected with the twist

operators. Any group of twists for A, B defines a group algebra given by the linear

combinations
∑

g ag τg. This algebra is isomorphic to a direct sum of full matrix algebras⊕
rMdr×dr , where dr are the dimensions of the irreducible representations of G. This

algebra has a center spanned by the projectors on each irreducible representation r of

G, corresponding to the projectors on each block in the above direct sum decomposition.

These projectors can be computed from the twists as

Pr ≡
dr
|G|

∑
g

χ∗r(g)τg , Pr Pr′ = δrr′Pr ,
∑
r

Pr = 1 , (2.2)

where χr(g) is the character of the representation r, and |G| the order of the group. As

shown in [30], for the difference of mutual informations between the two models one finds

IF (A,B)− IO(A,B) ≤ −
∑
r

qr log qr +
∑
r

qr log d2
r ≡ Sτ , (2.3)

where

qr ≡ 〈Pr〉 ,
∑
r

qr = 1 , (2.4)

are the probabilities of the different sectors of the twist group algebra, which can be com-

puted from (2.2) in terms of the expectation values of the twists. The first term in Sτ is a

standard entropy, whereas the second is manifestly semi-positive, which implies Sτ ≥ 0.

Therefore, (2.3) gives us some information on the difference of mutual informations

depending on expectation values of operators. This upper bound can be supplemented

with a lower bound depending on expectation values of intertwiners — pairs of charged-

anticharged operators [30] (see also [31]). In the particular limit where A and B get close

to touching each other, the twists expectation values tend to zero, with the exception of

the identity element. In that case, (2.4) and (2.2) give qr = d2
r/|G|, and the right hand side

of (2.3) becomes log |G|. This is in fact the universal value of the difference of the mutual

informations in the short distance limit between A and B [30, 31]. See [30] for the case of

Lie group symmetries. This topological contribution is related to an algebraic index [32].

Now, a simple observation is that the inequality (2.3) becomes an equation if instead of

computing the mutual information between A and B we compute it for the standard type-I

factors N and N ′, and the twists are the standard ones defined by this split. This will

– 5 –



J
H
E
P
0
5
(
2
0
2
0
)
1
0
3

motivate a definition of a generalization of reflected entropy that we call “type-I entropy”,

such that the difference from the full model to the orbifold is computable in terms of twists

expectation values.

To show this let us write a basis for HN as |rir , lr〉, with ir = 1, · · · , dr. For each r

these vectors transform in the index ir as the corresponding irreducible representation of

the group of twists. The index lr spans the multiplicity of the representation r, which is

generally infinite in QFT. We define analogously |rir ′ , l′r〉 for HN ′ . Since the global state

is pure and invariant under global group transformations it has the structure

|Ω〉 =
∑

r,ir,lr,l′r̄

1√
dr
|rir , lr〉 ⊗ |r̄īr , l′r̄〉

√
qr αlr,l′r̄ , (2.5)

where r̄ is the complex conjugate representation to r. The qr are the probabilities of the

different sectors as above, and we have the normalization
∑

lr,l′r̄
|αlr,l′r̄ |

2 = 1. Therefore,

the density matrix of the system F on N has the structure of a sum over blocks over the

different irreducible representations

ρFN =
⊕
r

qr
1

dr
⊗ ρr , ρFN ′ =

⊕
r̄

q′r̄
1

dr̄
⊗ ρ′r̄ . (2.6)

In this basis, the representation of the twist group is
⊕

r Rr(g)⊗1r, with Rr(g) the matrices

of the irreducible representation r. We have qr = q′r̄, ρr and ρ′r̄ have the same entropy, and

of course dr = dr̄.

The reflected entropy is

RF (A,B) = S(ρFN ) =
1

2
IF (N ,N ′) = −

∑
r

qr log qr +
∑
r

qr log(dr) +
∑
r

qrS(ρr) , (2.7)

where in the second equality we have used the purity of the global state.

For the orbifold we have the neutral subalgebras E(N ) and E(N ′). These, however,

are not type-I factors, but simply type-I algebras, because they have centers given by the

projectors Pr and P ′r respectively, which commute with all the twists, and, as they are

combinations of twists, commute with all the neutral operators in N and N ′ respectively.

In the representation of O generated by acting with operators on the vacuum the group

elements are equivalent to the identity, and therefore τg ≡ (τ ′g)
∗. This gives us E(Pr) ≡

E(P ′r̄). In this vacuum representation of the neutral algebra O, the state is represented by

the density matrix

ρOE(N ) =
⊕
r

qr ρr , ρOE(N ′) =
⊕
r

qr ρ
′
r̄ , ρOE(N )∨E(N ′) =

⊕
r

qr ρrr̄ , (2.8)

where ρrr̄ is pure.

Generalizing the reflected entropy (2.7) we define the type-I entropy for the orbifold as

SI
O(A,B) ≡ 1

2
IO(E(N ), E(N ′)) = −1

2

∑
r

qr log qr +
∑
r

qrS(ρr) . (2.9)

– 6 –



J
H
E
P
0
5
(
2
0
2
0
)
1
0
3

Therefore, with this definition we have

RF (A,B)− SI
O(A,B) =

1

2

(
−
∑
r

qr log qr +
∑
r

qr log d2
r

)
=

1

2
Sτ . (2.10)

The difference between these entropies is given in terms of twist expectation values. This

is exactly half the upper bound on the mutual information difference (2.3). It follows

from (2.9) and monotonicity of the mutual information that IO(A,B) ≤ 2SI
O(A,B), but

we cannot obtain a tighter bound as the one (1.5) from strong subadditivity as shown in [14].

Our definition of the reflected entropy for the orbifold was motivated by simplicity of

the result but we may wonder in which sense this is a natural generalization of the idea of

reflected entropy previously discussed, and how it can be defined intrinsically in terms of

the model O without applying to the model F . This example will allow us to show that

the idea of reflected entropy is richer that what one may have initially expected.

We have defined the algebra NAB using (1.2), which requires the modular conjugation

of the algebra corresponding AB. However, for O there are two natural algebras associated

to AB instead of one. The algebras O1
AB = OA ∨ OB and O2

AB = E(FAB) = (O(AB)′)
′

are different, and O1
AB ⊂ O2

AB.5 The first one corresponds to operators generated by the

neutral algebras of A and B, while the other also contains neutral operators in AB which

cannot be formed by products of neutral operators in A and B, i.e. formed by charged-

anticharged operators in each region. This failure of duality

OAB ( (O(AB)′)
′ , (2.11)

is signalizing that O has superselection sectors given by the charged sectors of the theory

(for a physical account see for example [30]). This is not expected to occur for complete

models F without superselection sectors, that is, for models where FAB = (F(AB)′)
′.

For the definition of reflected entropy in this case, we have two choices for JAB, corre-

sponding to the two choices of algebras. The choice of the smaller algebra O1
AB coincides

with the canonical choice JO′A∩O
′
B

= JOA∨OB of [8, 10], that leads to a type-I factor. We

can still call the entropy of this factor reflected entropy R(A,B). However, not much is

known on the relation of this entropy to the one of the theory F .

The second choice allows us to construct the algebra

NOAB = OA ∨ JOAJ , J ≡ JE(FAB) . (2.12)

It follows that for any subalgebra F1 ⊆ F we have EJF1E = EJF1 = JF1E = JEF1E [8].

From this we have (EF1E)′ = EF ′1E. In particular, J is the restriction of the modular

conjugation in F to the invariant subalgebra

J = JE(FAB) = EJFABE = EJFAB = JFABE . (2.13)

Since OA = EFAE we have

NOAB = EFAE ∨ EJFABFAJFABE = ((EFAE)′ ∩ (EJFABFAJFABE)′)′

= ((EF ′AE) ∩ (E(JFABFAJFAB )′E))′

5In dimensions d = 2 we have E(FAB) = (O(AB)′)
′ ∩ FAB instead.
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= ((EF ′AE) ∩ (E(FA ∨ JFABFBJFAB ∨ FB)E)′

= (E(JFABFBJFAB ∨ FB)E)′ = E((JFABFBJFAB ∨ FB))′E

= E(NFAB) . (2.14)

This is a type-I algebra though it is not a factor, since it has a center. This center coincides

with the center of the twist algebra. We have lost the type-I factor property but a type-I

algebra has a well defined entropy. Our definition of the type-I entropy for orbifolds is

then a generalization of the ordinary reflected entropy, and is given by half the mutual

information between this subalgebra and the one corresponding to B

SI(A,B) =
1

2
I(NOAB,NO

′
AB) , (2.15)

with NOAB computed with (2.12). This coincides with (2.9). For models without superse-

lection sectors it coincides with the usual reflected entropy

SI
F (A,B) = RF (A,B) . (2.16)

For orbifold theories it has the simple relation eq. (2.10) with the reflected entropy of the

complete model.

It is interesting to note that the limit where A and B touch each other, (2.10) gives us

only half the topological correction corresponding to the mutual information, ∆SI(A,B) =

SI
F (A,B) − SI

O(A,B) = 1/2 log |G|, instead of ∆I(A,B) = log |G|. This is heuristically

explained as follows. For a finite system AB gets purified with the addition of A′B′.

In the limit when AB is pure the reflected entropy S(AA′) duplicates the entropy of A

since AB and A′B′ are decoupled. This coincides with the mutual information I(A,B),

which is twice the EE of A. However, for the orbifold, there is only one symmetry group

and one center for AA′ which does not get decoupled, even if the states decouple. The

topological part of the entropy measures precisely the non extensivity of the algebras.

Thinking in comparing different regularizations of the entropy obtained with the mutual

information or the reflected entropy, this curiosity may be interpreted as that there are some

universal features of the entropy (produced by superselection sectors) which is possible to

unambiguously distinguish with the choice of regularization.

There are other related quantities that could be defined in the context of intermediate

type-I algebras. For example, we could use S(NOAB) (with NOAB given by (2.14)) instead of

half the mutual information in (2.15). This again will lead to the reflected entropy in the

case of a complete model. We get for the entropy difference between models in this case

S(NFAB)− S(NOAB) =
∑
r

qr log(dr) . (2.17)

Curiously, this “non Abelian” entropy is different from zero (and positive) only for

non Abelian groups, where some dr > 1. Another quantity was defined in [10] and

called the minimal type-I entropy, which is the minimal entropy among all intermediate

type-I algebras.

To summarize, for a general theory A we can define the reflected entropy R(A,B) =
1
2I(NAB,N ′AB), where NAB = AA ∨ JAAJ , and J is the modular reflection corresponding

– 8 –
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to AA∨AB, and the type-I entropy, given by the same formula except that J is the modular

reflection forA′(AB)′ . These two coincide for complete models without superselection sectors

but are different in general.

3 Reflected entropy for free fermions

In this section we study the reflected entropy for Gaussian fermion systems. First, we show

that the reflected entropy can be obtained — similarly to the usual entanglement entropy

— from a matrix of two-point correlators of the fermionic fields. Then, we consider the

case of a free chiral fermion in d = 2 and numerically evaluate the reflected entropy for

two intervals A and B as a function of the conformal cross-ratio. We compare the result

with the holographic one obtained in [14]. We also analyze the spectrum of eigenvalues

of the correlators matrix in the case of the reflected entropy and compare it to the one

corresponding to a usual type-III entanglement entropy for a single interval. As we increase

the number of lattice points (taking the continuum limit), the finiteness of R(A,B) follows

from the fact that the eigenvalues of the correlator quickly tend to fixed values. Only few

of them are responsible for most of the entropy, while most eigenvalues give exponentially

suppressed contributions. This is in contradistinction to the usual SEE case, for which an

increasing number of eigenvalues becomes relevant as the continuum limit is approached,

giving rise to the usual logarithmic divergence. We also define a density of the type-I

algebra in terms of the ordinary field operator in the line that gives us a picture on how

the factor is distributed in the line.

3.1 Purification of free fermions

In this subsection we describe the purification and reflected entropy for free fermions. A

more formal description can be found in [10].

Let ρ be an invertible density matrix in a general quantum mechanical system of

Hilbert space H1. We can write

ρ =
∑
p

λp|p〉〈p| , (3.1)

where λp is the eigenvalue of ρ corresponding to the eigenvector |p〉. Let |Ω〉 be a purification

of ρ in the space H1 ⊗H2, where H2 is a copy of H1. That is, ρ = trH2 |Ω〉〈Ω|. We write

|Ω〉 as a Schmidt decomposition in H1 ⊗H2,

|Ω〉 =
∑
p

√
λp|p p̃〉 . (3.2)

The orthonormal base {|p̃〉} for H2 in (3.2) is arbitrary, and different basis correspond to

different purifications of |Ω〉. However, all these basis are equivalent for computing the

reflected entropy.

The modular conjugation J is given by the anti-unitary operator

J =
∑
pq

|p q̃〉〈q p̃| ∗ , (3.3)

– 9 –
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where ∗ is the complex conjugation in the basis {|pq̃〉}. We have J2 = 1, J∗ = J = J−1,

J |Ω〉 = |Ω〉. We also have the important property that the conjugation of an operator

acting on the first factor gives place to an operator acting on the second one,

J(O ⊗ 1)J = 1⊗ Ō . (3.4)

Defining

∆ = ρ⊗ ρ−1 , (3.5)

we have the Tomita-Takesaki relations

J ∆ = ∆−1 J , J∆1/2O1|Ω〉 = O∗1|Ω〉 , (3.6)

for O1 and operator acting on the first factor.

Let ψi, i = 1, . . . , N be a system of fermions in a Hilbert space H1 of dimension 2N . We

can purify a state given by a density matrix ρ in this space by taking a Hilbert space H of

double dimension and consider extending the fermion algebra with N additional fermionic

operators ψi, i = 1, . . . , 2N , such that {ψi, ψ†j} = δij , i, j = 1, · · · , 2N . The fermion number

operator F of the full system defines

Γ = (−1)F , Γ2 = 1 , Γ∗ = Γ , ΓψiΓ = −ψi , (3.7)

and the unitary operator [33]

Z =
1− iΓ
1− i

, ZZ∗ = 1 , ZψiZ
∗ = −iΓψi , ZψiψjZ

∗ = ψiψj . (3.8)

Note this unitary transformation leaves the bosonic part of the algebra invariant. Let us

assume the state ρ is even, that is, it gives zero expectation value for products of odd

number of fermion operators. It can be purified in the full space to a vector |Ω〉 which is

also even,

Γ|Ω〉 = Z|Ω〉 = |Ω〉 . (3.9)

Given |Ω〉 we obtain a modular reflection J corresponding to the algebra of the first N

fermions. We have

ΓJΓ = J , JZ = Z∗J , (3.10)

because of (3.9). The operator JψiJ commutes with ψj , i, j ∈ {1, · · · , N}, and then it is not

a fermion operator in the full space. However, it follows that defining the antiunitary [31]

J̃ = Z J , (3.11)

and6

ψ̃i
†

= −iJ̃ψiJ̃∗ , i = 1, · · · , N , (3.12)

it follows from the algebra that the set {ψ1, · · · , ψN , ψ̃1, · · · , ψ̃N} forms a canonical anti-

commutation algebra in the full space.

6The factor −i is a convenient choice of an arbitrary phase factor in this definition.
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The fermion correlators depend only on the density matrix ρ for the first N fermions.

Writing for notational convenience ψ0
i ≡ ψi, ψ

1
i ≡ ψ∗i , and analogously for ψ̃ai , a = 0, 1,

we have

〈Ω|ψa1
i1
· · ·ψakik ψ̃

b1
j1
· · · ψ̃bljl |Ω〉 = (−1)

∑
bl il 〈Ω|ψa1

i1
· · ·ψakik J̃ψ

b1 ∗
j1
· · ·ψbl ∗jl |Ω〉 (3.13)

= (−1)
∑
bl il 〈Ω|ψa1

i1
· · ·ψakik Z Jψ

b1 ∗
j1
· · ·ψbl ∗jl |Ω〉

= (−1)
∑
bl il 〈Ω|ψa1

i1
· · ·ψakik Z ∆1/2ψbljl · · ·ψ

b1
j1
|Ω〉

= (−1)
∑
bl il iFl〈Ω|ψa1

i1
· · ·ψakik ∆1/2ψbljl · · ·ψ

b1
j1
|Ω〉

= (−1)
∑
bl il iFl tr

(
ρ1/2ψa1

i1
· · ·ψakik ρ

1/2ψbljl · · ·ψ
b1
j1

)
,

where Fl = 1+(−1)l+1

2 is the fermion number of ψbljl · · ·ψ
b1
j1

.

Let us consider a Gaussian state for the fermions {ψ1, · · · , ψN} with density matrix

ρ =
(
det(1 + e−K)

)−1
e−

∑
ij ψ
†
iKijψj , (3.14)

for some Hermitian matrix K. The two point function then fully determines the state of

the system. It is given by

Dij = tr(ρψiψ
†
j) =

((
1 + e−K

)−1
)
ij
. (3.15)

The equation (3.15) implies that D is a Hermitian positive matrix with eigenvalues in (0, 1).

Diagonalizing K we can write the density matrix as a product of thermal density matrices

for independent fermion degrees of freedom

ρ =
⊗
k

(1 + e−εk)−1 e−εkc
†
kck , (3.16)

with

UKU † = ε = diag(ε1, . . . , εN ) , ck =
∑
l

Uklψl , {c†i , cj} = δij , (3.17)

and U a unitary matrix. Analogously, we can define mode operators for the ψ̃i fermions

with the same formula

c̃k =
∑
l

Uklψ̃l . (3.18)

From (3.13) it follows that the purified state |Ω〉 is also a Gaussian state for the full

system of 2N fermions. It can be easily checked the state defined by (3.13) is a tensor

product in k of states for each pair of modes ck, c̃k, and that it is Gaussian for each k.

Then it is Gaussian for the linear combinations defined by (3.17) and (3.18).

We organize the fermion operators in a single fermion field and write Ψi = ψi, i =

1, . . . , N and Ψi+N = ψ̃i, i = 1, . . . , N . The only non zero two point correlation function is

Cij = 〈Ω|ΨiΨ
†
j |Ω〉 i, j = 1, . . . , 2N . (3.19)

– 11 –



J
H
E
P
0
5
(
2
0
2
0
)
1
0
3

From (3.13) we obtain a block matrix representation for C

C =

(
D

√
D(1−D)√

D(1−D) 1−D

)
. (3.20)

The correlator C is a projector, C2 = C, C > 0, as corresponds to a global pure state |Ω〉.
The analogous to a region A of the original system is here a subset A ⊆ {1, . . . , N}.

The fermion algebra of A corresponds to the algebra generated by {Ψi}i∈A. The reflected

set Ā is the set of indices N + i, where i ∈ A. The correlator matrix in a given region X of

the full system is just the restriction CX of C to X, that is, (CX)ij = Ci,j for all i, j ∈ X.

The entropy is a function of the correlator matrix and writes

S(X) = −tr(CX log(CX) + (1− CX) log(1− CX)) . (3.21)

The same formula (3.20) can be used directly in the continuum where the matrix C is a

kernel C(x, y), x, y ∈ X.

3.2 Lattice calculations

Consider a fermionic quadratic Hamiltonian on a lattice

H =
∑
i,j

ψ†iMijψj , (3.22)

where the fermionic operators satisfy the usual anticommutation relations {ψi, ψ†j} = δij .

Let {dk} be the basis of operators which diagonalizes H, namely,

H =
∑
l

λl d
†
l dl , (3.23)

where dl ≡
∑

j Vljψj and [VMV †]lm ≡ ∆lm with ∆lm = λlδlm. The vacuum state is the

Dirac sea, characterized by the conditions

dl |0〉 = 0 for λl > 0 and d†l |0〉 = 0 for λl < 0 , (3.24)

namely, both annihilation operators corresponding to positive-energy modes and creation

operators corresponding to negative-energy modes annihilate the vacuum. From this, it

follows that 〈0|dld†k|0〉 = δlk for λl > 0 and zero otherwise. The correlators of the original

fermionic operators can be then written as

Dij ≡ 〈0|ψiψ†j |0〉 = [V †θ(∆)V ]ij , (3.25)

where θ(∆) is a diagonal matrix whose diagonal is filled with ones for λl > 0 slots and

zeros for the λl < 0 ones.

Now, let us consider a free massless chiral fermion in d = 2, which is a function of

a single null coordinate x. The Hamiltonian is − i
2

∫
dx (ψ†∂ψ − ∂ψ†ψ). We can write a

discretized Hamiltonian in a one dimensional lattice as

H = − i
2

∑
j

[
ψ†jψj+1 − ψ†j+1ψj

]
, (3.26)
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which takes the form of eq. (3.22) with

Mjl = − i
2

[δl,j+1 − δl,j−1] . (3.27)

It is a straightforward exercise to obtain the eigenvalues and eigenfunctions of M . One finds∑
j

Mjlψ
(λ)
j = sin(λ)ψ

(λ)
l , where ψ

(λ)
l =

eilλ√
2π

, and λ ∈ [−π, π] , (3.28)

where we normalized the eigenfunctions so that
∑

l ψ
(λ)
l ψ

(λ′)†
l = δ(λ−λ′). The fact that the

spectrum has two zeros in λ = 0, π means the continuum limit of this model will describe

two long-wave excitations corresponding to a doubling of degrees of freedom.

Now we can write the spectral decomposition of M as

Mjl =

∫ π

−π
dλ sin(λ)ψ

(λ)
j ψ

(λ)†
l , (3.29)

from which we can read the explicit expression for the fermionic correlators in the lattice

Djl using eq. (3.25). One finds

Djl =

∫ π

0
dλψ

(λ)
j ψ

(λ)†
l =


(−1)(j−l) − 1

2πi(j − l)
j 6= l ,

1

2
j = l .

(3.30)

3.2.1 Reflected entropy

From the above expression for Djl, given two disjoint regions A, B, we can obtain the

von Neumann entropy associated to ρAA∗ using eq. (3.20) and the general expression in

eq. (3.21) as follows. When computing the correlators Djl, the indices j, l take values on the

sites belonging to the subsets defined by V = A∪B. Explicitly, if we define the discretized

intervals as A∪B = (a1, a1 +1, . . . , b1−1, b1)∪(a2, a2 +1, . . . , b2−1, b2), then j takes values

j = a1, a1 + 1, . . . , b1− 1, b1, a2, a2 + 1, . . . , b2− 1, b2, and the same for l. Given (a1, b1) and

(a2, b2) as input, we can then evaluate the matrix of correlators Djl, which produces the

first block in eq. (3.20). The lower diagonal block is simply given by δjl − Djl. In order

to obtain the off-diagonal blocks, we diagonalize Djl. Given its eigenvalues, {dm}, we can

build the diagonal matrix
√
dm(1− dm)δmn, and transform it back to the original basis,

which yields [
√
D(1−D)]jl. We are then left with three (b1−a1+b2−a2)×(b1−a1+b2−a2)-

dimensional matrices corresponding to the two diagonal blocks and the off-diagonal one,

respectively. In order to obtain the von Neumann entropy associated to ρAA∗ , we need to

obtain the three submatrices corresponding to the A sites in each case. These correspond

to the first (b1− a1)× (b1− a1)-dimensional blocks in each case. If we denote the resulting

pieces by D|A, (1−D)|A and
√
D(1−D)

∣∣∣
A

, respectively, we can finally build the matrix

of correlators CAA∗ from which we can compute the entropy of ρAA∗ from eq. (3.20) as

CAA∗ =

 D|A
√
D(1−D)

∣∣∣
A√

D(1−D)
∣∣∣
A

(1−D)|A

 . (3.31)
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◼

Figure 1. Reflected entropy normalized by the central charge, R/c, as a function of the conformal

cross-ratio η for holographic Einstein gravity (black) and a free fermion (red line and dots). The

gray dashed line corresponds to the general-theory behavior for η → 1. For η = 1/2 the holographic

result undergoes a phase-transition and the leading N term drops to zero for smaller values of the

cross ratio.

Given this matrix, the last step is to obtain its eigenvalues, {νm}. Finally, the reflected

entropy is given by

Rferm. = −
∑
m

[νm log(νm) + (1m − νm) log(1m − νm)] . (3.32)

In the following, when showing results for the chiral fermion, we take into account the

fermion doubling by dividing the numerical results for the entropy by 2. Note that results

normalized by the central charge (c+ c̄)/2 are equal for the chiral and Dirac fermion.

In the continuum limit this entropy should be a function Rferm.(η) of the cross-ratio

η ≡ (b1 − a1)(b2 − a2)

(a2 − a1)(b2 − b1)
=

LALB
(d+ LA)(d+ LB)

, (3.33)

where LA,B are the two interval lengths and d the separating distance. For each value of

η, obtaining the continuum-limit result for Rferm. entails considering a sufficiently large

number of points in our discretized intervals. As we increase such number with fixed η, the

results asymptotically approach certain values which correspond to the continuum ones,

and we extrapolate to infinite size by a polynomial fit in the inverse size of the system.7

These are the ones shown in figure 1 and, as expected, they are finite for all values of η.

7Naturally, the number of points required to stabilize the corresponding value of Rferm. grows with η.
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In figure 1 we have also included the holographic result obtained in [14] using replica

methods,

Rholo.(η) =


2c
3 log

[
1 +
√
η

√
1− η

]
+O(c0) , for η > 1/2 ,

O(c0) , for η < 1/2 .

(3.34)

This in turn agrees with the EW calculations of [18, 19]. Normalizing by the central

charge, the fermion result turns out to be remarkably close to (and always smaller than)

the holographic one for all values of η > 1/2. For η = 1/2, the holographic result has a

phase transition and the leading c term drops to zero. On the other hand, the fermion one

continuously goes to zero as η → 0.

Finally, as argued in [14], for η → 1 the reflected entropy in a d = 2 CFT universally

behaves as

R(η → 1) = − c
3

log(1− η) +
c

3
log 4 , (3.35)

which we also included in figure 1. Both the holographic and fermion results approach the

limiting curve from below.

For small values of η, we find that the approximation

Rferm.(η → 0)/c ∼ −0.15η log η + 0.67η + . . . (3.36)

fits well the numerical data. The above expression is to be taken with a grain of salt,

in the sense that including more or less numerical points in the interpolation slightly (but

significantly) modifies the coefficients. However, we do seem to observe that the η log η term

is required to properly account for the data. The appearance of this term is interesting

when compared to the mutual information case. For that, the exact answer for a chiral

fermion reads [34, 35]

Iferm.(η) = −1

6
log(1− η) =⇒ Iferm.(η → 0) =

1

6

∑
j=1

ηj

j
. (3.37)

Hence, in the small η limit, the mutual information is given by a power law with no

logarithmic corrections.

As we have mentioned above, the values shown in the figure correspond to the contin-

uum limit. Naturally, an analogous limiting procedure in the case of the usual entanglement

entropy gives rise to divergent expressions (involving the usual logarithmic term in the case

of d = 2 CFTs). If we were computing entanglement entropy, we would use the same ex-

pression as in eq. (3.32) where now the eigenvalues would be ones of D|A. The reason

why the same formula when applied to D|A gives rise to a divergent expression whereas

it produces a finite entropy when applied to CAA∗ may look somewhat obscure from the

point of view of this lattice approach. In order to shed some light on this, we next compare

the spectrum of D|A (corresponding to the usual entanglement entropy of a single interval)

with the one of CAA∗ .
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3.2.2 Correlators matrix spectrum

Both the usual entanglement entropy and the reflected entropy are von Neumann entropies.

The first corresponds to a regularization of a type-III algebra associated to the correspond-

ing entangling region A (in the simplest possible a case, a single interval) whereas the

second is associated to the type-I algebra canonically related to two given regions A and

B (here, two intervals). As we saw above, this means that for Gaussian systems both

quantities can be evaluated from matrices of correlators: D|A and CAA∗ respectively, using

the same formula appearing in the r.h.s. of eq. (3.32) — more generally, eq. (3.21). In the

former case, the νk stand for the eigenvalues of D|A, and in the latter those correspond

to the eigenvalues of CAA∗ . In fact, as we saw, CAA∗ includes D|A as one of its block

submatrices.

In spite of these “similarities”, the result obtained for the reflected entropy is very

different from the one corresponding to the entanglement entropy. While the former can

be used as a regulator for the latter as we make both regions come close (η → 1 above), the

reflected entropy is otherwise finite for all values of the conformal cross ratio, whereas the

entanglement entropy of a single interval diverges logarithmically in the continuum, SEE =
c
3 log(LA/ε). This different behavior can be traced back to the properties of the respective

spectra of D|A and CAA∗ . As should be clear from eq. (3.32), eigenvalues close to 1 (or 0)

make little contribution to the corresponding von Neumann entropy. On the other hand,

the closer to 1/2, the greater the contribution from the corresponding eigenvalue. From

this perspective, it is expectable that a finite result for the entropy should be associated to

the existence of a finite number of eingenvalues significantly different from 1, and viceversa

— i.e. an infinite entropy should be related to the appearance of an increasing number of

νk 6' 1 eigenvalues as we go to the continuum.

In order to analyze these features, we numerically computed the eigenvalues of D|A
and CAA∗ (for a fixed value of the cross-ratio, here we take η = 25/36) and arranged them

from closest to farthest to 1/2. Since the spectrum is symmetric around 1/2 it is enough to

consider the eigenvalues 1 > νk ≥ 1/2. In each case, we refer to the “leading” eigenvalue as

the one which is closest to 1/2, and so on. We plot the results for the leading eigenvalues

in figure 2. As we approach the continuum limit, a growing number of eigenvalues of

D|A becomes relevant and separate from 1, giving rise to the logarithmically divergent

behavior. No such phenomenon occurs for the type-I factor, where we observe that any

fixed eigenvalue quickly tends to a constant value in the continuum limit, and only few of

them are not exponentially close to 1 as we approach that limit. For a fixed cross ratio, a

few eigenvalues are enough to account for the whole entropy in the continuum.

The fact that R(A,B) is essentially controlled by a couple of eigenvalues of CAA∗ can

be verified by defining the “partial” reflected entropies

R
(p)
ferm.(η)/c = −2

p∑
m, νm>1/2

[νm log(νm) + (1m − νm) log(1m − νm)] , (3.38)

where it is understood that the eigenvalues have been arranged from closest to farthest to

1/2 and the factor 2 comes from the fact that the eigenvalues appear mirrored with respect
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Figure 2. We plot the “leading” eigenvalues of D|A and CAA∗ (as defined in the main text)

corresponding, respectively to: the correlators matrix required for the evaluation of the usual type-

III entanglement entropy for a single interval and the reflected entropy R(A,B) for a fixed value of

the cross-ratio η = 25/36, for different numbers of lattice points. The plot is logarithmic to make

the behavior of the different eigenvalues more visible.

to 1/2. Also, R
(∞)
ferm.(η) = Rferm.(η) is just the reflected entropy by definition. For instance,

for η = 25/36 ' 0.6944 we find

R
(1)
ferm.(25/36)/c ' 0.7248 ,

R
(2)
ferm.(25/36)/c ' 0.7403 ,

R
(3)
ferm.(25/36)/c ' 0.7430 ,

R
(4)
ferm.(25/36)/c ' 0.7434 ,

R
(∞)
ferm.(25/36)/c ' 0.7436 .

The consideration of the leading eigenvalue already provides a decent approximation to the

reflected entropy. Since R
(p)
ferm./c ≤ 2p log(2) however, the number of relevant eigenvalues

increases logarithmically as η → 1.

For the case of the interval (type-III factor) the continuum limit corresponds to the

correlator kernel of the fermion which has continuum spectrum covering all the interval

(0, 1). This spectrum is given by ν(s) = 1+tanh(πs)
2 , in terms of a parameter s ∈ (−∞,∞)

having uniform density in the line [34]. This gives a density of eigenvalues in the variable

ν given by ds/dν ∝ (ν(1−ν))−1. The integrated number of eigenvalues for ν > 1/2 is then

proportional to log(ν/(1 − ν)), equispaced in logarithmic variable as we approach ν ∼ 1.

This is readily seen in figure 2.

We have just analyzed how the spectra of eigenvalues of the correlators matrix differs in

the case of the reflected entropy with respect to the one of a single-interval (corresponding

to an usual logarithmically divergent type-III entanglement entropy). It is convenient to

mention that the spectrum of reduced density matrices in the entanglement entropy context

has been subject of intense study — see e.g., [36–40] and references therein. In the case
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of free fermions (and more generally for Gaussian states), this “entanglement spectrum” is

naturally related to the spectrum of the corresponding corelators matrix as follows.

Both the eigenvalues of the correlators matrix {νk} and the density matrix {λ(ρ)
j } can

be written in terms of the ones of the Hamiltonian, {εk}. Indeed, the former are related,

one-to-one, to the {εk} by

νk =
1

1 + e−εk
, and therefore: εk = log [1/νk − 1] . (3.39)

On the other hand, the eigenvalues of the density matrix are given by the set

{
λ

(ρ)
j

}
=

{∏
k

e−εkok

1 + e−εk
, ok ∈ {0, 1}

}
. (3.40)

Therefore, we can write them in terms of the νk as8

{
λ

(ρ)
j

}
=

{∏
k

[1− νk]1−ok νokk , ok ∈ {0, 1}

}
. (3.42)

The eigenvalues of the correlator νk are then just the probabilities in the two-

dimensional density matrix of each independent fermion degree of freedom. From the

point of view of the lattice calculation both the type-I and type-III factors appear in the

continuum limit as an infinite tensor product of single fermion degrees of freedom. The

resulting type of von Neumann algebra depends on the state, which is necesary to define

the limit of the tensor product [2]. This state is given by the probabilities νk for each

mode. A sure sufficient condition of the result being a type-I algebra is that the sum of the

entropies of the different modes converges. If it does not, different results may be obtained

according to the behavior of the sequence of νk in the continuum limit. See [2] for examples

where the limit is a type-IIIλ factor for λ ∈ [0, 1]. The case of the algebra of the interval is

known to be a type-III1 factor which requires that the νk have at least two accumulation

points in (0, 1). As we have seen, the fermion field correlator in the interval has indeed

a continuum spectrum in (0, 1), and all points are accumulation points, proving that is a

type-III1 factor. This accumulation of eigenvalues in any point is also visible numerically

from figure 2.

3.3 Spatial density of the standard type-I factor

As opposed to the usual type-III algebras associated to subregions, the type-I factor NAB
cannot be sharply associated to any region. In order to make this heuristic observation

more precise, we can define a notion of “spatial density” which measures how NAB is

distributed in the line.

8For instance, for k = 1, 2, we have

{λ(ρ)
j } = {(1− ν1)(1− ν2), ν2(1− ν1), ν1(1− ν2), ν2ν1} . (3.41)

Note that the number of eigenvalues of the density matrix grows exponentially with the number of lattice

points.
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Suppose first that we have two sets of fermion fields linearly related to each other

φ(u) =

∫
dv K(u, v) φ̃(v) . (3.43)

Anti-commutation relations for both fields

{φ(u), φ†(u′)} = δ(u− u′) , {φ̃(v), φ̃†(v′)} = δ(v − v′) , (3.44)

imply

K(u, v) = {φ(u), φ̃†(v)} ,
∫
dv K(u, v)K(u′, v)∗ = δ(u− u′) . (3.45)

Now consider a subalgebra of the fermion system generated by the fields φ̃(v) in a subset

of the line, v ∈ V . We would like to understand how this subalgebra is distributed in the

line of coordinate u. A natural density d(u) is given by∫
V
dv K(u, v)K(u′, v)∗ ∼ dV (u) δ(u− u′) . (3.46)

This tells us the proportion of the field φ(u) that can be reconstructed from the algebra in

V . We have in particular

0 ≤ dV (u) ≤ 1 ,
∑
j

dVj (u) = 1 , for ∪j Vj = W , i 6= j =⇒ Vi ∩ Vj = ∅ , (3.47)

where we have denoted by W the full domain of the variable v.

As anticipated, we now apply this idea to understand how the type-I factor NAB is

distributed along the line. One set of fields is given by

{ψ(y), y ∈ A} ∪ {ψ̃(y) = iJ̃ABψ
†(y)J̃∗AB, y ∈ A} , (3.48)

which spans NAB. This is completed by N ′AB which is generated by the same expres-

sion (3.48) but where y ∈ B. We need to determine the density of this set in terms of the

fields ψ(x), x ∈ R. Then we have to compute∫
A
dy {ψ(x), ψ†(y)}{ψ(x′), ψ†(y)}∗ +

∫
A
dy {ψ(x), ψ̃†(y)}{ψ(x′), ψ̃†(y)}∗ , (3.49)

and look for the δ(x − x′) term. It is evident that d(x) = 1 for x ∈ A, and d(x) = 0 for

x ∈ B. The density for x ∈ (AB)′ is determined by the second term in (3.49). We write

this term using

{ψ(x), ψ̃†(y)} = 〈Ω|{ψ(x), ψ̃†(y)}|Ω〉
= −i〈Ω|ψ(x)J̃ψ(y)|Ω〉+ i〈Ω|ψ†(x)J̃ψ†(y)|Ω〉 (3.50)

= 2〈Ω|ψ(x)∆1/2ψ†(y)|Ω〉 ,

where x ∈ (AB)′, y ∈ A.
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Figure 3. Spatial density d(x) for the type-I factor NAB (black curve and red lines). For x ∈ A,

d(x) = 1, whereas for x ∈ B, d(x) = 0. Between the two intervals, the density interpolates

continuously. As |x| → ∞, d(x) → 1/2. The mirrored gray curve (plus the pale blue lines)

corresponds to the density of N ′
AB — see eq. (1.2) for definitions.

The modular flow for the chiral fermion was studied in several papers [31, 34, 41, 42].

In [42], the following useful correlator was computed for the case of a multi-interval region

(a1, b1) ∪ · · · ∪ (ak, bk),

〈Ω|ψ(x)∆itψ†(y)|Ω〉 =
1

2πi(x− y)

Πb(x)Πa(y)−Πb(y)Πa(x)

eπtΠb(x)Πa(y)− e−πtΠb(y)Πa(x)
, (3.51)

where

Πa(x) ≡
k∏
i=1

(x− ai) , Πb(x) ≡
k∏
i=1

(x− bi) . (3.52)

Replacing t = −i/2, one finds9

〈Ω|ψ(x)∆1/2ψ†(y)|Ω〉 =
1

2π(x− y)

Πb(x)Πa(y)−Πb(y)Πa(x)

Πb(x)Πa(y) + Πb(y)Πa(x)
. (3.53)

This has a singular behavior in y of the form

g(x)

y − ȳ(x)
, (3.54)

near a point ȳ(x) ∈ A given by the vanishing of the denominator in (3.53). Since the

convolution of the 1/(y − z) distribution (defined through the principal value) with itself

9This can also be obtained from the explicit diagonalization of the modular operator [34]. According

to (3.13) and (3.20) this is the analytic expression for
√
D(1−D)(x, y) where x is extended outside AB.
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is proportional to the delta function, we get that the term proportional to a delta function

in the kernel (3.49) is

4π2 g(x)g∗(x)δ(ȳ(x)− ȳ(x′)) , (3.55)

and from this

d(x) = 4π2 |g(x)|2

|ȳ′(x)|
. (3.56)

Using eq. (3.53), it is possible to obtain an explicit expression for d(x) in the case of two

intervals. The resulting formula is a bit messy, but we can simplify it by considering two

equal-size symmetric intervals: a1 ≡ −b, b1 ≡ −a, a2 ≡ a, b2 ≡ b. In that case, we find

d(x) =


(a2(x2 − 2b2) + x(b2x+ S(x)))2

2(ab+ x2)S(x)((a− b)2x+ S(x))
, x ∈ [−a, a] ,

−(a2(x2 − 2b2) + x(b2x− S(x)))2

2(ab+ x2)S(x)((a− b)2x− S(x))
, x ∈ (−∞,−b] ∪ [b,∞) ,

(3.57)

where

S(x) ≡
√

4a3b3 + (a4 − 4a3b− 2a2b2 − 4ab3 + b4)x2 + 4abx4 . (3.58)

We plot d(x) in figure 3. The red intervals correspond to d(x) = 1 and d(x) = 0, cor-

responding to x ∈ A and x ∈ B respectively. As we can see, the type-I factor is spread

through the whole line outside B. In particular, d(x) asymptotes to 1/2 as |x| → ∞. The

density for the factor N ′AB is the mirrored image of the one corresponding to NAB.

As a comparison, the type-III factor corresponding to interval A has density equal to

1 inside A and 0 outside. Then the continuous drop of the density outside A is important

for making the algebra type-I and have finite entropy. Note however that the density

of NAB is continuous and has continuous first derivative but does not have continuous

second derivative.

4 Twist operators

In this section we first obtain explicit expressions, in terms of fermion correlators, for the

expectation values on Gaussian states of twist operators implementing global Z2 and U(1)

transformations. We evaluate those expectation values numerically for various angles as

well as the“twist entropy” defined in eq. (2.3) for the Z2 case. We use this result to compute

the type-I entropy defined in section 2 for the bosonic subalgebra.

Let us consider a U(1) symmetry group gθ acting on the fermionic fields as

gθψg
†
θ = e−iθψ . (4.1)

The twist operators τθ act as the above group transformations for fields on A, while leaving

the fields in B invariant,

τθψ(x)τ †θ = e−iθψ(x) , x ∈ A , τθψ(x)τ †θ = ψ(x) , x ∈ B . (4.2)

Then τθ is an operator localized in the complement of B.
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Keeping only θ = 0, π, we restrict U(1) to a Z2 group, and we define τ ≡ τπ, which

satisfies τ2 = 1. This operator leaves invariant any product involving an even number of

fermionic operators, while effectively multiplying by −1 an odd number of them, namely,

τ ψ · · ·ψ︸ ︷︷ ︸
n

τ = (−1)nψ · · ·ψ . (4.3)

A would-be sharp twist with action (4.2) but where B is the complement A′ of A does

not correspond to any operator in the theory, because it would have too large fluctuations.

This would correspond to a twist acting only on the type-III algebra which does not define

a tensor product of the Hilbert space. This is not the case for type-I factors, for which τθ
is a well defined unitary.

Consider the fermionic Gaussian state

ρ =
∏
l

e−εlc
†
l cl

(1 + e−εl)
= ⊗l

[
|0l〉 〈0l|+ e−εl |1l〉 〈1l|

(1 + e−εl)

]
, (4.4)

where the modular Hamiltonian has been diagonalized, as before. Considering the twist τθ
that acts on this Hilbert space, it follows that

〈τθ〉 = tr(ρτθ) =
∏
l

(1 + e−(εl+iθ))

(1 + e−εl)
, (4.5)

where we defined the representation of the twist by τθ = ⊗lτθ,l and τθ,l |0l〉 = |0l〉, τθ,l |1l〉 =

e−iθ |1l〉. We can write eq. (4.5) in terms of the modular Hamiltonian as

〈τθ〉 = det

[
(1 + e−(H+iθ))

(1 + e−H)

]
. (4.6)

Finally, using the relation between the modular Hamiltonian and the Gaussian correlators

H = − log(D−1 − 1), this reduces to

〈τθ〉 = det
[
D + (1−D)e−iθ

]
, 〈τ〉 = det[2D − 1] . (4.7)

Just like for the reflected entropy, we can now apply these expressions in terms of the

fermion correlator matrix to the type-I algebra N ≡ AA ∨ JABAAJAB, replacing D by

CAA∗ above. This gives the expectation value of the standard twist defined by A and B.

We have computed these expectation values in the lattice and taken the continuum

limit. In our lattice model with doubling we have two identical independent copies in the

continuum limit. Then we have to take the square root of the lattice twist to get the

expectation value of the twist in the chiral fermion right, 〈τ lattice
θ 〉|continuum = 〈τθ〉2. For

two intervals the expectation value is a function of the cross ratio that we have plotted in

figure 4 for θ = π, π/2, π/4. In the limit η → 1 the twist is sharp, and charge fluctuations

in vacuum make the expectation value go to zero. In the opposite limit, η → 0, the twist

smearing region between A and B becomes large, and the twist can transition smoothly

between the group operation to the identity without appreciably disturbing the vacuum.

In consequence, the expectation value |〈τθ〉| ∼ 1, as is the case of the expectation value of

the group operation 〈gθ〉 = 1.
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Figure 4. (Left) Expectation value of the standard twist operator τθ for θ = π/4, π/2, π as a

function of the cross-ratio η for a free chiral fermion. (Right) Twist entropy Sτ associated to the

Z2 symmetry, as defined in eq. (4.9), for a free chiral fermion. The curve continuously grows from

Sτ = 0 at η = 0 to Sτ = log 2, its maximum value, at η = 1.

4.1 Type-I entropy for the bosonic subalgebra

The bosonic subalgebra of the fermion model is defined by the collection of operators

having even fermion number, or equivalently, operators invariant under the Z2 symmetry

generated by gπ.10 Using 〈τ〉, we can compute the type-I entropy corresponding to the

bosonic subalgebra, SI
bos.(A,B). We have

SI
bos.(A,B) = Rferm.(A,B)− 1

2
Sτ , (4.8)

where in this case the twist entropy is

Sτ = − [q+ log q+ + q− log q−] , where q± ≡
1± 〈τ〉

2
. (4.9)

This follows from eq. (2.10) and eq. (2.4) as follows. First, Z2 has two irreducible repre-

sentations, which we denote r = + (trivial) and r = −, and two elements, {g0, g1}, whose

characters read χ+(g0) = χ+(g1) = 1, χ−(g0) = 1 and χ−(g1) = eiπ = −1 respectively. As

for the dimensions of the group and the two irreps, |Z2| = 2, d+ = 1 and d− = 1. Also,

note that in the notation of eq. (2.4), we have 〈τg0〉 = 1, 〈τg1〉 = 〈τ〉. Inserting these results

in eq. (2.2), eq. (2.4) and eq. (2.10), we are left with eq. (4.9). In this case, the second

term in the right hand side of eq. (2.10) does not appear, since: log d+ = log d− = 0. The

resulting curve for Sτ appears plotted in figure 4.

Once we have Sτ (A,B), it is trivial to obtain SI
bos.(A,B) from eq. (4.8). In figure 5

we plot this “type-I entropy” alongside the reflected entropy of the full fermion algebra,

10If we consider a real (Majorana) chiral fermion instead of a complex fermion, the bosonic model is the

chiral Ising model (the Virasoro model of central charge c = 1/2). The twists and type-I entropy can be

studied in a similar way. In particular, the expectation values of the twists are given by 〈τIsing〉| =
√
|〈τ〉|

because of the two independent real fermions in the complex one.
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Figure 5. (Left) We plot the reflected entropy for the full fermion algebra, Rferm., the type-I

entropy for the bosonic subalgebra, SI
bos., and the mutual information for the fermion Iferm. as a

function of the cross-ratio η. (Right) We plot the free-fermion and free-scalar mutual informations,

Iferm. and Iscal. as well as Iferm. − Sτ .

Rferm.(A,B), as well as the fermion mutual information, given by eq. (3.37) above. We

observe that

Rferm.(η) > Iferm.(η) , and Rferm.(η) > SI
bos.(η) , (4.10)

for all values of η. These follow in general from eq. (1.5) and eq. (4.8) plus the positivity

of Sτ respectively. On the other hand, we observe that SI
bos.(η) is quite close to Iferm.(η)

for all values of η. SI
bos.(η) is larger than Iferm.(η) for smaller values of η, they coincide at

some intermediate point η ∼ 0.89, and then Iferm.(η) > SI
bos.(η) as η → 1.

Using Sτ we can also obtain bounds for the mutual information of the bosonic subal-

gebra, Ibos.(η), which follow from eq. (2.3). Namely, we have

Iferm.(η) ≥ Ibos.(η) ≥ Iferm.(η)− Sτ (η) . (4.11)

Ibos.(η) is also bounded below by the mutual information of a free scalar field,

Ibos.(η) ≥ Iscal.(η) . (4.12)

The last inequality follows from the monotonicity of mutual information under inclusions

and the fact that the free scalar algebra is a subalgebra of the free-fermion bosonic one.

Indeed, by bosonization, the free-scalar algebra is equivalent to the algebra generated by

the fermion current, which includes only charge neutral operators. This includes smeared

operators constructed from ψ̄(x)ψ(y) but not ψ(x)ψ(y), for instance. This later however

belongs to the bosonic subalgebra.

Note that writing a similar expression to eq. (4.12) for the reflected entropy is not

possible at the moment, since we have no proof of the monotonicity of such quantity under

inclusions.
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Figure 6. We plot |U(η)| and Sτ (η) for values of the cross ratio close to 1. Sτ (η) becomes smaller

than |U(η)| as we approach that limit, implying that Iferm.(η)−Sτ (η) provides a better bound than

Iscal.(η) to the bosonic subalgebra mutual information near η = 1.

The result for the mutual information of a free scalar reads [43]

Iscal.(η) = −1

6
log(1− η) + U(η) , (4.13)

where

U(η) ≡ − iπ
2

∫ ∞
0

ds
s

sinh2(πs)
log

[
2F1[1 + is,−is; 1; η]

2F1[1− is,+is; 1; η]

]
. (4.14)

We plot this together with Iferm.(η) and Iferm.(η)−Sτ (η) in the second plot of figure 5. We

observe that Iscal.(η) seems to be greater than Iferm.(η)−Sτ (η) for all values of η, therefore

providing a better bound for the mutual information of the bosonic subalgebra. In fact,

Iferm.(η) − Sτ (η) turns out to be negative for most values of η. A closer look reveals that

actually Iferm.(η) − Sτ (η) > Iscal.(η) for values of η sufficiently close to 1. In that limit

Iferm.(η)− Sτ (η) becomes positive, since Iferm.(η) diverges whereas Sτ (η) approaches log 2.

The difference between the two quantities is given by

Iscal.(η)− (Iferm.(η)− Sτ (η)) = Sτ (η)− |U(η)| , (4.15)

where note that U(τ) is negative for all values of η. For most values of η, the above quantity

is positive and therefore Iscal.(η) provides a better bound than Iferm.(η)− Sτ (η). As it can

be seen from figure 6, this is no longer the case as η → 1. |U(η)| eventually becomes larger

than Sτ (η) as we approach that limit, in fact becoming infinitely greater in the limit.

5 Final comments

The main results of the paper appear summarized in the introduction and at the beginning

of each section. Let us now close with some final words.

In comparing the free-fermion reflected entropy with the mutual information, we have

seen that both behave similarly as the intervals approach each other, but differ significantly

otherwise. The reason for this difference is that mutual information measures correlations
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between operators strictly localized in A,B, while this is not the case of the reflected

entropy. For the latter, information is more delocalized, as can be seen from the distribution

of the type-I factor in space (see figure 3). This is also manifest in the dependence of the

reflected entropy on the cross ratio for large distances, which, as opposed to the mutual

information, does not seem to have a power law expansion. In the case of the mutual

information, such power law expansion follows from the OPE of localized twist operators

in the replica trick [44].

We have also computed explicitly some standard twist operators and their expectation

values. These can be used to produce lower bounds on the mutual information of the

orbifold theory and to compute the type-I entropy defined in section 2. The bound on the

mutual information appears to be rather poor unless the two regions are near to each other.

In the limit of regions touching each other the bound gets saturated. We can naturally

wonder if there exist other twist operators, different from the standard ones, which produce

sharper bounds.

Here we have focused on free fermions, but the reflected entropy for Gaussian bosonic

systems should also be amenable to simple numerical study. Higher-dimensional studies

of this quantity for free fields would of course be interesting as well. In particular, it

would be interesting to analyze EE universal terms using reflected entropy as a regulator,

and compare those with the mutual information regularization. In principle, we expect

coincidence of results for the universal terms, as happens in the holographic case. Finally,

let us mention that the holographic construction of reflected entropy [14] may also give

hints on how to compute standard twists in the holographic setup.
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Annales Henri Poincaré 19 (2018) 1817 [arXiv:1701.01186] [INSPIRE].

[13] S. Hollands and K. Sanders, Entanglement measures and their properties in quantum field

theory, arXiv:1702.04924 [INSPIRE].

[14] S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge cross-section,

arXiv:1905.00577 [INSPIRE].

[15] H. Casini, Entropy inequalities from reflection positivity, J. Stat. Mech. 1008 (2010) P08019

[arXiv:1004.4599] [INSPIRE].

[16] H.-S. Jeong, K.-Y. Kim and M. Nishida, Reflected entropy and entanglement wedge cross

section with the first order correction, JHEP 12 (2019) 170 [arXiv:1909.02806] [INSPIRE].

[17] Y. Kusuki and K. Tamaoka, Dynamics of entanglement wedge cross section from conformal

field theories, arXiv:1907.06646 [INSPIRE].

[18] T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality,

Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].

[19] P. Nguyen et al., Entanglement of purification: from spin chains to holography, JHEP 01

(2018) 098 [arXiv:1709.07424] [INSPIRE].

[20] C. Akers and P. Rath, Entanglement wedge cross sections require tripartite entanglement,

JHEP 04 (2020) 208 [arXiv:1911.07852] [INSPIRE].

[21] S.X. Cui et al., Bit threads and holographic monogamy, Commun. Math. Phys. 376 (2019)

609 [arXiv:1808.05234] [INSPIRE].

[22] Y. Kusuki and K. Tamaoka, Entanglement wedge cross section from CFT: dynamics of local

operator quench, JHEP 02 (2020) 017 [arXiv:1909.06790] [INSPIRE].

[23] M. Moosa, Time dependence of reflected entropy in conformal field theory,

arXiv:2001.05969 [INSPIRE].

[24] J. Kudler-Flam, Y. Kusuki and S. Ryu, Correlation measures and the entanglement wedge

cross-section after quantum quenches in two-dimensional conformal field theories, JHEP 04

(2020) 074 [arXiv:2001.05501] [INSPIRE].

[25] N. Bao and N. Cheng, Multipartite reflected entropy, JHEP 10 (2019) 102

[arXiv:1909.03154] [INSPIRE].

[26] J. Chu, R. Qi and Y. Zhou, Generalizations of reflected entropy and the holographic dual,

JHEP 03 (2020) 151 [arXiv:1909.10456] [INSPIRE].

– 27 –

https://doi.org/10.1007/BF01646201
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,36,287%22
https://doi.org/10.1007/BF01454978
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,106,321%22
https://doi.org/10.1007/BF02029134
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,85,73%22
http://dx.doi.org/10.1007/BF01388641
http://dx.doi.org/10.1007/BF01388641
https://doi.org/10.1007/BF01213216
https://doi.org/10.1007/BF01213216
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,88,399%22
https://arxiv.org/abs/1911.09390
https://inspirehep.net/search?p=find+EPRINT+arXiv:1911.09390
https://doi.org/10.1016/S0034-4877(02)80048-9
https://doi.org/10.1016/S0034-4877(02)80048-9
https://inspirehep.net/search?p=find+J+%22Rept.Math.Phys.,50,111%22
https://doi.org/10.1007/s00023-018-0671-9
https://arxiv.org/abs/1701.01186
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.01186
https://arxiv.org/abs/1702.04924
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.04924
https://arxiv.org/abs/1905.00577
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.00577
https://doi.org/10.1088/1742-5468/2010/08/P08019
https://arxiv.org/abs/1004.4599
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.4599
https://doi.org/10.1007/JHEP12(2019)170
https://arxiv.org/abs/1909.02806
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.02806
https://arxiv.org/abs/1907.06646
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.06646
https://doi.org/10.1038/s41567-018-0075-2
https://arxiv.org/abs/1708.09393
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.09393
https://doi.org/10.1007/JHEP01(2018)098
https://doi.org/10.1007/JHEP01(2018)098
https://arxiv.org/abs/1709.07424
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.07424
https://doi.org/10.1007/JHEP04(2020)208
https://arxiv.org/abs/1911.07852
https://inspirehep.net/search?p=find+EPRINT+arXiv:1911.07852
https://doi.org/10.1007/s00220-019-03510-8
https://doi.org/10.1007/s00220-019-03510-8
https://arxiv.org/abs/1808.05234
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.05234
https://doi.org/10.1007/JHEP02(2020)017
https://arxiv.org/abs/1909.06790
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.06790
https://arxiv.org/abs/2001.05969
https://inspirehep.net/search?p=find+EPRINT+arXiv:2001.05969
https://doi.org/10.1007/JHEP04(2020)074
https://doi.org/10.1007/JHEP04(2020)074
https://arxiv.org/abs/2001.05501
https://inspirehep.net/search?p=find+EPRINT+arXiv:2001.05501
https://doi.org/10.1007/JHEP10(2019)102
https://arxiv.org/abs/1909.03154
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.03154
https://doi.org/10.1007/JHEP03(2020)151
https://arxiv.org/abs/1909.10456
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.10456


J
H
E
P
0
5
(
2
0
2
0
)
1
0
3

[27] D. Marolf, CFT sewing as the dual of AdS cut-and-paste, JHEP 02 (2020) 152

[arXiv:1909.09330] [INSPIRE].

[28] D. Buchholz, S. Doplicher and R. Longo, On Noether’s theorem in quantum field theory,

Annals Phys. 170 (1986) 1 [INSPIRE].

[29] R. Dijkgraaf, C. Vafa, E.P. Verlinde and H.L. Verlinde, The operator algebra of orbifold

models, Commun. Math. Phys. 123 (1989) 485 [INSPIRE].

[30] H. Casini, M. Huerta, J.M. Magán and D. Pontello, Entanglement entropy and superselection

sectors. Part I. Global symmetries, JHEP 02 (2020) 014 [arXiv:1905.10487] [INSPIRE].

[31] R. Longo and F. Xu, Relative entropy in CFT, Adv. Math. 337 (2018) 139

[arXiv:1712.07283] [INSPIRE].

[32] R. Longo, Index of subfactors and statistics of quantum fields. I, Commun. Math. Phys. 126

(1989) 217 [INSPIRE].

[33] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations I,

Commun. Math. Phys. 13 (1969) 1 [INSPIRE].

[34] H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent

regions, Class. Quant. Grav. 26 (2009) 185005 [arXiv:0903.5284] [INSPIRE].

[35] H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac

field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].

[36] M.C. Chung and I. Peschel, Density-matrix spectra for two-dimensional quantum systems,

Phys. Rev. B 62 (2000) 4191.

[37] P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev.

A 78 (2008) 032329.

[38] L. Lepori, G. De Chiara and A. Sanpera, Scaling of the entanglement spectrum near quantum

phase transitions, Phys. Rev. B 87 (2013) 235107 [arXiv:1302.5285].

[39] N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rept. 646 (2016)

1 [arXiv:1512.03388] [INSPIRE].

[40] V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the Cardy

formula in 1 + 1 dimensional conformal field theories, J. Phys. A 51 (2018) 024001

[arXiv:1707.07532] [INSPIRE].

[41] R. Longo, P. Martinetti and K.-H. Rehren, Geometric modular action for disjoint intervals

and boundary conformal field theory, Rev. Math. Phys. 22 (2010) 331 [arXiv:0912.1106]

[INSPIRE].

[42] S. Hollands, On the modular operator of mutli-component regions in chiral CFT,

arXiv:1904.08201 [INSPIRE].

[43] R.E. Arias, H. Casini, M. Huerta and D. Pontello, Entropy and modular Hamiltonian for a

free chiral scalar in two intervals, Phys. Rev. D 98 (2018) 125008 [arXiv:1809.00026]

[INSPIRE].

[44] J. Cardy, Some results on the mutual information of disjoint regions in higher dimensions, J.

Phys. A 46 (2013) 285402 [arXiv:1304.7985] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP02(2020)152
https://arxiv.org/abs/1909.09330
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.09330
https://doi.org/10.1016/0003-4916(86)90086-2
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,170,1%22
https://doi.org/10.1007/BF01238812
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,123,485%22
https://doi.org/10.1007/JHEP02(2020)014
https://arxiv.org/abs/1905.10487
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.10487
https://doi.org/10.1016/j.aim.2018.08.015
https://arxiv.org/abs/1712.07283
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07283
https://doi.org/10.1007/BF02125124
https://doi.org/10.1007/BF02125124
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,126,217%22
https://doi.org/10.1007/BF01645267
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,13,1%22
https://doi.org/10.1088/0264-9381/26/18/185005
https://arxiv.org/abs/0903.5284
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.5284
https://doi.org/10.1088/1742-5468/2005/07/P07007
https://arxiv.org/abs/cond-mat/0505563
https://inspirehep.net/search?p=find+J+%22J.Stat.Mech.,0507,P07007%22
http://dx.doi.org/10.1103/physrevb.62.4191
http://dx.doi.org/10.1103/physreva.78.032329
http://dx.doi.org/10.1103/physreva.78.032329
http://dx.doi.org/10.1103/PhysRevB.87.235107
https://arxiv.org/abs/1302.5285
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1016/j.physrep.2016.06.008
https://arxiv.org/abs/1512.03388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03388
https://doi.org/10.1088/1751-8121/aa9365
https://arxiv.org/abs/1707.07532
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.07532
https://doi.org/10.1142/S0129055X10003977
https://arxiv.org/abs/0912.1106
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1106
https://arxiv.org/abs/1904.08201
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.08201
https://doi.org/10.1103/PhysRevD.98.125008
https://arxiv.org/abs/1809.00026
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.00026
https://doi.org/10.1088/1751-8113/46/28/285402
https://doi.org/10.1088/1751-8113/46/28/285402
https://arxiv.org/abs/1304.7985
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7985

	Introduction
	Symmetries, twist operators, and type-I entropy
	Reflected entropy for free fermions
	Purification of free fermions
	Lattice calculations
	Reflected entropy
	Correlators matrix spectrum

	Spatial density of the standard type-I factor

	Twist operators
	Type-I entropy for the bosonic subalgebra

	Final comments

